Research Article
BibTex RIS Cite

Biogenic Synthesis and Characterization of Gold Nanoparticles from Morus alba L. Leaves by Microwave Extraction Method

Year 2024, Volume: 11 Issue: 2, 615 - 622, 15.05.2024
https://doi.org/10.18596/jotcsa.1372302

Abstract

The aim of this study was to investigate the rapid, simple, and inexpensive biosynthesis and characterization of gold nanoparticles (AuNPs) an extract from leaves of Morus alba L. The generated gold nanoparticles were characterized by UV-Vis spectroscopy, TEM, FT-IR and zeta-sizer. For the biogenesis of gold nanoparticles, Morus alba L. (Mulberry) leaves and HAuCl4.3H2O solution were utilized as the starting ingredients. Fresh leaves of Morus alba L. were collected from Turkey (Trabzon). 100 mL of distilled water was mixed with 10 g of dried material for 120 minutes. The mixture was then extracted using a laboratory microwave for 4 minutes at 600 W. For the biosynthesis of AuNPs, different amounts 100 ml of (0.5 mM, 1 mM) aqueous HAuCl4.3H2O solution of leaf extract (0.5 and 1 mL) were mixed with HAuCl4. 3H2O solution, and then the mixture was placed in a household microwave at 90 W for 1 to 30 minutes. UV-vis spectroscopy, TEM, FT-IR and zeta-sizer were performed to characterize the produced gold nanoparticles. UV-Vis absorption spectra was measured using a Shimadzu UV-1240 UV-Vis spectrophotometer with a wave length range of 300 to 800 nm. The development of AuNPs was indicated by the mixture's purple-red colour. From the results of zetasizer study, the average particle size of the AuNPs was 78.95±0.57 nm, the zeta potential was 12.9±0.808 mV, and the polydispersity index was 0.321±0.004. When the AuNP solutions were kept in the refrigerator, their UV-Vis absorption spectra rarely changed and remained stable for around 2 to 2.5 months.

Project Number

-

Thanks

The author is thankful to the Central Research Laboratories of Karadeniz Tecnical University and Atatürk University.

References

  • 1. Keikhaie KR, Saeidi S, Forghani F, Khajeh H. Green Synthesis of Nano Silver: Review. Journal of Nano Drug Science.2018; 1(1): 18-21.
  • 2. Yokoyama T. et al. Basic Properties and Measuring Methods of Nanoparticles. In Nanoparticle Technology Handbook, Elsevier. 2018. 3–47. Available from: <DOI>.
  • 3. Güven OC. (2022), Bakır (Cu) Nanoçiçeklerinin Yeşil Sentez Yöntemi Kullanılarak Sentezlenmesi, Karakterizasyonu, Fotokatalitik, Antimikrobiyal Ve Antioksidan Aktivitesinin Belirlenmesi [Master Thesis]. Nevşehir Hacı Bektaş Veli University.2022.
  • 4. Başarı H. Hibiscus Sabdariffa L. Ekstraktı Kullanılarak Sentezlenen Gümüş Nanopartiküllerin Sentez Parametrelerinin Antimikrobiyal Aktiviteye Etkisinin Değerlendirilmesi [Master Thesis]. Necmettin Erbakan University.2022.
  • 5. Beykaya M, Çağlar A. An Investigation on Synthesis of Silver-Nanoparticles (AgNP) and their Antimicrobial effectiveness by using Herbal Extracts. Afyon Kocatepe Univ. J. Sci. Eng. 2016; 16(3):631–641.
  • 6. Bila D, Radwan Y, Dobrovolskaia MA, Panigaj M, Afonin KA. The Recognition of and Reactions to Nucleic Acid Nanoparticles by Human Immune Cells. Molecule. 2021; 26:4231. Available from: <DOI>..
  • 7. Ferreira MC, Pimentel B, Andrade V, Zverev V, Gimaev RR, Pomorov AS, Pyatakov A, Alekhina Y, Komlev A, Makarova L, et al. Understanding the Dependence of Nanoparticles Magnetothermal Properties on Their Size for Hyperthermia Applications. A Case Study for La-Sr Manganites. Nanomaterials. 2021;11: 1826. Available from: <DOI>..
  • 8. Kukushkina EA, Hossain SI, Sportelli MC, Ditaranto N, Picca RA, Cioffi N. Ag-Based Synergistic Antimicrobial Composites. A Critical Review. Nanomaterials.2021; 11: 1687. Available from: <DOI>.
  • 9. Vankdoth S, Velidandi A, Sarvepalli M, Vangalapati M. Role of plant (tulasi, neem and turmeric) extracts in defining the morphological, toxicity and catalytic properties of silver nanoparticles. Inorganic Chemistry Communications.2022; 140:109476 Available from: <DOI>..
  • 10. Mallakpour S, Radfar Z, Hussain CM. Current advances on polymer-layered double hydroxides/metal oxides nanocomposites and bionanocomposites: Fabrications and applications in the textile industry and nanofibers. Appl. Clay Sci., 2021; 206: 106054. Available from: <DOI>.
  • 11. Mazari SA, Ali E, Abro R, Khan FSA, Ahmed I, Ahmed M, Nizamuddin S, Siddiqui TH, Hossain N, Mubarak NM, Shah A. Nanomaterials: Applications, waste-handling, environmental toxicities, and future challenges - A review. J. Environ. Chem. Eng.2021; 9: 105028. Available from: <URL>.
  • 12. Khodakarami, M., Bagheri, M. Recent advances in synthesis and application of polymer nanocomposites for water and wastewater treatment. J. Clean. Prod. 2021; 296:126404. Available from: <DOI>.
  • 13. Velidandi A, Sarvepalli M, Pabbathi NPP, Baadhe RR. Biogenic synthesis of novel platinum-palladium bimetallic nanoparticles from aqueous Annona muricata leaf extract for catalytic activity. 3, Biotech..2021. 11, 1–14. Available from: <DOI>.
  • 14. Castillo-Henríquez L, Alfaro-Aguilar K, Ugalde-Álvarez J, Vega-Fernández L, de Oca-Vásquez GM, Vega-Baudrit JR. Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials. 2020; 10,1–24. Available from: <DOI>.
  • 15. Varadavenkatesan T, Selvaraj R, Vinayagam R. Green synthesis of silver nanoparticles using Thunbergia grandiflora flower extract and its catalytic action in reduction of Congo red dye. Mater. Today Proc., 2019;23:39–42.
  • 16. Jebril S, Khanfir Ben Jenana R, Dridi C. Green synthesis of silver nanoparticles using Melia azedarach leaf extract and their antifungal activities: In vitro and in vivo. Mater. Chem. Phys. 2020; 248:122898. Available from: <DOI>.
  • 17. Içoglu Aksakal F, Yilmaz A, Koc K, Ozdemir S. A comparative study on aquatic toxicity of chemically-synthesized and green synthesis silver nanoparticles on daphnia manga. Int. J. Environ. Health Res. 2021; 1–11. Available from: <DOI>.
  • 18. Garibo D, Borbón-Nuñez HA, de León JND, García Mendoza E, Estrada I, Toledano-Magaña Y, Tiznado H, Ovalle-Marroquin M, Soto-Ramos AG, Blanco A, Rodríguez JA, Romo OA, Chávez-Almazán LA, Susarrey-Arce A. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Sci. Rep. 2020. 10, 1–11.
  • 19. Selvaraj R, Pai S, Murugesan G, Pandey S, Bhole R, Gonsalves D, Varadavenkatesan T, Vinayagam R. Green synthesis of magnetic α–Fe2O3 nanospheres using Bridelia retusa leaf extract for Fenton-like degradation of crystal violet dye. Appl. Nanosci. 2021; 11: 2227–2234. Available from: <DOI>.
  • 20. Velidandi A, Dahariya S, Pabbathi NPP, Kalivarathan D, Baadhe RR. A Review on Synthesis, Applications, Toxicity, Risk Assessment and Limitations of Plant Extracts Synthesized Silver Nanoparticles. Nano World J. 2020;6:35–60. Available from: <DOI>.
  • 21. Du J, Zhou Z, Zhang X, et al. Biosynthesis of gold nanoparticles by flavonoids from lilium casa blanca. J. Clust. Sci. 2017;28(6): 3149–3158. Available from: <DOI>.
  • 22. Parveen K, Banse V, Ledwani L. Green synthesis of nanoparticles: Their advantages and disadvantages. in AIP Conference Proceedings. 2016;1724. Available from: <DOI>. 23. Liu XY, Wang JQ, Ashby Cr, Zeng L, Fan YF, Chen ZS. Gold nanoparticles: synthesis, physiochemical properties and therapeutic applications in cancer. Drug Discovery Today. 2021;26(5): 1284-92. Available from: <DOI>.
  • 24. Hammami I, Alabdallah NM, Jomaa AA, Kamoun M. Gold nanoparticles: Synthesis properties and applications. Journal of King Saud university – Science. 2021; 33(7). Available from: <DOI>.
  • 25. Siddiqi K, Husen A. Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J. Trace Elem. Med. Bio. 2017;40: 10–23. Available from: <DOI>.
  • 26. Yuan QX, Xie YF, Wang W. et al. (2015). Carbohydrate Polymers[J]. 2015; 128: 52. Available from: <DOI>.
  • 27. Zhang Y, Ren CJ, Lu GB. et al. Regulatory Toxicology Pharmacology[J]. 2014; 70(3): 687.
  • 28. Chunfa D, Fei C, Xianglin Z, Xiangjie W, Xiuzhi Y, Bin Y. Rapid and Green Synthesis of Monodisperse Silver Nanoparticles Using Mulberry Leaf Extract. Rare Metal Materials and Engineering. 2018; 47(4):1089-1095. Available from: <DOI>.
  • 29. Thirugnanasambandham K, Sivakumar V, Maran JP. Microwave-assisted extraction of polysaccharides from mulberry leaves. International Journal of Biological Mac-romolecules[J]. 2015;72: 1-5. Available from: <DOI>.
  • 30. Adavallan K, Krishnakumar N. Mulberry leaf extract mediated synthesis of gold nanoparticles and its anti-bacterial activity against human pathogens. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2014;5, 025018. Avaiable from: <DOI>. 31. Sukirtha R, Priyanka KM, Antony JJ, Kamalakannan S, Thangam R, Gunasekaran P, Krishnan M, Achiraman S. Cytotoxic effect of Green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Process Biochem., 2012; 47: 273. Available from: <DOI>.
Year 2024, Volume: 11 Issue: 2, 615 - 622, 15.05.2024
https://doi.org/10.18596/jotcsa.1372302

Abstract

Project Number

-

References

  • 1. Keikhaie KR, Saeidi S, Forghani F, Khajeh H. Green Synthesis of Nano Silver: Review. Journal of Nano Drug Science.2018; 1(1): 18-21.
  • 2. Yokoyama T. et al. Basic Properties and Measuring Methods of Nanoparticles. In Nanoparticle Technology Handbook, Elsevier. 2018. 3–47. Available from: <DOI>.
  • 3. Güven OC. (2022), Bakır (Cu) Nanoçiçeklerinin Yeşil Sentez Yöntemi Kullanılarak Sentezlenmesi, Karakterizasyonu, Fotokatalitik, Antimikrobiyal Ve Antioksidan Aktivitesinin Belirlenmesi [Master Thesis]. Nevşehir Hacı Bektaş Veli University.2022.
  • 4. Başarı H. Hibiscus Sabdariffa L. Ekstraktı Kullanılarak Sentezlenen Gümüş Nanopartiküllerin Sentez Parametrelerinin Antimikrobiyal Aktiviteye Etkisinin Değerlendirilmesi [Master Thesis]. Necmettin Erbakan University.2022.
  • 5. Beykaya M, Çağlar A. An Investigation on Synthesis of Silver-Nanoparticles (AgNP) and their Antimicrobial effectiveness by using Herbal Extracts. Afyon Kocatepe Univ. J. Sci. Eng. 2016; 16(3):631–641.
  • 6. Bila D, Radwan Y, Dobrovolskaia MA, Panigaj M, Afonin KA. The Recognition of and Reactions to Nucleic Acid Nanoparticles by Human Immune Cells. Molecule. 2021; 26:4231. Available from: <DOI>..
  • 7. Ferreira MC, Pimentel B, Andrade V, Zverev V, Gimaev RR, Pomorov AS, Pyatakov A, Alekhina Y, Komlev A, Makarova L, et al. Understanding the Dependence of Nanoparticles Magnetothermal Properties on Their Size for Hyperthermia Applications. A Case Study for La-Sr Manganites. Nanomaterials. 2021;11: 1826. Available from: <DOI>..
  • 8. Kukushkina EA, Hossain SI, Sportelli MC, Ditaranto N, Picca RA, Cioffi N. Ag-Based Synergistic Antimicrobial Composites. A Critical Review. Nanomaterials.2021; 11: 1687. Available from: <DOI>.
  • 9. Vankdoth S, Velidandi A, Sarvepalli M, Vangalapati M. Role of plant (tulasi, neem and turmeric) extracts in defining the morphological, toxicity and catalytic properties of silver nanoparticles. Inorganic Chemistry Communications.2022; 140:109476 Available from: <DOI>..
  • 10. Mallakpour S, Radfar Z, Hussain CM. Current advances on polymer-layered double hydroxides/metal oxides nanocomposites and bionanocomposites: Fabrications and applications in the textile industry and nanofibers. Appl. Clay Sci., 2021; 206: 106054. Available from: <DOI>.
  • 11. Mazari SA, Ali E, Abro R, Khan FSA, Ahmed I, Ahmed M, Nizamuddin S, Siddiqui TH, Hossain N, Mubarak NM, Shah A. Nanomaterials: Applications, waste-handling, environmental toxicities, and future challenges - A review. J. Environ. Chem. Eng.2021; 9: 105028. Available from: <URL>.
  • 12. Khodakarami, M., Bagheri, M. Recent advances in synthesis and application of polymer nanocomposites for water and wastewater treatment. J. Clean. Prod. 2021; 296:126404. Available from: <DOI>.
  • 13. Velidandi A, Sarvepalli M, Pabbathi NPP, Baadhe RR. Biogenic synthesis of novel platinum-palladium bimetallic nanoparticles from aqueous Annona muricata leaf extract for catalytic activity. 3, Biotech..2021. 11, 1–14. Available from: <DOI>.
  • 14. Castillo-Henríquez L, Alfaro-Aguilar K, Ugalde-Álvarez J, Vega-Fernández L, de Oca-Vásquez GM, Vega-Baudrit JR. Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials. 2020; 10,1–24. Available from: <DOI>.
  • 15. Varadavenkatesan T, Selvaraj R, Vinayagam R. Green synthesis of silver nanoparticles using Thunbergia grandiflora flower extract and its catalytic action in reduction of Congo red dye. Mater. Today Proc., 2019;23:39–42.
  • 16. Jebril S, Khanfir Ben Jenana R, Dridi C. Green synthesis of silver nanoparticles using Melia azedarach leaf extract and their antifungal activities: In vitro and in vivo. Mater. Chem. Phys. 2020; 248:122898. Available from: <DOI>.
  • 17. Içoglu Aksakal F, Yilmaz A, Koc K, Ozdemir S. A comparative study on aquatic toxicity of chemically-synthesized and green synthesis silver nanoparticles on daphnia manga. Int. J. Environ. Health Res. 2021; 1–11. Available from: <DOI>.
  • 18. Garibo D, Borbón-Nuñez HA, de León JND, García Mendoza E, Estrada I, Toledano-Magaña Y, Tiznado H, Ovalle-Marroquin M, Soto-Ramos AG, Blanco A, Rodríguez JA, Romo OA, Chávez-Almazán LA, Susarrey-Arce A. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Sci. Rep. 2020. 10, 1–11.
  • 19. Selvaraj R, Pai S, Murugesan G, Pandey S, Bhole R, Gonsalves D, Varadavenkatesan T, Vinayagam R. Green synthesis of magnetic α–Fe2O3 nanospheres using Bridelia retusa leaf extract for Fenton-like degradation of crystal violet dye. Appl. Nanosci. 2021; 11: 2227–2234. Available from: <DOI>.
  • 20. Velidandi A, Dahariya S, Pabbathi NPP, Kalivarathan D, Baadhe RR. A Review on Synthesis, Applications, Toxicity, Risk Assessment and Limitations of Plant Extracts Synthesized Silver Nanoparticles. Nano World J. 2020;6:35–60. Available from: <DOI>.
  • 21. Du J, Zhou Z, Zhang X, et al. Biosynthesis of gold nanoparticles by flavonoids from lilium casa blanca. J. Clust. Sci. 2017;28(6): 3149–3158. Available from: <DOI>.
  • 22. Parveen K, Banse V, Ledwani L. Green synthesis of nanoparticles: Their advantages and disadvantages. in AIP Conference Proceedings. 2016;1724. Available from: <DOI>. 23. Liu XY, Wang JQ, Ashby Cr, Zeng L, Fan YF, Chen ZS. Gold nanoparticles: synthesis, physiochemical properties and therapeutic applications in cancer. Drug Discovery Today. 2021;26(5): 1284-92. Available from: <DOI>.
  • 24. Hammami I, Alabdallah NM, Jomaa AA, Kamoun M. Gold nanoparticles: Synthesis properties and applications. Journal of King Saud university – Science. 2021; 33(7). Available from: <DOI>.
  • 25. Siddiqi K, Husen A. Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J. Trace Elem. Med. Bio. 2017;40: 10–23. Available from: <DOI>.
  • 26. Yuan QX, Xie YF, Wang W. et al. (2015). Carbohydrate Polymers[J]. 2015; 128: 52. Available from: <DOI>.
  • 27. Zhang Y, Ren CJ, Lu GB. et al. Regulatory Toxicology Pharmacology[J]. 2014; 70(3): 687.
  • 28. Chunfa D, Fei C, Xianglin Z, Xiangjie W, Xiuzhi Y, Bin Y. Rapid and Green Synthesis of Monodisperse Silver Nanoparticles Using Mulberry Leaf Extract. Rare Metal Materials and Engineering. 2018; 47(4):1089-1095. Available from: <DOI>.
  • 29. Thirugnanasambandham K, Sivakumar V, Maran JP. Microwave-assisted extraction of polysaccharides from mulberry leaves. International Journal of Biological Mac-romolecules[J]. 2015;72: 1-5. Available from: <DOI>.
  • 30. Adavallan K, Krishnakumar N. Mulberry leaf extract mediated synthesis of gold nanoparticles and its anti-bacterial activity against human pathogens. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2014;5, 025018. Avaiable from: <DOI>. 31. Sukirtha R, Priyanka KM, Antony JJ, Kamalakannan S, Thangam R, Gunasekaran P, Krishnan M, Achiraman S. Cytotoxic effect of Green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Process Biochem., 2012; 47: 273. Available from: <DOI>.
There are 29 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry (Other)
Journal Section RESEARCH ARTICLES
Authors

Gönül Serdar 0000-0002-3589-2323

Project Number -
Publication Date May 15, 2024
Submission Date October 6, 2023
Acceptance Date January 29, 2024
Published in Issue Year 2024 Volume: 11 Issue: 2

Cite

Vancouver Serdar G. Biogenic Synthesis and Characterization of Gold Nanoparticles from Morus alba L. Leaves by Microwave Extraction Method. JOTCSA. 2024;11(2):615-22.