Research Article
BibTex RIS Cite

Degradation of Tolonium Chloride Dye by Phosphate Ion in Aqueous Acidic Solution: Kinetic Approach

Year 2024, Volume: 11 Issue: 2, 633 - 642, 15.05.2024
https://doi.org/10.18596/jotcsa.1362644

Abstract

The degradation of tolonium chloride (TC+) dye by phosphate ion (PO43-) in an aqueous acidic solution was studied using spectrophotometric analysis at 301 K, I= 1.0 M, [TC+]= 1.5 × 10-5 M, [H+]= 1.0×10-3 M, and ʎmax 600 nm. To determine the potency and rate of the reactant species, an aqueous acidic medium was employed. The reaction's direction and tendency were predicted using a thermodynamic analysis at an interval of 5.0 K and a temperature range of 301-321 K. Without the presence of intermediate complex/free atoms formation, a reaction that produced phenyl sulphoxide, phenylamine, and HPO32- as products of the reaction was obtained with a molar ratio of 1:1 for both reactants. First-order tolonium chloride reactivity was found in the reaction and first-order for the phosphate ion, resulting in a second-order reaction overall. The reaction process accelerated as the concentration of hydrochloric acid rose. The response time decreased with an increase in ionic strength concentration and added Ca2+ and Cl- did catalyze the reaction positively. A straight line that went through the origin was produced by plotting 1/ko vs PO43- concentration. The spectroscopic analysis showed no discernible shift from λmax of 600 nm. Additionally, an increase in temperature accelerated the reaction process. The reaction has a negative free energy change, G (-3.13–1.12 KJ/mol) which indicates that it is spontaneous and that the reactants have more free energy than that of the products. While the enthalpy of activation, H is positive and indicates that the reaction was endothermic and followed an associative path, the entropy of activation, S, is also negative (-7.45–1.10 KJ/mol), indicating that the reaction is less disordered. Due to the added ions catalysis and absence of free atoms during the course of the reaction, an outer-sphere mechanism was suggested for the reaction.

Ethical Statement

The work was carried out under a conducive environment with all the necessary equipment.

Supporting Institution

NIGERIAN DEFENCE ACADEMY, KADUNA NIGERIA

Project Number

NIL

Thanks

I wish to say thank you to all those who supported us during the course of this research work.

References

  • 1. Epstein JB, Scully C, Spinelli J. Toluidine blue and Lugol’s iodine application in the assessment of oral malignant disease and lesions at risk of malignancy. J Oral Pathol Med [Internet]. 1992 Apr 28;21(4):160–3. Available from: <URL>.
  • 2. Epstein JB, Oakley C, Millner A, Emerton S, van der Meij E, Le N. The utility of toluidine blue application as a diagnostic aid in patients previously treated for upper oropharyngeal carcinoma. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology [Internet]. 1997 May 1;83(5):537–47. Available from: <URL>.
  • 3. Sridharan G, Shankar AA. Toluidine blue: A review of its chemistry and clinical utility. J Oral Maxillofac Pathol [Internet]. 2012 May;16(2):251–5. Available from: <URL>.
  • 4. Gandolfo S, Pentenero M, Broccoletti R, Pagano M, Carrozzo M, Scully C. Toluidine blue uptake in potentially malignant oral lesions in vivo: Clinical and histological assessment. Oral Oncol [Internet]. 2006 Jan 1;42(1):88–94. Available from: <URL>.
  • 5. Carson, FL, Hladik, C. Histotechnology: A Self-Instructional Text (3 ed.). Hong Kong: American Society for Clinical Pathology Press. 2009, 188. ISBN 978-0-89189-581-7.
  • 6. Olshaker J, Smock. A. Forensic Emergency Medicine. Philadelphia: Lippincott Williams and Williams; 2001. 94–97 p.
  • 7. Nicholas SB, Basgen JM, Sinha S. Using Stereologic Techniques for Podocyte Counting in the Mouse: Shifting the Paradigm. Am J Nephrol [Internet]. 2011 Jun 1;33(Suppl. 1):1–7. Available from: <URL>.
  • 8. Scully C. ABC of oral health: Swellings and red, white, and pigmented lesions. BMJ [Internet]. 2000 Jul 22;321(7255):225–8. Available from: <URL>.
  • 9. Clinical Gastrointestinal Endoscopy (Second Edition). 2012;385–99.
  • 10. Ephros HD. Toluidine blue staining. J Oral Maxillofac Surg [Internet]. 2004 Aug 1;62:1. Available from: <URL>.
  • 11. Siddiqui IA, Farooq MU, Siddiqui RA, Rafi SMT. Role of Toluidine Blue in Early Detection of Oral Cancer. Pakistan J Med Sci [Internet]. 2006;22(2):184–7. Available from: <URL>.
  • 12. Mills S. How effective is toluidine blue for screening and diagnosis of oral cancer and premalignant lesions? Evid Based Dent [Internet]. 2022 Mar 25;23(1):34–5. Available from: <URL>.
  • 13. Mashberg A, Samit A. Early diagnosis of asymptomatic oral and oropharyngeal squamous cancers. CA Cancer J Clin [Internet]. 1995 Nov 1;45(6):328–51. Available from: <URL>.
  • 14. Onofre MA, Sposto MR, Navarro CM, Paulo S. Reliability of toluidine blue application in the detection of oral epithelial dysplasia and in situ and invasive squamous cell carcinomas. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology [Internet]. 2001 May 1;91(5):535–40. Available from: <URL>.
  • 15. Epstein JB, Feldman R, Dolor RJ, Porter SR. The utility of tolonium chloride rinse in the diagnosis of recurrent or second primary cancers in patients with prior upper aerodigestive tract cancer. Head Neck [Internet]. 2003 Nov 23;25(11):911–21. Available from: <URL>.
  • 16. Martin I., Kerawala C., Reed M. The application of toluidine blue as a diagnostic adjunct in the detection of epithelial dysplasia. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology [Internet]. 1998 Apr 1;85(4):444–6. Available from: <URL>.
  • 17. Phosphate Primer". Florida Industrial and Phosphate Research Institute. Florida Polytechnic University. Archived from the original on 29 August 2017. Retrieved 30 March 2018.
  • 18. Budavari S. Merck Index. White house station, NJ. Merck & Co; 1996.
  • 19. Yang Y, Yu H, York D, Elstner M, Cui Q. Description of Phosphate Hydrolysis Reactions with the Self-Consistent-Charge Density-Functional-Tight-Binding (SCC-DFTB) Theory. 1. Parameterization. J Chem Theory Comput [Internet]. 2008 Dec 9;4(12):2067–84. Available from: <URL>.
  • 20. Ashford RD. Ashford’s Dictionary of Industrial Chemicals. London: Wavelength Publishers, Ltd.; 1994.
  • 21. Gard DR. Phosphoric acids and phosphates in Kroschwitz J. I., (ed) Kirk-Othmer Encyclopedia of chemical Technology, (4thed) 1996;18: 669-719. New York: John Wiley & sons.
  • 22. Encyclopedia of Biological chemistry, (Second Edition) (2013).
  • 23. Phosphate Supplement (Oral Route, Parenteral Route) (2020). Description and Brand Names - Mayo Clinic "www.mayoclinic.org. Retrieved 2020-11-20.
  • 24. Schrödter K, Bettermann G, Staffel T, Wahl F, Klein T, Hofmann T. Phosphoric Acid and Phosphates. In: Ullmann’s Encyclopedia of Industrial Chemistry [Internet]. Wiley; 2008. Available from: <URL>.
  • 25. Lampila LE. Applications and functions of food‐grade phosphates. Ann N Y Acad Sci [Internet]. 2013 Oct 26;1301(1):37–44. Available from: <URL>.
  • 26. Davidsion PM. Antimicrobial compounds in FJ, Francis (ed) Encyclopedia of Food Science and Technology. New York: Wiley. 2000;1:63-75.
  • 27. Fennema O. (ed). Principles of Food Chemisty Ed. New York: Dekker, 1985.
  • 28. Amin SR. Petition to the National Organic Standards Board to amend the National List of Allowed Substances to include sodium phosphates for use in food and beverage products formulated with soymilk and dry soymilk similar to or equivalent to dairy products. Farmingdale NY: Carousel Foods of America, 2001.
  • 29. Buňková L, Pleva P, Buňka F, Valášek P, Kráčmar S. Antibacterial effects of commercially available phosphates on selected microorganisms. Acta Univ Agric Silvic Mendel Brun [Internet]. 2008;56:19–24. Available from: <URL>.
  • 30. Dickson JS, Nettles Cutter CG, Siragusa GR. Antimicrobial Effects of Trisodium Phosphate Against Bacteria Attached to Beef Tissue. J Food Prot [Internet]. 1994 Nov 1;57(11):952–5. Available from: <URL>.
  • 31. Feiner G. Meat products handbook Practical science and technology. Cambridge, England: Woodhead Publishing Limited; 2006.
  • 32. Zayas JF. Functionality of Proteins in Food. Berlin, Heidelberg: Springer Berlin Heidelberg; 1997.
  • 33. Code of Federal Regulations Tittle 21. Food and drugs. Parts 182. Office of the Federal Register, National Archives, and Records Administration, Washington, D.C Codex Stan 2003;3:456-468.
  • 34. Regulation E. C. No 853/2004. Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April laying down specific hygiene rules for the hygiene of foodstuffs. 2004;
  • 35. Directive No 95/2/EC - Annex IV. Other permitted additives 2006; European parliament and council directive No 95/2/EC of 20 February 1995 on food additives other than colours and sweeteners, amended by directive 98/72/EC of the European parliament and council of 15 October, 1998.
  • 36. Long NHBS, Gál R, Buňka F. Use of phosphates in meat products. African J Biotechnol [Internet]. 2011 Dec 30;10(86):19874–82. Available from: <URL>.
  • 37. Jarcho M. Calcium Phosphate Ceramics as Hard Tissue Prosthetics. Clin Orthop Relat Res [Internet]. 1981;157:259–78. Available from: <URL>.
  • 38. Metsger DS, Driskell TD, Paulsrud JR. Tricalcium Phosphate Ceramic—A Resorbable Bone Implant: Review and Current Status. J Am Dent Assoc [Internet]. 1982 Dec 1;105(6):1035–8. Available from: <URL>.
  • 39. LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res [Internet]. 2002;395:81–98. Available from: <URL>.
  • 40. Froum SJ, Tarnow DP, Wallace SS, Rohrer MD, Sang-Choon C. Sinus Floor Elevation Using Anorganic Bovine Bone Matrix (OsteoGraf/N) with and Without Autogenous Bone: A Clinical, Histologic, Radiographic, and Histomorphometric Analysis--Part 2 of an Ongoing Prospective Study. Int J Periodontics Restorative Dent. 1998;18(6):528–43. Available from: <URL>.
  • 41. Christian S, Doris M, Alexis S, Georgios L, Else S, Franz K, et al. The fluorohydroxyapatite (FHA) FRIOS ® Algipore ® is a suitable biomaterial for the reconstruction of severely atrophic human maxillae. Clin Oral Implants Res [Internet]. 2003 Dec 14;14(6):743–9. Available from: <URL>.
  • 42. Uchida A, Araki N, Shinto Y, Yoshikawa H, Kurisaki E, Ono K. The use of calcium hydroxyapatite ceramic in bone tumour surgery. J Bone Joint Surg Br [Internet]. 1990 Mar 1;72-B(2):298–302. Available from: <URL>.
  • 43. Schwarz F, Bieling K, Latz T, Nuesry E, Becker J. Healing of intrabony peri‐implantitis defects following application of a nanocrystalline hydroxyapatite (Ostim TM ) or a bovine‐derived xenograft (Bio‐Oss TM ) in combination with a collagen membrane (Bio‐Gide TM ). A case series. J Clin Periodontol [Internet]. 2006 Jul 1;33(7):491–9. Available from: <URL>.
  • 44. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, et al. Stem Cell Properties of Human Dental Pulp Stem Cells. J Dent Res [Internet]. 2002 Aug 13;81(8):531–5. Available from: <URL>.
  • 45. Hubbell JA. Biomaterials in Tissue Engineering. Nat Biotechnol [Internet]. 1995 Jun 1;13(6):565–76. Available from: <URL>.
  • 46. Arinzeh TL, Tran T, Mcalary J, Daculsi G. A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Biomaterials [Internet]. 2005 Jun 1;26(17):3631–8. Available from: <URL>.
  • 47. Livingston TL, Gordon S, Archambault M, Kadiyala S, Mcintosh K, Smith A, et al. Mesenchymal stem cells combined with biphasic calcium phosphate ceramics promote bone regeneration. J Mater Sci Mater Med [Internet]. 2003 Mar 1;14(3):211–8. Available from: <URL>.
  • 48. Brown WE, Chow LC. Combinations of sparingly soluble calcium phosphates in slurries and pastes as mineralizers and cements [Internet]. Google Patents; 1986. Available from: <URL>.
  • 49. Bohner M. Physical and chemical aspects of calcium phosphates used in spinal surgery. Eur Spine J [Internet]. 2001 Oct 1;10:S114–21. Available from: <URL>.
  • 50. Geesink RGT. Osteoconductive Coatings for Total Joint Arthroplasty. Clin Orthop Relat Res. 2002;395:53–65. Available from: <URL>.
  • 51. Barrère F, van der Valk CM, Dalmeijer RAJ, Meijer G, van Blitterswijk CA, de Groot K, et al. Osteogenecity of octacalcium phosphate coatings applied on porous metal implants. J Biomed Mater Res Part A [Internet]. 2003 Sep 15;66A(4):779–88. Available from: <URL>.
  • 52. Idris SO, Suleman JO, Iyun JF, Osunlaja AA. Reduction of 3, 7-Bis(dimethylamino) Phenazothionium Chloride by Benzenethiol in Aqueous Nitric Acid Medium: A Mechanistic Approach. Am Chem Sci J [Internet]. 2015 Jan 10;5(4):313–21. Available from: <URL>.
  • 53. Jeffery G, Bassett J, Mendham J, Denney RC. Textbook of Quantitative Chemical Analysis. Longman Scientific & Technical Wiley; 1989. 359 p.
  • 54. Onu AD, Iyun JF, Idris OS. Kinetics and stoichiometry of the reduction of hydrogen peroxide by an saminocarboxylactocobaltate(II) complex in aqueous medium. J Inorg Chem. 2015;5(4):75–82. Available from: <URL>.
  • 55. Umoru PE, Effiong UI. Kinetics and Mechanism of the Reduction of Tartrazine by Nitrite Ion in Aqueous Acid Phase. Acad J Chem [Internet]. 2022 Mar 22;7(71):10–6. Available from: <URL>.
  • 56. Dennis CR, van Zyl GJ, Fourie E, Basson SS, Swarts JC. A kinetic study of the oxidation of the tetrakisoxalatouranate(IV) ion by the hexacyanoferrate(III) ion in an oxalate buffer medium. React Kinet Mech Catal [Internet]. 2021 Apr 14;132(2):599–615. Available from: <URL>.
  • 57. Nkole IU, Idris SO, Onu AD. Redox reactions of tris-(1,10-phenanthroline)iron(III) complex with thiourea and N-methylthiourea in an aqueous acidic medium: Kinetics and mechanism. Inorg Chem Commun [Internet]. 2021 Nov 1;133:108930. Available from: <URL>.
  • 58. Nyong BE, Abeng FE, Ushie OA, Bassey BJ, Edim MM. Kinetics Mechanism and Thermodynamic Study of the Oxidation of Iodide Ion by Dichromate Ion in Acidic Medium. J Appl Sci Environ Manag [Internet]. 2020 Jun 24;24(5):821–6. Available from: <URL>.
  • 59. Jonnalagadda SB, Nattar K. Kinetics and Mechanism of Autocatalyzed Reaction between Phenyl Hydrazine and Toluidine Blue in Aqueous Solution. Int J Chem Kinet [Internet]. 1999;31(2):83–8. Available from: <URL>.
  • 60. Nkole IU, Idris SO, Abdulkadir I, Onu AD. Redox reaction of bis-(2-pyridinealdoximato)dioxomolybdate(IV) complex with thiosulphate ion in aqueous acidic and surfactant media. Inorg Chem Commun [Internet]. 2022 Jun 1;140:109468. Available from: <URL>.
  • 61. Nkole IU, Idris SO, Onu AD, Abdulkadir I. The study of Piszkiewicz’s and Berezin’s models on the redox reaction of allylthiourea and bis-(2-pyridinealdoximato)dioxomolybdate(IV) complex in an aqueous acidic medium. Beni-Suef Univ J Basic Appl Sci [Internet]. 2022 Dec 16;11(1):68. Available from: <URL>.
  • 62. Iyun J, Onu A. Kinetics and mechanism for oxidation of rosaniline monochloride by nitrite ion in aqueous media. Niger J Chem Res [Internet]. 2006 May 20;3(1):24–7. Available from: <URL>.
  • 63. Hamza SA, Iyun JF, Idris SO. Kinetics and mechanism of the redox reaction of toluidine blue and nitrite ions in aqueous acidic medium. Arch Appl Sci Res [Internet]. 2012;4(1):10–8. Available from: <URL>.
  • 64. Falodun SO, Idris SO, Ojo EO, Iyun JF. Kinetics and Mechanism of the Oxidation of Indigo Carmine by Permanganate Ion in Aqueous Acidic Medium. Int J Chem Biomol Sci [Internet]. 2015;1(4):255–9. Available from: <URL>.
  • 65. Eddy NO, Ameh PO, Essien NB. Experimental and computational chemistry studies on the inhibition of aluminium and mild steel in 0.1 M HCl by 3-nitrobenzoic acid. J Taibah Univ Sci [Internet]. 2018 Sep 3;12(5):545–56. Available from: <URL>.
  • 66. Ikpi ME, Abeng FE, Obono OE. Adsorption and Thermodynamic studies for the corrosion of inhibition of API 5L X-52 Steel in 2 M HCl solution by moxifloxacin. World News Nat Sci [Internet]. 2017;9:52–61. Available from: <URL>.
Year 2024, Volume: 11 Issue: 2, 633 - 642, 15.05.2024
https://doi.org/10.18596/jotcsa.1362644

Abstract

Project Number

NIL

References

  • 1. Epstein JB, Scully C, Spinelli J. Toluidine blue and Lugol’s iodine application in the assessment of oral malignant disease and lesions at risk of malignancy. J Oral Pathol Med [Internet]. 1992 Apr 28;21(4):160–3. Available from: <URL>.
  • 2. Epstein JB, Oakley C, Millner A, Emerton S, van der Meij E, Le N. The utility of toluidine blue application as a diagnostic aid in patients previously treated for upper oropharyngeal carcinoma. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology [Internet]. 1997 May 1;83(5):537–47. Available from: <URL>.
  • 3. Sridharan G, Shankar AA. Toluidine blue: A review of its chemistry and clinical utility. J Oral Maxillofac Pathol [Internet]. 2012 May;16(2):251–5. Available from: <URL>.
  • 4. Gandolfo S, Pentenero M, Broccoletti R, Pagano M, Carrozzo M, Scully C. Toluidine blue uptake in potentially malignant oral lesions in vivo: Clinical and histological assessment. Oral Oncol [Internet]. 2006 Jan 1;42(1):88–94. Available from: <URL>.
  • 5. Carson, FL, Hladik, C. Histotechnology: A Self-Instructional Text (3 ed.). Hong Kong: American Society for Clinical Pathology Press. 2009, 188. ISBN 978-0-89189-581-7.
  • 6. Olshaker J, Smock. A. Forensic Emergency Medicine. Philadelphia: Lippincott Williams and Williams; 2001. 94–97 p.
  • 7. Nicholas SB, Basgen JM, Sinha S. Using Stereologic Techniques for Podocyte Counting in the Mouse: Shifting the Paradigm. Am J Nephrol [Internet]. 2011 Jun 1;33(Suppl. 1):1–7. Available from: <URL>.
  • 8. Scully C. ABC of oral health: Swellings and red, white, and pigmented lesions. BMJ [Internet]. 2000 Jul 22;321(7255):225–8. Available from: <URL>.
  • 9. Clinical Gastrointestinal Endoscopy (Second Edition). 2012;385–99.
  • 10. Ephros HD. Toluidine blue staining. J Oral Maxillofac Surg [Internet]. 2004 Aug 1;62:1. Available from: <URL>.
  • 11. Siddiqui IA, Farooq MU, Siddiqui RA, Rafi SMT. Role of Toluidine Blue in Early Detection of Oral Cancer. Pakistan J Med Sci [Internet]. 2006;22(2):184–7. Available from: <URL>.
  • 12. Mills S. How effective is toluidine blue for screening and diagnosis of oral cancer and premalignant lesions? Evid Based Dent [Internet]. 2022 Mar 25;23(1):34–5. Available from: <URL>.
  • 13. Mashberg A, Samit A. Early diagnosis of asymptomatic oral and oropharyngeal squamous cancers. CA Cancer J Clin [Internet]. 1995 Nov 1;45(6):328–51. Available from: <URL>.
  • 14. Onofre MA, Sposto MR, Navarro CM, Paulo S. Reliability of toluidine blue application in the detection of oral epithelial dysplasia and in situ and invasive squamous cell carcinomas. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology [Internet]. 2001 May 1;91(5):535–40. Available from: <URL>.
  • 15. Epstein JB, Feldman R, Dolor RJ, Porter SR. The utility of tolonium chloride rinse in the diagnosis of recurrent or second primary cancers in patients with prior upper aerodigestive tract cancer. Head Neck [Internet]. 2003 Nov 23;25(11):911–21. Available from: <URL>.
  • 16. Martin I., Kerawala C., Reed M. The application of toluidine blue as a diagnostic adjunct in the detection of epithelial dysplasia. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology [Internet]. 1998 Apr 1;85(4):444–6. Available from: <URL>.
  • 17. Phosphate Primer". Florida Industrial and Phosphate Research Institute. Florida Polytechnic University. Archived from the original on 29 August 2017. Retrieved 30 March 2018.
  • 18. Budavari S. Merck Index. White house station, NJ. Merck & Co; 1996.
  • 19. Yang Y, Yu H, York D, Elstner M, Cui Q. Description of Phosphate Hydrolysis Reactions with the Self-Consistent-Charge Density-Functional-Tight-Binding (SCC-DFTB) Theory. 1. Parameterization. J Chem Theory Comput [Internet]. 2008 Dec 9;4(12):2067–84. Available from: <URL>.
  • 20. Ashford RD. Ashford’s Dictionary of Industrial Chemicals. London: Wavelength Publishers, Ltd.; 1994.
  • 21. Gard DR. Phosphoric acids and phosphates in Kroschwitz J. I., (ed) Kirk-Othmer Encyclopedia of chemical Technology, (4thed) 1996;18: 669-719. New York: John Wiley & sons.
  • 22. Encyclopedia of Biological chemistry, (Second Edition) (2013).
  • 23. Phosphate Supplement (Oral Route, Parenteral Route) (2020). Description and Brand Names - Mayo Clinic "www.mayoclinic.org. Retrieved 2020-11-20.
  • 24. Schrödter K, Bettermann G, Staffel T, Wahl F, Klein T, Hofmann T. Phosphoric Acid and Phosphates. In: Ullmann’s Encyclopedia of Industrial Chemistry [Internet]. Wiley; 2008. Available from: <URL>.
  • 25. Lampila LE. Applications and functions of food‐grade phosphates. Ann N Y Acad Sci [Internet]. 2013 Oct 26;1301(1):37–44. Available from: <URL>.
  • 26. Davidsion PM. Antimicrobial compounds in FJ, Francis (ed) Encyclopedia of Food Science and Technology. New York: Wiley. 2000;1:63-75.
  • 27. Fennema O. (ed). Principles of Food Chemisty Ed. New York: Dekker, 1985.
  • 28. Amin SR. Petition to the National Organic Standards Board to amend the National List of Allowed Substances to include sodium phosphates for use in food and beverage products formulated with soymilk and dry soymilk similar to or equivalent to dairy products. Farmingdale NY: Carousel Foods of America, 2001.
  • 29. Buňková L, Pleva P, Buňka F, Valášek P, Kráčmar S. Antibacterial effects of commercially available phosphates on selected microorganisms. Acta Univ Agric Silvic Mendel Brun [Internet]. 2008;56:19–24. Available from: <URL>.
  • 30. Dickson JS, Nettles Cutter CG, Siragusa GR. Antimicrobial Effects of Trisodium Phosphate Against Bacteria Attached to Beef Tissue. J Food Prot [Internet]. 1994 Nov 1;57(11):952–5. Available from: <URL>.
  • 31. Feiner G. Meat products handbook Practical science and technology. Cambridge, England: Woodhead Publishing Limited; 2006.
  • 32. Zayas JF. Functionality of Proteins in Food. Berlin, Heidelberg: Springer Berlin Heidelberg; 1997.
  • 33. Code of Federal Regulations Tittle 21. Food and drugs. Parts 182. Office of the Federal Register, National Archives, and Records Administration, Washington, D.C Codex Stan 2003;3:456-468.
  • 34. Regulation E. C. No 853/2004. Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April laying down specific hygiene rules for the hygiene of foodstuffs. 2004;
  • 35. Directive No 95/2/EC - Annex IV. Other permitted additives 2006; European parliament and council directive No 95/2/EC of 20 February 1995 on food additives other than colours and sweeteners, amended by directive 98/72/EC of the European parliament and council of 15 October, 1998.
  • 36. Long NHBS, Gál R, Buňka F. Use of phosphates in meat products. African J Biotechnol [Internet]. 2011 Dec 30;10(86):19874–82. Available from: <URL>.
  • 37. Jarcho M. Calcium Phosphate Ceramics as Hard Tissue Prosthetics. Clin Orthop Relat Res [Internet]. 1981;157:259–78. Available from: <URL>.
  • 38. Metsger DS, Driskell TD, Paulsrud JR. Tricalcium Phosphate Ceramic—A Resorbable Bone Implant: Review and Current Status. J Am Dent Assoc [Internet]. 1982 Dec 1;105(6):1035–8. Available from: <URL>.
  • 39. LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res [Internet]. 2002;395:81–98. Available from: <URL>.
  • 40. Froum SJ, Tarnow DP, Wallace SS, Rohrer MD, Sang-Choon C. Sinus Floor Elevation Using Anorganic Bovine Bone Matrix (OsteoGraf/N) with and Without Autogenous Bone: A Clinical, Histologic, Radiographic, and Histomorphometric Analysis--Part 2 of an Ongoing Prospective Study. Int J Periodontics Restorative Dent. 1998;18(6):528–43. Available from: <URL>.
  • 41. Christian S, Doris M, Alexis S, Georgios L, Else S, Franz K, et al. The fluorohydroxyapatite (FHA) FRIOS ® Algipore ® is a suitable biomaterial for the reconstruction of severely atrophic human maxillae. Clin Oral Implants Res [Internet]. 2003 Dec 14;14(6):743–9. Available from: <URL>.
  • 42. Uchida A, Araki N, Shinto Y, Yoshikawa H, Kurisaki E, Ono K. The use of calcium hydroxyapatite ceramic in bone tumour surgery. J Bone Joint Surg Br [Internet]. 1990 Mar 1;72-B(2):298–302. Available from: <URL>.
  • 43. Schwarz F, Bieling K, Latz T, Nuesry E, Becker J. Healing of intrabony peri‐implantitis defects following application of a nanocrystalline hydroxyapatite (Ostim TM ) or a bovine‐derived xenograft (Bio‐Oss TM ) in combination with a collagen membrane (Bio‐Gide TM ). A case series. J Clin Periodontol [Internet]. 2006 Jul 1;33(7):491–9. Available from: <URL>.
  • 44. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, et al. Stem Cell Properties of Human Dental Pulp Stem Cells. J Dent Res [Internet]. 2002 Aug 13;81(8):531–5. Available from: <URL>.
  • 45. Hubbell JA. Biomaterials in Tissue Engineering. Nat Biotechnol [Internet]. 1995 Jun 1;13(6):565–76. Available from: <URL>.
  • 46. Arinzeh TL, Tran T, Mcalary J, Daculsi G. A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Biomaterials [Internet]. 2005 Jun 1;26(17):3631–8. Available from: <URL>.
  • 47. Livingston TL, Gordon S, Archambault M, Kadiyala S, Mcintosh K, Smith A, et al. Mesenchymal stem cells combined with biphasic calcium phosphate ceramics promote bone regeneration. J Mater Sci Mater Med [Internet]. 2003 Mar 1;14(3):211–8. Available from: <URL>.
  • 48. Brown WE, Chow LC. Combinations of sparingly soluble calcium phosphates in slurries and pastes as mineralizers and cements [Internet]. Google Patents; 1986. Available from: <URL>.
  • 49. Bohner M. Physical and chemical aspects of calcium phosphates used in spinal surgery. Eur Spine J [Internet]. 2001 Oct 1;10:S114–21. Available from: <URL>.
  • 50. Geesink RGT. Osteoconductive Coatings for Total Joint Arthroplasty. Clin Orthop Relat Res. 2002;395:53–65. Available from: <URL>.
  • 51. Barrère F, van der Valk CM, Dalmeijer RAJ, Meijer G, van Blitterswijk CA, de Groot K, et al. Osteogenecity of octacalcium phosphate coatings applied on porous metal implants. J Biomed Mater Res Part A [Internet]. 2003 Sep 15;66A(4):779–88. Available from: <URL>.
  • 52. Idris SO, Suleman JO, Iyun JF, Osunlaja AA. Reduction of 3, 7-Bis(dimethylamino) Phenazothionium Chloride by Benzenethiol in Aqueous Nitric Acid Medium: A Mechanistic Approach. Am Chem Sci J [Internet]. 2015 Jan 10;5(4):313–21. Available from: <URL>.
  • 53. Jeffery G, Bassett J, Mendham J, Denney RC. Textbook of Quantitative Chemical Analysis. Longman Scientific & Technical Wiley; 1989. 359 p.
  • 54. Onu AD, Iyun JF, Idris OS. Kinetics and stoichiometry of the reduction of hydrogen peroxide by an saminocarboxylactocobaltate(II) complex in aqueous medium. J Inorg Chem. 2015;5(4):75–82. Available from: <URL>.
  • 55. Umoru PE, Effiong UI. Kinetics and Mechanism of the Reduction of Tartrazine by Nitrite Ion in Aqueous Acid Phase. Acad J Chem [Internet]. 2022 Mar 22;7(71):10–6. Available from: <URL>.
  • 56. Dennis CR, van Zyl GJ, Fourie E, Basson SS, Swarts JC. A kinetic study of the oxidation of the tetrakisoxalatouranate(IV) ion by the hexacyanoferrate(III) ion in an oxalate buffer medium. React Kinet Mech Catal [Internet]. 2021 Apr 14;132(2):599–615. Available from: <URL>.
  • 57. Nkole IU, Idris SO, Onu AD. Redox reactions of tris-(1,10-phenanthroline)iron(III) complex with thiourea and N-methylthiourea in an aqueous acidic medium: Kinetics and mechanism. Inorg Chem Commun [Internet]. 2021 Nov 1;133:108930. Available from: <URL>.
  • 58. Nyong BE, Abeng FE, Ushie OA, Bassey BJ, Edim MM. Kinetics Mechanism and Thermodynamic Study of the Oxidation of Iodide Ion by Dichromate Ion in Acidic Medium. J Appl Sci Environ Manag [Internet]. 2020 Jun 24;24(5):821–6. Available from: <URL>.
  • 59. Jonnalagadda SB, Nattar K. Kinetics and Mechanism of Autocatalyzed Reaction between Phenyl Hydrazine and Toluidine Blue in Aqueous Solution. Int J Chem Kinet [Internet]. 1999;31(2):83–8. Available from: <URL>.
  • 60. Nkole IU, Idris SO, Abdulkadir I, Onu AD. Redox reaction of bis-(2-pyridinealdoximato)dioxomolybdate(IV) complex with thiosulphate ion in aqueous acidic and surfactant media. Inorg Chem Commun [Internet]. 2022 Jun 1;140:109468. Available from: <URL>.
  • 61. Nkole IU, Idris SO, Onu AD, Abdulkadir I. The study of Piszkiewicz’s and Berezin’s models on the redox reaction of allylthiourea and bis-(2-pyridinealdoximato)dioxomolybdate(IV) complex in an aqueous acidic medium. Beni-Suef Univ J Basic Appl Sci [Internet]. 2022 Dec 16;11(1):68. Available from: <URL>.
  • 62. Iyun J, Onu A. Kinetics and mechanism for oxidation of rosaniline monochloride by nitrite ion in aqueous media. Niger J Chem Res [Internet]. 2006 May 20;3(1):24–7. Available from: <URL>.
  • 63. Hamza SA, Iyun JF, Idris SO. Kinetics and mechanism of the redox reaction of toluidine blue and nitrite ions in aqueous acidic medium. Arch Appl Sci Res [Internet]. 2012;4(1):10–8. Available from: <URL>.
  • 64. Falodun SO, Idris SO, Ojo EO, Iyun JF. Kinetics and Mechanism of the Oxidation of Indigo Carmine by Permanganate Ion in Aqueous Acidic Medium. Int J Chem Biomol Sci [Internet]. 2015;1(4):255–9. Available from: <URL>.
  • 65. Eddy NO, Ameh PO, Essien NB. Experimental and computational chemistry studies on the inhibition of aluminium and mild steel in 0.1 M HCl by 3-nitrobenzoic acid. J Taibah Univ Sci [Internet]. 2018 Sep 3;12(5):545–56. Available from: <URL>.
  • 66. Ikpi ME, Abeng FE, Obono OE. Adsorption and Thermodynamic studies for the corrosion of inhibition of API 5L X-52 Steel in 2 M HCl solution by moxifloxacin. World News Nat Sci [Internet]. 2017;9:52–61. Available from: <URL>.
There are 66 citations in total.

Details

Primary Language English
Subjects Inorganic Materials
Journal Section RESEARCH ARTICLES
Authors

Patricia Umoru 0000-0002-1514-4440

Mohammad Lawal This is me

Oluwayemisi Abiodun Babatunde This is me

Yusuf Sahabı This is me 0009-0008-4997-3459

Project Number NIL
Publication Date May 15, 2024
Submission Date September 19, 2023
Acceptance Date February 14, 2024
Published in Issue Year 2024 Volume: 11 Issue: 2

Cite

Vancouver Umoru P, Lawal M, Babatunde OA, Sahabı Y. Degradation of Tolonium Chloride Dye by Phosphate Ion in Aqueous Acidic Solution: Kinetic Approach. JOTCSA. 2024;11(2):633-42.