The Influence of Hibiscus tiliaceus Leaf Extract as Capping Agent on the Zinc Oxide Properties and its Photo-simultaneous Performance
Year 2024,
Volume: 11 Issue: 2, 547 - 556, 15.05.2024
Riki Subagyo
,
Elfirza Zain
,
Siyam Martina
,
Saepurahman Saepurahman
,
Yuly Kusumawati
Abstract
Polyol method, as one alternative in ZnO synthetic methods, have been developed and generated a nano-ZnO. However, the produced nano-ZnO is unstable due to its small particle size. To overcome the problems, we added Hibiscus tiliaceus leaves’ extract during the ZnO (EZnO) synthesis to change the water content and hydrolysis ratio of Zn2+/water. The addition of H. tiliaceus extract resulted in a shifting peak at (101) plane compared to ZnO synthesized without extract addition (WZnO). The use of H. tiliaceus extracts leads to the formation of large and non-uniform particles compared to the one prepared without the extract, which is in agreement with the intensity of diffraction pattern. The use of H. tiliaceus extracts shifted the bandgap energy to visible range. The performance of WZnO and EZnO samples was tested for simultaneous photo-oxidation of methylene blue and photo-reduction of Cr(VI) ions under UV-C irradiation. The EZnO is equally active as WZnO for Cr(VI) ion photo-reduction but less active for photo-oxidation of methylene blue. The presence of retained organic material in EZnO is plausibly affected by the adsorption and subsequent photo-oxidation of the bulky MB leading to a lower photo-oxidation performance. However, the activity of EZnO was a little bit lower than that of WZnO, revealing that the synergistic of particle size and band gap energy is a crucial factor in photo-removal process. In addition, the presence of phenolic compounds on the EZnO surface might change the nature properties of WZnO, which influence its performance.
Project Number
Publication Writing and IPR Incentive Program (PPHKI) 2024
References
- 1. Zakiyah A, Anindika GR, Kusumawati Y. Synthesis of zinc oxide (ZnO) nanoparticles by polyol method and its application on photocatalytic reduction of paracetamol concentration. AIP Conf Proc. 2021;2349.
- 2. Subagyo R, Kusumawati Y, Widayatno WB. Kinetic study of methylene blue photocatalytic decolorization using zinc oxide under UV-LED irradiation. AIP Conf Proc. 2020;2237(June).
- 3. Maaza M, Ngom BD, Achouri M, Manikandan K. Functional nanostructured oxides. Vacuum [Internet]. 2015;114:172–87. Available from: <URL>
- 4. Wellia DV, Kusumawati Y, Diguna LJ, Amal MI. Introduction of Nanomaterials for Photocatalysis. In: Khan MM, Pradhan D, Sohn Y, editors. Nanocomposites for Visible Light-induced Photocatalysis. Springer S. Springer, Cham; 2017. p. 1–17. Available from: <URL>
- 5. Mateo-Mateo C, Vázquez-Vázquez C, Pérez-Lorenzo M, Salgueiriño V, Correa-Duarte MA. Ostwald ripening of platinum nanoparticles confined in a carbon nanotube/silica-templated cylindrical space. J Nanomater. 2012;2012.
- 6. Villa A, Schiavoni M, Prati L. Material science for the support design: A powerful challenge for catalysis. Catal Sci Technol. 2012;2(4):673–82.
- 7. Morsbach E, Spéder J, Arenz M, Brauns E, Lang W, Kunz S, et al. Stabilizing catalytically active nanoparticles by ligand linking: Toward three-dimensional networks with high catalytic surface area. Langmuir. 2014;30(19):5564–73.
- 8. Villa A, Dimitratos N, Chan-Thaw CE, Hammond C, Veith GM, Wang D, et al. Characterisation of gold catalysts. Chem Soc Rev [Internet]. 2016;45(18):4953–94. Available from: <URL>
- 9. Campisi S, Schiavoni M, Chan-Thaw CE, Villa A. Untangling the role of the capping agent in nanocatalysis: Recent advances and perspectives. Catalysts. 2016;6(12):1–21.
- 10. Neouze MA, Schubert U. Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatshefte fur Chemie. 2008;139(3):183–95. Available from: <URL>
- 11. Javed R, Usman M, Tabassum S, Zia M. Effect of capping agents: Structural, optical and biological properties of ZnO nanoparticles. Appl Surf Sci [Internet]. 2016;386:319–26. Available from: <URL>
- 12. Ahmed S, Annu, Chaudhry SA, Ikram S. A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry. J Photochem Photobiol B Biol. 2017;166:272–84. Available from: <URL>
- 13. Singh A, Singh NB, Hussain I, Singh H, Yadav V, Singh SC. Green synthesis of nano zinc oxide and evaluation of its impact on germination and metabolic activity of Solanum lycopersicum. J Biotechnol. 2016;233:84–94. Available from: <URL>
- 14. Zare M, Namratha K, Thakur MS, Byrappa K. Biocompatibility assessment and photocatalytic activity of bio-hydrothermal synthesis of ZnO nanoparticles by Thymus vulgaris leaf extract. Mater Res Bull. 2019;109(May 2018):49–59. Available from: <URL>
- 15. Putri OK, Syafdhanim H, Holilah, Fadlan A, Kusumawati Y, Santoso M, et al. Antioxidant and antibacterial activities of phytosynthesised ZnOs by hibiscus tiliaceus leaf extract against four pathogenic bacteria. Rasayan J Chem. 2022;15(4):2835–43.
- 16. Hosni M, Kusumawati Y, Farhat S, Jouini N, Pauporté T. Effects of oxide nanoparticle size and shape on electronic structure, charge transport, and recombination in dye-sensitized solar cell photoelectrodes. J Phys Chem C. 2014;118(30):16791–8.
- 17. Meshram J V., Koli VB, Phadatare MR, Pawar SH. Anti-microbial surfaces: An approach for deposition of ZnO nanoparticles on PVA-Gelatin composite film by screen printing technique. Mater Sci Eng C [Internet]. 2017;73:257–66. Available from: <URL>
- 18. Johnson MK, Powell DB, Cannon RD. Vibrational spectra of carboxylato complexes-I. Infrared and Raman spectra of beryllium(II) acetate and formate and of zinc(II) acetate and zinc(II) acetate dihydrate. Spectrochim Acta Part A Mol Spectrosc. 1981;37(10):899–904.
- 19. Anandan M, Dinesh S, Krishnakumar N, Balamurugan K. Improved photocatalytic properties and anti-bacterial activity of size reduced ZnO nanoparticles via PEG-assisted precipitation route. J Mater Sci Mater Electron. 2016;27(12):12517–26.
- 20. Nasrollahzadeh M, Issaabadi Z, Sajadi SM. Green synthesis of Pd/Fe3O4 nanocomposite using Hibiscus tiliaceus L. extract and its application for reductive catalysis of Cr(VI) and nitro compounds. Sep Purif Technol [Internet]. 2018;197(January):253–60. Available from: <URL>
- 21. Chen Z, Luo Y, Huang C, Shen X. In situ assembly of ZnO/graphene oxide on synthetic molecular receptors: Towards selective photoreduction of Cr(VI) via interfacial synergistic catalysis. Chem Eng J [Internet]. 2021;414(January):128914. Available from: <URL>
- 22. Aziz FFA, Jalil AA, Hassan NS, Hitam CNC, Rahman AFA, Fauzi AA. Enhanced visible-light driven multi-photoredox Cr(VI) and p-cresol by Si and Zr interplay in fibrous silica-zirconia. J Hazard Mater [Internet]. 2021;401(March 2020):123277. Available from: <URL>
- 23. Gawade V V., Sabale SR, Dhabbe RS, Kite S V., Garadkar KM. Bio-mediated synthesis of ZnO nanostructures for efficient photodegradation of methyl orange and methylene blue. J Mater Sci Mater Electron [Internet]. 2021;32(24):28573–86. Available from: <URL>
- 24. Prasetyoko D, Sholeha NA, Subagyo R, Ulfa M, Bahruji H, Holilah H, et al. Mesoporous ZnO nanoparticles using gelatin — Pluronic F127 as a double colloidal system for methylene blue photodegradation. Korean J Chem Eng. 2023;40(1):112–23.
- 25. Subagyo R, Tehubijuluw H, Prasetyo Utomo W, Dwi Rizqi H, Kusumawati Y, Bahruji H, et al. Converting red mud wastes into mesoporous ZSM-5 decorated with TiO2 as an eco-friendly and efficient adsorbent-photocatalyst for dyes removal. Arab J Chem. 2022;15(5):103754. Available from: <URL>
- 26. Azami MS, Jalil AA, Hassan NS, Hussain I, Fauzi AA, Aziz MAA. Green carbonaceous material‒fibrous silica-titania composite photocatalysts for enhanced degradation of toxic 2-chlorophenol. J Hazard Mater [Internet]. 2021;414(December 2020):125524. Available from: <URL>
- 27. Zulfa LL, Ediati R, Hidayat ARP, Subagyo R, Faaizatunnisa N, Kusumawati Y, et al. Synergistic effect of modified pore and heterojunction of MOF-derived α-Fe2O3/ZnO for superior photocatalytic degradation of methylene blue. RSC Adv. 2023;13(6):3818–34.
- 28. Lam SM, Jaffari ZH, Sin JC, Zeng H, Lin H, Li H, et al. Surface decorated coral-like magnetic BiFeO3 with Au nanoparticles for effective sunlight photodegradation of 2,4-D and E. coli inactivation. J Mol Liq. 2021;326:115372. Available from: <URL>
- 29. Yong ZJ, Lam SM, Sin JC, Zeng H, Mohamed AR, Jaffari ZH. Boosting sunlight-powered photocatalytic fuel cell with S-scheme Bi2WO6/ZnO nanorod array composite photoanode. Inorg Chem Commun. 2022;143(August):109826. Available from: <URL>
- 30. Subagyo R, Yudhowijoyo A, Sholeha NA, Hutagalung SS, Prasetyoko D, Birowosuto MD, et al. Recent advances of modification effect in Co3O4-based catalyst towards highly efficient photocatalysis. J Colloid Interface Sci. 2023;650(PB):1550–90. Available from: <URL>
Year 2024,
Volume: 11 Issue: 2, 547 - 556, 15.05.2024
Riki Subagyo
,
Elfirza Zain
,
Siyam Martina
,
Saepurahman Saepurahman
,
Yuly Kusumawati
Project Number
Publication Writing and IPR Incentive Program (PPHKI) 2024
References
- 1. Zakiyah A, Anindika GR, Kusumawati Y. Synthesis of zinc oxide (ZnO) nanoparticles by polyol method and its application on photocatalytic reduction of paracetamol concentration. AIP Conf Proc. 2021;2349.
- 2. Subagyo R, Kusumawati Y, Widayatno WB. Kinetic study of methylene blue photocatalytic decolorization using zinc oxide under UV-LED irradiation. AIP Conf Proc. 2020;2237(June).
- 3. Maaza M, Ngom BD, Achouri M, Manikandan K. Functional nanostructured oxides. Vacuum [Internet]. 2015;114:172–87. Available from: <URL>
- 4. Wellia DV, Kusumawati Y, Diguna LJ, Amal MI. Introduction of Nanomaterials for Photocatalysis. In: Khan MM, Pradhan D, Sohn Y, editors. Nanocomposites for Visible Light-induced Photocatalysis. Springer S. Springer, Cham; 2017. p. 1–17. Available from: <URL>
- 5. Mateo-Mateo C, Vázquez-Vázquez C, Pérez-Lorenzo M, Salgueiriño V, Correa-Duarte MA. Ostwald ripening of platinum nanoparticles confined in a carbon nanotube/silica-templated cylindrical space. J Nanomater. 2012;2012.
- 6. Villa A, Schiavoni M, Prati L. Material science for the support design: A powerful challenge for catalysis. Catal Sci Technol. 2012;2(4):673–82.
- 7. Morsbach E, Spéder J, Arenz M, Brauns E, Lang W, Kunz S, et al. Stabilizing catalytically active nanoparticles by ligand linking: Toward three-dimensional networks with high catalytic surface area. Langmuir. 2014;30(19):5564–73.
- 8. Villa A, Dimitratos N, Chan-Thaw CE, Hammond C, Veith GM, Wang D, et al. Characterisation of gold catalysts. Chem Soc Rev [Internet]. 2016;45(18):4953–94. Available from: <URL>
- 9. Campisi S, Schiavoni M, Chan-Thaw CE, Villa A. Untangling the role of the capping agent in nanocatalysis: Recent advances and perspectives. Catalysts. 2016;6(12):1–21.
- 10. Neouze MA, Schubert U. Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatshefte fur Chemie. 2008;139(3):183–95. Available from: <URL>
- 11. Javed R, Usman M, Tabassum S, Zia M. Effect of capping agents: Structural, optical and biological properties of ZnO nanoparticles. Appl Surf Sci [Internet]. 2016;386:319–26. Available from: <URL>
- 12. Ahmed S, Annu, Chaudhry SA, Ikram S. A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry. J Photochem Photobiol B Biol. 2017;166:272–84. Available from: <URL>
- 13. Singh A, Singh NB, Hussain I, Singh H, Yadav V, Singh SC. Green synthesis of nano zinc oxide and evaluation of its impact on germination and metabolic activity of Solanum lycopersicum. J Biotechnol. 2016;233:84–94. Available from: <URL>
- 14. Zare M, Namratha K, Thakur MS, Byrappa K. Biocompatibility assessment and photocatalytic activity of bio-hydrothermal synthesis of ZnO nanoparticles by Thymus vulgaris leaf extract. Mater Res Bull. 2019;109(May 2018):49–59. Available from: <URL>
- 15. Putri OK, Syafdhanim H, Holilah, Fadlan A, Kusumawati Y, Santoso M, et al. Antioxidant and antibacterial activities of phytosynthesised ZnOs by hibiscus tiliaceus leaf extract against four pathogenic bacteria. Rasayan J Chem. 2022;15(4):2835–43.
- 16. Hosni M, Kusumawati Y, Farhat S, Jouini N, Pauporté T. Effects of oxide nanoparticle size and shape on electronic structure, charge transport, and recombination in dye-sensitized solar cell photoelectrodes. J Phys Chem C. 2014;118(30):16791–8.
- 17. Meshram J V., Koli VB, Phadatare MR, Pawar SH. Anti-microbial surfaces: An approach for deposition of ZnO nanoparticles on PVA-Gelatin composite film by screen printing technique. Mater Sci Eng C [Internet]. 2017;73:257–66. Available from: <URL>
- 18. Johnson MK, Powell DB, Cannon RD. Vibrational spectra of carboxylato complexes-I. Infrared and Raman spectra of beryllium(II) acetate and formate and of zinc(II) acetate and zinc(II) acetate dihydrate. Spectrochim Acta Part A Mol Spectrosc. 1981;37(10):899–904.
- 19. Anandan M, Dinesh S, Krishnakumar N, Balamurugan K. Improved photocatalytic properties and anti-bacterial activity of size reduced ZnO nanoparticles via PEG-assisted precipitation route. J Mater Sci Mater Electron. 2016;27(12):12517–26.
- 20. Nasrollahzadeh M, Issaabadi Z, Sajadi SM. Green synthesis of Pd/Fe3O4 nanocomposite using Hibiscus tiliaceus L. extract and its application for reductive catalysis of Cr(VI) and nitro compounds. Sep Purif Technol [Internet]. 2018;197(January):253–60. Available from: <URL>
- 21. Chen Z, Luo Y, Huang C, Shen X. In situ assembly of ZnO/graphene oxide on synthetic molecular receptors: Towards selective photoreduction of Cr(VI) via interfacial synergistic catalysis. Chem Eng J [Internet]. 2021;414(January):128914. Available from: <URL>
- 22. Aziz FFA, Jalil AA, Hassan NS, Hitam CNC, Rahman AFA, Fauzi AA. Enhanced visible-light driven multi-photoredox Cr(VI) and p-cresol by Si and Zr interplay in fibrous silica-zirconia. J Hazard Mater [Internet]. 2021;401(March 2020):123277. Available from: <URL>
- 23. Gawade V V., Sabale SR, Dhabbe RS, Kite S V., Garadkar KM. Bio-mediated synthesis of ZnO nanostructures for efficient photodegradation of methyl orange and methylene blue. J Mater Sci Mater Electron [Internet]. 2021;32(24):28573–86. Available from: <URL>
- 24. Prasetyoko D, Sholeha NA, Subagyo R, Ulfa M, Bahruji H, Holilah H, et al. Mesoporous ZnO nanoparticles using gelatin — Pluronic F127 as a double colloidal system for methylene blue photodegradation. Korean J Chem Eng. 2023;40(1):112–23.
- 25. Subagyo R, Tehubijuluw H, Prasetyo Utomo W, Dwi Rizqi H, Kusumawati Y, Bahruji H, et al. Converting red mud wastes into mesoporous ZSM-5 decorated with TiO2 as an eco-friendly and efficient adsorbent-photocatalyst for dyes removal. Arab J Chem. 2022;15(5):103754. Available from: <URL>
- 26. Azami MS, Jalil AA, Hassan NS, Hussain I, Fauzi AA, Aziz MAA. Green carbonaceous material‒fibrous silica-titania composite photocatalysts for enhanced degradation of toxic 2-chlorophenol. J Hazard Mater [Internet]. 2021;414(December 2020):125524. Available from: <URL>
- 27. Zulfa LL, Ediati R, Hidayat ARP, Subagyo R, Faaizatunnisa N, Kusumawati Y, et al. Synergistic effect of modified pore and heterojunction of MOF-derived α-Fe2O3/ZnO for superior photocatalytic degradation of methylene blue. RSC Adv. 2023;13(6):3818–34.
- 28. Lam SM, Jaffari ZH, Sin JC, Zeng H, Lin H, Li H, et al. Surface decorated coral-like magnetic BiFeO3 with Au nanoparticles for effective sunlight photodegradation of 2,4-D and E. coli inactivation. J Mol Liq. 2021;326:115372. Available from: <URL>
- 29. Yong ZJ, Lam SM, Sin JC, Zeng H, Mohamed AR, Jaffari ZH. Boosting sunlight-powered photocatalytic fuel cell with S-scheme Bi2WO6/ZnO nanorod array composite photoanode. Inorg Chem Commun. 2022;143(August):109826. Available from: <URL>
- 30. Subagyo R, Yudhowijoyo A, Sholeha NA, Hutagalung SS, Prasetyoko D, Birowosuto MD, et al. Recent advances of modification effect in Co3O4-based catalyst towards highly efficient photocatalysis. J Colloid Interface Sci. 2023;650(PB):1550–90. Available from: <URL>