Research Article
BibTex RIS Cite

Structural and dielectric properties of Eu3+,B3+ co-doped CoNb2O6 ceramic

Year 2024, Volume: 11 Issue: 2, 765 - 774, 15.05.2024
https://doi.org/10.18596/jotcsa.1397311

Abstract

The boron co-doped CoNb2O6:xEu3+, yB3+ (x=1, 3, 6, 9, 12 mol%, y=10 mol%) ceramics were obtained by the molten salt method, which has advantageous properties such as short reaction time, low sintering temperature, improved homogeneity, and crystallinity. The ceramic samples were examined by structural and dielectric analyses. In X-ray diffractions, the orthorhombic columbite type CoNb2O6 structure was obtained, and also a minor EuNbO4 phase was detected with increasing Eu3+ doping concentrations. Additionally, increasing Eu3+ concentration led to a slight increase in crystallite size, and two theta peak shifts occurred towards higher angles associated with shrinkage in the lattice or reduction in the lattice constant. In SEM examinations, a slight increase was observed in grain sizes from 1 to 9 mol% Eu3+ in the range of 1-30 m, while some decrease occurred in grain sizes at 12 mol%, and there was an evident increase in plate-shaped and elongated grains. The dielectric constant (ε') of the ceramic samples increased with increasing Eu3+ concentration and reached approximately 35 and 0.24 at 20 Hz for 9 mol% Eu3+, respectively. The increase in dielectric loss with increasing Eu3+ was associated with an increase in ionic conductivity, in which Eu3+ substitution does not suppress oxygen vacancies or make them more ordered.

References

  • 1. Krohns S, Lunkenheimer P, Meissner S, Reller A, Gleich B, Rathgeber A, et al. The route to resource-efficient novel materials. Nat Mater [Internet]. 2011 Dec 23;10(12):899–901. Available from: <URL>.
  • 2. Wersing W, Steele BCH. Electronic Ceramics. New York: Elsevier; 1991.
  • 3. Hao S, Li J, Yang P, Wei L, Yang Z. Enhanced electrical properties and strong red light‐emitting in Eu3+ ‐doped Sr1.90Ca0.15Na0.9Nb5O15 ceramics. J Am Ceram Soc [Internet]. 2017 Dec;100(12):5620–8. Available from: <URL>.
  • 4. İlhan M, Ekmekçi MK, Keskin İÇ. Judd–Ofelt parameters and X-ray irradiation results of MNb2O6 :Eu3+ (M= Sr, Cd, Ni) phosphors synthesized via a molten salt method. RSC Adv [Internet]. 2021;11(18):10451–62. Available from: <URL>.
  • 5. İlhan M, Katı Mİ, Keskin İÇ, Güleryüz LF. Evaluation of structural and spectroscopic results of tetragonal tungsten bronze MTa2O6:Eu3+ (M= Sr, Ba, Pb) phosphors and comparison on the basis of Judd-Ofelt parameters. J Alloys Compd [Internet]. 2022 Apr;901:163626. Available from: <URL>.
  • 6. İlhan M, Keskin İÇ. Photoluminescence, radioluminescence and thermoluminescence properties of Eu3+ doped cadmium tantalate phosphor. Dalt Trans [Internet]. 2018;47(39):13939–48. Available from: <URL>.
  • 7. Mahapatro J, Agrawal S. Effect of Eu3+ ions on electrical and dielectric properties of barium hexaferrites prepared by solution combustion method. Ceram Int [Internet]. 2021 Jul;47(14):20529–43. Available from: <URL>.
  • 8. Evangeline T G, Annamalai A R, Ctibor P. Effect of Europium Addition on the Microstructure and Dielectric Properties of CCTO Ceramic Prepared Using Conventional and Microwave Sintering. Molecules [Internet]. 2023 Feb 8;28(4):1649. Available from: <URL>.
  • 9. Chakrabarti A, Tarafder A, Molla AR. Synthesis of Eu3+ ‐doped BaBi2Ta2O9 based glass‐ceramic nanocomposites: Optical and dielectric properties. J Am Ceram Soc [Internet]. 2018 Jan 18;101(1):231–43. Available from: <URL>.
  • 10. Fu J, Zhao J, Sa T, Qin N, Bao D. Photoluminescent and dielectric properties of Eu3+-doped LaAlO3 thin films fabricated by chemical solution deposition method. Appl Surf Sci [Internet]. 2013 Dec;286:1–6. Available from: <URL>.
  • 11. Wang Z, Chen H, Nian W, Fan J, Li Y, Wang X, et al. Grain boundary effect on dielectric properties of (Nd0.5Nb0.5)xTi1-xO2 ceramicsceamics. J Alloys Compd [Internet]. 2019 May;785:875–82. Available from: <URL>.
  • 12. Zhao C, Wu J. Effects of Secondary Phases on the High-Performance Colossal Permittivity in Titanium Dioxide Ceramics. ACS Appl Mater Interfaces [Internet]. 2018 Jan 31;10(4):3680–8. Available from: <URL>.
  • 13. Sarvezuk PWC, Kinast EJ, Colin C V., Gusmão MA, da Cunha JBM, Isnard O. New investigation of the magnetic structure of CoNb2O6 columbite. J Appl Phys [Internet]. 2011 Apr 1;109(7):07E160. Available from: <URL>.
  • 14. Scharf W, Weitzel H, Yaeger I, Maartense I, Wanklyn BM. Magnetic structures of CoNb2O6. J Magn Magn Mater [Internet]. 1979 Sep;13(1–2):121–4. Available from: <URL>.
  • 15. Lei S, Wang C, Guo D, Gao X, Cheng D, Zhou J, et al. Synthesis and magnetic properties of MNb2O6 (M= Fe, Co, Ni) nanoparticles. RSC Adv [Internet]. 2014 Oct 13;4(95):52740–8. Available from: <URL>.
  • 16. Xu Y, Wang LS, Huang YY, Ni JM, Zhao CC, Dai YF, et al. Quantum Critical Magnetic Excitations in Spin-1/2 and Spin-1 Chain Systems. Phys Rev X [Internet]. 2022 Apr 26;12(2):021020. Available from: <URL>.
  • 17. Ringler JA, Kolesnikov AI, Ross KA. Single-ion properties of the transverse-field Ising model material CoNb2O6. Phys Rev B [Internet]. 2022 Jun 27;105(22):224421. Available from: <URL>.
  • 18. Erdem R, İlhan M, Ekmekçi MK, Erdem Ö. Electrospinning, preparation and photoluminescence properties of CoNb2O6:Dy3+ incorporated polyamide 6 composite fibers. Appl Surf Sci [Internet]. 2017 Nov;421:240–6. Available from: <URL>.
  • 19. Ekmekçi MK, İlhan M, Güleryüz LF, Mergen A. Study on molten salt synthesis, microstructural determination and white light emitting properties of CoNb2O6:Dy3+ phosphor. Optik (Stuttg) [Internet]. 2017 Jan;128:26–33. Available from: <URL>.
  • 20. İlhan M, Güleryüz LF, Ekmekci MK. Structural Properties, Photoluminescence, and Judd-Ofelt Parameters of Eu3+- Doped CoNb2O6 Phosphor. J Turkish Chem Soc Sect A Chem [Internet]. 2023 Aug 30;10(3):745–56. Available from: <URL>.
  • 21. Ekmekçi MK, Erdem M, Başak AS. Molten salt synthesis, visible and near-IR region spectral properties of europium or neodymium doped CoNb2O6 columbite niobate. Dalt Trans [Internet]. 2015;44(12):5379–85. Available from: <URL>.
  • 22. Singh N, Kumar K, Singh P. Synthesis of single phase Ti4+ substituted Trirutile CoNb2O6 Ceramic: evolution of Relaxor type ferroelectricity and high k dielectricity. J Electroceramics [Internet]. 2023 Oct 18;51(2):133–45. Available from: <URL>.
  • 23. Zhang Y, Liu S, Zhang Y, Xiang M. Microwave dielectric properties of low-fired CoNb2O6 ceramics with B2O3 addition. J Mater Sci Mater Electron [Internet]. 2016 Nov 29;27(11):11293–8. Available from: <URL>.
  • 24. Liu F, Wang B, Yang X, Guan Y, Sun R, Wang Q, et al. High-temperature stabilized zirconia-based sensors utilizing MNb2O6 (M: Co, Ni and Zn) sensing electrodes for detection of NO2. Sensors Actuators B Chem [Internet]. 2016 Sep;232:523–30. Available from: <URL>.
  • 25. Balamurugan C, Maheswari AR, Lee DW. Structural, optical, and selective ethanol sensing properties of p-type semiconducting CoNb2O6 nanopowder. Sensors Actuators B Chem [Internet]. 2014 Dec;205:289–97. Available from: <URL>.
  • 26. Liang T, Koohpayeh SM, Krizan JW, McQueen TM, Cava RJ, Ong NP. Heat capacity peak at the quantum critical point of the transverse Ising magnet CoNb2O6. Nat Commun [Internet]. 2015 Jul 6;6(1):7611. Available from: <URL>.
  • 27. Hanawa T, Shinkawa K, Ishikawa M, Miyatani K, Saito K, Kohn K. Anisotropic Specific Heat of CoNb2O6 in Magnetic Fields. J Phys Soc Japan [Internet]. 1994 Jul 15;63(7):2706–15. Available from: <URL>.
  • 28. Zhang X, Wang B, Huang W, Chen Y, Wang G, Zeng L, et al. Synergistic Boron Doping of Semiconductor and Dielectric Layers for High-Performance Metal Oxide Transistors: Interplay of Experiment and Theory. J Am Chem Soc [Internet]. 2018 Oct 3;140(39):12501–10. Available from: <URL>.
  • 29. Mazumder R, Seal A, Sen A, Maiti HS. Effect of Boron Addition on the Dielectric Properties of Giant Dielectric CaCu3Ti4O12. Ferroelectrics [Internet]. 2005 Oct;326(1):103–8. Available from: <URL>.
  • 30. Li Z, Zhou W, Su X, Luo F, Huang Y, Wang C. Effect of boron doping on microwave dielectric properties of SiC powder synthesized by combustion synthesis. J Alloys Compd [Internet]. 2011 Jan;509(3):973–6. Available from: <URL>.
  • 31. İlhan M, Güleryüz LF. Boron doping effect on the structural, spectral properties and charge transfer mechanism of orthorhombic tungsten bronze β-SrTa2O6 :Eu3+ phosphor. RSC Adv [Internet]. 2023;13(18):12375–85. Available from: <URL>.
  • 32. İlhan M, Ekmekçi MK, Güleryüz LF. Effect of boron incorporation on the structural, morphological, and spectral properties of CdNb2O6:Dy3+ phosphor synthesized by molten salt process. Mater Sci Eng B [Internet]. 2023 Dec;298:116858. Available from: <URL>.
  • 33. Başak AS, Ekmekçi MK, Erdem M, Ilhan M, Mergen A. Investigation of Boron-doping Effect on Photoluminescence Properties of CdNb2O6: Eu3+ Phosphors. J Fluoresc [Internet]. 2016 Mar 11;26(2):719–24. Available from: <URL>.
  • 34. Ekmekçi MK, İlhan M, Ege A, Ayvacıklı M. Microstructural and Radioluminescence Characteristics of Nd3+ Doped Columbite-Type SrNb2O6 Phosphor. J Fluoresc [Internet]. 2017 May 13;27(3):973–9. Available from: <URL>.
  • 35. İlhan M, Ekmekçi MK. Synthesis and photoluminescence properties of Dy3+ doped white light emitting CdTa2O6 phosphors. J Solid State Chem [Internet]. 2015 Mar;226:243–9. Available from: <URL>.
  • 36. Tan YQ, Yu Y, Hao YM, Dong SY, Yang YW. Structure and dielectric properties of Ba5NdCu1.5Nb8.5O30−δ tungsten bronze ceramics. Mater Res Bull [Internet]. 2013 May;48(5):1934–8. Available from: <URL>.
  • 37. Esha IN, Al-Amin M, Toma FTZ, Hossain E, Khan MNI, Maria KH. Synthesis and analysis of the influence of Eu3+ on the structural, ferromagnetic, dielectric and conductive characteristics of Ni0.4Zn0.45Cu0.15Fe(2-x)EuxO4 composites using conventional double sintering ceramic method. J Ceram Process Res [Internet]. 2019 Oct;20(5):530–9. Available from: <URL>.
  • 38. Shah MR, Akther Hossain AKM. Structural and dielectric properties of La substituted polycrystalline Ca(Ti0.5Fe0.5)O3. Mater Sci [Internet]. 2013 Jan 25;31(1):80–7. Available from: <URL>.
  • 39. Bettinelli M, Speghini A, Seliman SI, Battisha IK. Structural and dielectrical properties of nano-structure BaTiO3 powders doped with Eu3+ ions prepared by sol-gel process. Fiz A a J Exp Theor Phys [Internet]. 2004 Mar 1;13(1):11–22. Available from: <URL>.
  • 40. Kim L, Jung D, Kim J, Kim YS, Lee J. Strain manipulation in BaTiO3/SrTiO3 artificial lattice toward high dielectric constant and its nonlinearity. Appl Phys Lett [Internet]. 2003 Mar 31;82(13):2118–20. Available from: <URL>.
  • 41. Feng L, Ye ZG. Phase Diagram and Phase Transitions in the Relaxor Ferroelectric Pb(Fe2/3W1/3)O3–PbTiO3 System. J Solid State Chem [Internet]. 2002 Feb;163(2):484–90. Available from: <URL>.
  • 42. Wagner KW. Zur Theorie der unvollkommenen Dielektrika. Ann Phys [Internet]. 1913 Jan 14;345(5):817–55. Available from: <URL>.
  • 43. Maxwell JC. A treatise on electricity and magnetism. London: Caleredon press, Oxford University; 1873.
  • 44. Kadam AA, Shinde SS, Yadav SP, Patil PS, Rajpure KY. Structural, morphological, electrical and magnetic properties of Dy doped Ni–Co substitutional spinel ferrite. J Magn Magn Mater [Internet]. 2013 Mar;329:59–64. Available from: <URL>.
  • 45. Yuan WX, Luo Z, Wang C. Investigation on effects of CuO secondary phase on dielectric properties of CaCu3Ti4O12 ceramics. J Alloys Compd [Internet]. 2013 Jun;562:1–4. Available from: <URL>.
  • 46. Zheng Q, Fan H, Long C. Microstructures and electrical responses of pure and chromium-doped CaCu3Ti4O12 ceramics. J Alloys Compd [Internet]. 2012 Jan;511(1):90–4. Available from: <URL>.
  • 47. Liu L, Chen Y, Feng Z, Wu H, Zhang X. Crystal structure, infrared spectra, and microwave dielectric properties of the EuNbO4 ceramic. Ceram Int [Internet]. 2021 Feb;47(3):4321–6. Available from: <URL>.
  • 48. Gul IH, Maqsood A. Influence of Zn–Zr ions on physical and magnetic properties of co-precipitated cobalt ferrite nanoparticles. J Magn Magn Mater [Internet]. 2007 Sep;316(1):13–8. Available from: <URL>.
  • 49. Ganguly P, Jha AK. Enhanced characteristics of Ba5SmTi3Nb7O30 ferroelectric nanocrystalline ceramic prepared by mechanical activation process: A comparative study. Mater Res Bull [Internet]. 2011 May;46(5):692–7. Available from: <URL>.
  • 50. Sati PC, Kumar M, Chhoker S, Jewariya M. Influence of Eu substitution on structural, magnetic, optical and dielectric properties of BiFeO3 multiferroic ceramics. Ceram Int [Internet]. 2015 Mar;41(2):2389–98. Available from: <URL>.
  • 51. Chakrabarti A, Bera J. Effect of La-substitution on the structure and dielectric properties of BaBi4Ti4O15 ceramics. J Alloys Compd [Internet]. 2010 Sep;505(2):668–74. Available from: <URL>.
  • 52. Kumar P, Kar M. Effect of structural transition on magnetic and optical properties of Ca and Ti co-substituted BiFeO3 ceramics. J Alloys Compd [Internet]. 2014 Jan;584:566–72. Available from: <URL>.
  • 53. Kendall KR, Thomas JK, Loye HC. Synthesis and ionic conductivity of a new series of modified Aurivillius phases. Chem Mater [Internet]. 1995 Jan 1;7(1):50–7. Available from: <URL>.
Year 2024, Volume: 11 Issue: 2, 765 - 774, 15.05.2024
https://doi.org/10.18596/jotcsa.1397311

Abstract

References

  • 1. Krohns S, Lunkenheimer P, Meissner S, Reller A, Gleich B, Rathgeber A, et al. The route to resource-efficient novel materials. Nat Mater [Internet]. 2011 Dec 23;10(12):899–901. Available from: <URL>.
  • 2. Wersing W, Steele BCH. Electronic Ceramics. New York: Elsevier; 1991.
  • 3. Hao S, Li J, Yang P, Wei L, Yang Z. Enhanced electrical properties and strong red light‐emitting in Eu3+ ‐doped Sr1.90Ca0.15Na0.9Nb5O15 ceramics. J Am Ceram Soc [Internet]. 2017 Dec;100(12):5620–8. Available from: <URL>.
  • 4. İlhan M, Ekmekçi MK, Keskin İÇ. Judd–Ofelt parameters and X-ray irradiation results of MNb2O6 :Eu3+ (M= Sr, Cd, Ni) phosphors synthesized via a molten salt method. RSC Adv [Internet]. 2021;11(18):10451–62. Available from: <URL>.
  • 5. İlhan M, Katı Mİ, Keskin İÇ, Güleryüz LF. Evaluation of structural and spectroscopic results of tetragonal tungsten bronze MTa2O6:Eu3+ (M= Sr, Ba, Pb) phosphors and comparison on the basis of Judd-Ofelt parameters. J Alloys Compd [Internet]. 2022 Apr;901:163626. Available from: <URL>.
  • 6. İlhan M, Keskin İÇ. Photoluminescence, radioluminescence and thermoluminescence properties of Eu3+ doped cadmium tantalate phosphor. Dalt Trans [Internet]. 2018;47(39):13939–48. Available from: <URL>.
  • 7. Mahapatro J, Agrawal S. Effect of Eu3+ ions on electrical and dielectric properties of barium hexaferrites prepared by solution combustion method. Ceram Int [Internet]. 2021 Jul;47(14):20529–43. Available from: <URL>.
  • 8. Evangeline T G, Annamalai A R, Ctibor P. Effect of Europium Addition on the Microstructure and Dielectric Properties of CCTO Ceramic Prepared Using Conventional and Microwave Sintering. Molecules [Internet]. 2023 Feb 8;28(4):1649. Available from: <URL>.
  • 9. Chakrabarti A, Tarafder A, Molla AR. Synthesis of Eu3+ ‐doped BaBi2Ta2O9 based glass‐ceramic nanocomposites: Optical and dielectric properties. J Am Ceram Soc [Internet]. 2018 Jan 18;101(1):231–43. Available from: <URL>.
  • 10. Fu J, Zhao J, Sa T, Qin N, Bao D. Photoluminescent and dielectric properties of Eu3+-doped LaAlO3 thin films fabricated by chemical solution deposition method. Appl Surf Sci [Internet]. 2013 Dec;286:1–6. Available from: <URL>.
  • 11. Wang Z, Chen H, Nian W, Fan J, Li Y, Wang X, et al. Grain boundary effect on dielectric properties of (Nd0.5Nb0.5)xTi1-xO2 ceramicsceamics. J Alloys Compd [Internet]. 2019 May;785:875–82. Available from: <URL>.
  • 12. Zhao C, Wu J. Effects of Secondary Phases on the High-Performance Colossal Permittivity in Titanium Dioxide Ceramics. ACS Appl Mater Interfaces [Internet]. 2018 Jan 31;10(4):3680–8. Available from: <URL>.
  • 13. Sarvezuk PWC, Kinast EJ, Colin C V., Gusmão MA, da Cunha JBM, Isnard O. New investigation of the magnetic structure of CoNb2O6 columbite. J Appl Phys [Internet]. 2011 Apr 1;109(7):07E160. Available from: <URL>.
  • 14. Scharf W, Weitzel H, Yaeger I, Maartense I, Wanklyn BM. Magnetic structures of CoNb2O6. J Magn Magn Mater [Internet]. 1979 Sep;13(1–2):121–4. Available from: <URL>.
  • 15. Lei S, Wang C, Guo D, Gao X, Cheng D, Zhou J, et al. Synthesis and magnetic properties of MNb2O6 (M= Fe, Co, Ni) nanoparticles. RSC Adv [Internet]. 2014 Oct 13;4(95):52740–8. Available from: <URL>.
  • 16. Xu Y, Wang LS, Huang YY, Ni JM, Zhao CC, Dai YF, et al. Quantum Critical Magnetic Excitations in Spin-1/2 and Spin-1 Chain Systems. Phys Rev X [Internet]. 2022 Apr 26;12(2):021020. Available from: <URL>.
  • 17. Ringler JA, Kolesnikov AI, Ross KA. Single-ion properties of the transverse-field Ising model material CoNb2O6. Phys Rev B [Internet]. 2022 Jun 27;105(22):224421. Available from: <URL>.
  • 18. Erdem R, İlhan M, Ekmekçi MK, Erdem Ö. Electrospinning, preparation and photoluminescence properties of CoNb2O6:Dy3+ incorporated polyamide 6 composite fibers. Appl Surf Sci [Internet]. 2017 Nov;421:240–6. Available from: <URL>.
  • 19. Ekmekçi MK, İlhan M, Güleryüz LF, Mergen A. Study on molten salt synthesis, microstructural determination and white light emitting properties of CoNb2O6:Dy3+ phosphor. Optik (Stuttg) [Internet]. 2017 Jan;128:26–33. Available from: <URL>.
  • 20. İlhan M, Güleryüz LF, Ekmekci MK. Structural Properties, Photoluminescence, and Judd-Ofelt Parameters of Eu3+- Doped CoNb2O6 Phosphor. J Turkish Chem Soc Sect A Chem [Internet]. 2023 Aug 30;10(3):745–56. Available from: <URL>.
  • 21. Ekmekçi MK, Erdem M, Başak AS. Molten salt synthesis, visible and near-IR region spectral properties of europium or neodymium doped CoNb2O6 columbite niobate. Dalt Trans [Internet]. 2015;44(12):5379–85. Available from: <URL>.
  • 22. Singh N, Kumar K, Singh P. Synthesis of single phase Ti4+ substituted Trirutile CoNb2O6 Ceramic: evolution of Relaxor type ferroelectricity and high k dielectricity. J Electroceramics [Internet]. 2023 Oct 18;51(2):133–45. Available from: <URL>.
  • 23. Zhang Y, Liu S, Zhang Y, Xiang M. Microwave dielectric properties of low-fired CoNb2O6 ceramics with B2O3 addition. J Mater Sci Mater Electron [Internet]. 2016 Nov 29;27(11):11293–8. Available from: <URL>.
  • 24. Liu F, Wang B, Yang X, Guan Y, Sun R, Wang Q, et al. High-temperature stabilized zirconia-based sensors utilizing MNb2O6 (M: Co, Ni and Zn) sensing electrodes for detection of NO2. Sensors Actuators B Chem [Internet]. 2016 Sep;232:523–30. Available from: <URL>.
  • 25. Balamurugan C, Maheswari AR, Lee DW. Structural, optical, and selective ethanol sensing properties of p-type semiconducting CoNb2O6 nanopowder. Sensors Actuators B Chem [Internet]. 2014 Dec;205:289–97. Available from: <URL>.
  • 26. Liang T, Koohpayeh SM, Krizan JW, McQueen TM, Cava RJ, Ong NP. Heat capacity peak at the quantum critical point of the transverse Ising magnet CoNb2O6. Nat Commun [Internet]. 2015 Jul 6;6(1):7611. Available from: <URL>.
  • 27. Hanawa T, Shinkawa K, Ishikawa M, Miyatani K, Saito K, Kohn K. Anisotropic Specific Heat of CoNb2O6 in Magnetic Fields. J Phys Soc Japan [Internet]. 1994 Jul 15;63(7):2706–15. Available from: <URL>.
  • 28. Zhang X, Wang B, Huang W, Chen Y, Wang G, Zeng L, et al. Synergistic Boron Doping of Semiconductor and Dielectric Layers for High-Performance Metal Oxide Transistors: Interplay of Experiment and Theory. J Am Chem Soc [Internet]. 2018 Oct 3;140(39):12501–10. Available from: <URL>.
  • 29. Mazumder R, Seal A, Sen A, Maiti HS. Effect of Boron Addition on the Dielectric Properties of Giant Dielectric CaCu3Ti4O12. Ferroelectrics [Internet]. 2005 Oct;326(1):103–8. Available from: <URL>.
  • 30. Li Z, Zhou W, Su X, Luo F, Huang Y, Wang C. Effect of boron doping on microwave dielectric properties of SiC powder synthesized by combustion synthesis. J Alloys Compd [Internet]. 2011 Jan;509(3):973–6. Available from: <URL>.
  • 31. İlhan M, Güleryüz LF. Boron doping effect on the structural, spectral properties and charge transfer mechanism of orthorhombic tungsten bronze β-SrTa2O6 :Eu3+ phosphor. RSC Adv [Internet]. 2023;13(18):12375–85. Available from: <URL>.
  • 32. İlhan M, Ekmekçi MK, Güleryüz LF. Effect of boron incorporation on the structural, morphological, and spectral properties of CdNb2O6:Dy3+ phosphor synthesized by molten salt process. Mater Sci Eng B [Internet]. 2023 Dec;298:116858. Available from: <URL>.
  • 33. Başak AS, Ekmekçi MK, Erdem M, Ilhan M, Mergen A. Investigation of Boron-doping Effect on Photoluminescence Properties of CdNb2O6: Eu3+ Phosphors. J Fluoresc [Internet]. 2016 Mar 11;26(2):719–24. Available from: <URL>.
  • 34. Ekmekçi MK, İlhan M, Ege A, Ayvacıklı M. Microstructural and Radioluminescence Characteristics of Nd3+ Doped Columbite-Type SrNb2O6 Phosphor. J Fluoresc [Internet]. 2017 May 13;27(3):973–9. Available from: <URL>.
  • 35. İlhan M, Ekmekçi MK. Synthesis and photoluminescence properties of Dy3+ doped white light emitting CdTa2O6 phosphors. J Solid State Chem [Internet]. 2015 Mar;226:243–9. Available from: <URL>.
  • 36. Tan YQ, Yu Y, Hao YM, Dong SY, Yang YW. Structure and dielectric properties of Ba5NdCu1.5Nb8.5O30−δ tungsten bronze ceramics. Mater Res Bull [Internet]. 2013 May;48(5):1934–8. Available from: <URL>.
  • 37. Esha IN, Al-Amin M, Toma FTZ, Hossain E, Khan MNI, Maria KH. Synthesis and analysis of the influence of Eu3+ on the structural, ferromagnetic, dielectric and conductive characteristics of Ni0.4Zn0.45Cu0.15Fe(2-x)EuxO4 composites using conventional double sintering ceramic method. J Ceram Process Res [Internet]. 2019 Oct;20(5):530–9. Available from: <URL>.
  • 38. Shah MR, Akther Hossain AKM. Structural and dielectric properties of La substituted polycrystalline Ca(Ti0.5Fe0.5)O3. Mater Sci [Internet]. 2013 Jan 25;31(1):80–7. Available from: <URL>.
  • 39. Bettinelli M, Speghini A, Seliman SI, Battisha IK. Structural and dielectrical properties of nano-structure BaTiO3 powders doped with Eu3+ ions prepared by sol-gel process. Fiz A a J Exp Theor Phys [Internet]. 2004 Mar 1;13(1):11–22. Available from: <URL>.
  • 40. Kim L, Jung D, Kim J, Kim YS, Lee J. Strain manipulation in BaTiO3/SrTiO3 artificial lattice toward high dielectric constant and its nonlinearity. Appl Phys Lett [Internet]. 2003 Mar 31;82(13):2118–20. Available from: <URL>.
  • 41. Feng L, Ye ZG. Phase Diagram and Phase Transitions in the Relaxor Ferroelectric Pb(Fe2/3W1/3)O3–PbTiO3 System. J Solid State Chem [Internet]. 2002 Feb;163(2):484–90. Available from: <URL>.
  • 42. Wagner KW. Zur Theorie der unvollkommenen Dielektrika. Ann Phys [Internet]. 1913 Jan 14;345(5):817–55. Available from: <URL>.
  • 43. Maxwell JC. A treatise on electricity and magnetism. London: Caleredon press, Oxford University; 1873.
  • 44. Kadam AA, Shinde SS, Yadav SP, Patil PS, Rajpure KY. Structural, morphological, electrical and magnetic properties of Dy doped Ni–Co substitutional spinel ferrite. J Magn Magn Mater [Internet]. 2013 Mar;329:59–64. Available from: <URL>.
  • 45. Yuan WX, Luo Z, Wang C. Investigation on effects of CuO secondary phase on dielectric properties of CaCu3Ti4O12 ceramics. J Alloys Compd [Internet]. 2013 Jun;562:1–4. Available from: <URL>.
  • 46. Zheng Q, Fan H, Long C. Microstructures and electrical responses of pure and chromium-doped CaCu3Ti4O12 ceramics. J Alloys Compd [Internet]. 2012 Jan;511(1):90–4. Available from: <URL>.
  • 47. Liu L, Chen Y, Feng Z, Wu H, Zhang X. Crystal structure, infrared spectra, and microwave dielectric properties of the EuNbO4 ceramic. Ceram Int [Internet]. 2021 Feb;47(3):4321–6. Available from: <URL>.
  • 48. Gul IH, Maqsood A. Influence of Zn–Zr ions on physical and magnetic properties of co-precipitated cobalt ferrite nanoparticles. J Magn Magn Mater [Internet]. 2007 Sep;316(1):13–8. Available from: <URL>.
  • 49. Ganguly P, Jha AK. Enhanced characteristics of Ba5SmTi3Nb7O30 ferroelectric nanocrystalline ceramic prepared by mechanical activation process: A comparative study. Mater Res Bull [Internet]. 2011 May;46(5):692–7. Available from: <URL>.
  • 50. Sati PC, Kumar M, Chhoker S, Jewariya M. Influence of Eu substitution on structural, magnetic, optical and dielectric properties of BiFeO3 multiferroic ceramics. Ceram Int [Internet]. 2015 Mar;41(2):2389–98. Available from: <URL>.
  • 51. Chakrabarti A, Bera J. Effect of La-substitution on the structure and dielectric properties of BaBi4Ti4O15 ceramics. J Alloys Compd [Internet]. 2010 Sep;505(2):668–74. Available from: <URL>.
  • 52. Kumar P, Kar M. Effect of structural transition on magnetic and optical properties of Ca and Ti co-substituted BiFeO3 ceramics. J Alloys Compd [Internet]. 2014 Jan;584:566–72. Available from: <URL>.
  • 53. Kendall KR, Thomas JK, Loye HC. Synthesis and ionic conductivity of a new series of modified Aurivillius phases. Chem Mater [Internet]. 1995 Jan 1;7(1):50–7. Available from: <URL>.
There are 53 citations in total.

Details

Primary Language English
Subjects Crystallography, Inorganic Materials, Physical Properties of Materials
Journal Section RESEARCH ARTICLES
Authors

Mustafa İlhan 0000-0001-7826-9614

Mete Kaan Ekmekci 0000-0003-2847-3312

Kadir Esmer 0000-0002-1336-9259

Publication Date May 15, 2024
Submission Date November 29, 2023
Acceptance Date February 24, 2024
Published in Issue Year 2024 Volume: 11 Issue: 2

Cite

Vancouver İlhan M, Ekmekci MK, Esmer K. Structural and dielectric properties of Eu3+,B3+ co-doped CoNb2O6 ceramic. JOTCSA. 2024;11(2):765-74.