Research Article
BibTex RIS Cite

Exploring the Antibacterial Efficacy of Silver Nanoparticles Synthesized through Abiotic Stress-Induced Germinated Seeds of Vigna radiata: A Comparative Analysis

Year 2024, Volume: 11 Issue: 3, 981 - 994, 30.08.2024
https://doi.org/10.18596/jotcsa.1335103

Abstract

The novel microwave-assisted green synthesis of silver nanoparticles (AgNPs) from stress-induced germinated seeds of Vigna radiata (VR) is explored in this research. AgNPs were successfully synthesized using abiotic stress-induced germinated seeds of VR, induced by salinity, drought, and heavy metals such as sodium chloride (NaCl), polyethylene glycol (PEG), and a chromium solution, respectively. The characterization of the synthesized AgNPs was performed using various techniques, including UV-visible spectrophotometer, dynamic light scattering (DLS), zeta potential, XRD, FT-IR, and FE-SEM. The concentration of AgNPs synthesized from Vr-NaCl, Vr-Cr, Vr-PEG, and Vr-DW followed the order Ag/Vr-DW > Ag/Vr-NaCl > Ag/Vr-PEG > Ag/Vr-Cr. Notably, the synthesized AgNPs exhibited significant antibacterial activity against Staphylococcus aureus bacteria. A comparative analysis of the antibacterial efficacy of AgNPs synthesized using different stress-induced VR seed extracts revealed that AgNPs from PEG stress-induced germinated seeds of VR displayed excellent antibacterial activity. These findings underscore the potential of stress-induced germinated seeds of VR as a promising resource for producing AgNPs with exceptional antibacterial properties, thereby opening avenues for the development of innovative antimicrobial agents.

Thanks

The authors thank Indian Science Technology and Engineering facilities Map (I-STEM), a Program supported by the Office of the Principal Scientific Adviser to the Govt. of India, for enabling access to the Field emission scanning electron microscopy (FESEM) with Energy Dispersive Spectroscopy (EDS), MAIA3 XMH at the Sophisticated Analytical Instrument Facility (DST-SAIF), Mahatma Gandhi University, Kottayam, India, to carry out this work.

References

  • 1. Hasan KMF, Xiaoyi L, Shaoqin Z, Horváth PG, Bak M, Bejó L, et al. Functional silver nanoparticles synthesis from sustainable point of view: 2000 to 2023 ‒ A review on game changing materials. Heliyon [Internet]. 2022 Dec 1;8(12):e12322. Available from: <URL>.
  • 2. Revathy R, Joseph J, Augustine C, Sajini T, Mathew B. Synthesis and catalytic applications of silver nanoparticles: a sustainable chemical approach using indigenous reducing and capping agents from Hyptis capitata. Environ Sci Adv [Internet]. 2022 Sep 27;1(4):491–505. Available from: <URL>.
  • 3. Syafiuddin A, Salmiati, Salim MR, Beng Hong Kueh A, Hadibarata T, Nur H. A Review of Silver Nanoparticles: Research Trends, Global Consumption, Synthesis, Properties, and Future Challenges. J Chinese Chem Soc [Internet]. 2017 Jul 8;64(7):732–56. Available from: <URL>.
  • 4. Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int J Nanomedicine [Internet]. 2020 Apr;Volume 15:2555–62. Available from: <URL>.
  • 5. Khan A, Ahmad N, Fazal H, Ali M, Akbar F, Khan I, et al. Biogenic synthesis of silver nanoparticles using Rubus fruticosus extract and their antibacterial efficacy against Erwinia caratovora and Ralstonia solanacearum phytopathogens. RSC Adv [Internet]. 2024 Feb 14;14(9):5754–63. Available from: <URL>.
  • 6. Nair GM, Sajini T, Mathew B. Advanced green approaches for metal and metal oxide nanoparticles synthesis and their environmental applications. Talanta Open [Internet]. 2022 Aug 1;5:100080. Available from: <URL>.
  • 7. Raut S, Bhatavadekar A, Chougule R, Lekhak U. Silver nanoparticles synthesis from Crinum moorei: Optimization, characterization, kinetics and catalytic application. South African J Bot [Internet]. 2024 Feb 1;165:494–504. Available from: <URL>.
  • 8. Suriati G, Mariatti M, Azizan A. Synthesis of Silver Nanoparticles by Chemical Reduction Method: Effect of Reducing Agent and Surfactant Concentration. Int J Automot Mech Eng [Internet]. 2014 Dec 30;10(1):1920–7. Available from: <URL>.
  • 9. Ogundare SA, Adesetan TO, Muungani G, Moodley V, Amaku JF, Atewolara-Odule OC, et al. Catalytic degradation of methylene blue dye and antibacterial activity of biosynthesized silver nanoparticles using Peltophorum pterocarpum (DC.) leaves. Environ Sci Adv [Internet]. 2023 Feb 6;2(2):247–56. Available from: <URL>.
  • 10. Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv [Internet]. 2019 Jan 21;9(5):2673–702. Available from: <URL>.
  • 11. Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res [Internet]. 2016 Jan 1;7(1):17–28. Available from: <URL>.
  • 12. Patra JK, Baek KH. Green Nanobiotechnology: Factors Affecting Synthesis and Characterization Techniques. J Nanomater [Internet]. 2014 Jan 1;2014(1):417305. Available from: <URL>.
  • 13. Saha S, Malik MM, Qureshi MS. Microwave Synthesis of Silver Nanoparticles. Nano Hybrids [Internet]. 2013 May;4:99–112. Available from: <URL>.
  • 14. Joseph S, Mathew B. Microwave-assisted facile synthesis of silver nanoparticles in aqueous medium and investigation of their catalytic and antibacterial activities. J Mol Liq [Internet]. 2014 Sep 1;197:346–52. Available from: <URL>.
  • 15. Joseph S, Mathew B. Microwave Assisted Biosynthesis of Silver Nanoparticles Using the Rhizome Extract of Alpinia galanga and Evaluation of Their Catalytic and Antimicrobial Activities. J Nanoparticles [Internet]. 2014 May 13;2014:967802. Available from: <URL>.
  • 16. Seku K, Gangapuram BR, Pejjai B, Kadimpati KK, Golla N. Microwave-assisted synthesis of silver nanoparticles and their application in catalytic, antibacterial and antioxidant activities. J Nanostructure Chem [Internet]. 2018 Jun 8;8(2):179–88. Available from: <URL>.
  • 17. Sreeram KJ, Nidhin M, Nair BU. Microwave assisted template synthesis of silver nanoparticles. Bull Mater Sci [Internet]. 2008 Dec 28;31(7):937–42. Available from: <URL>.
  • 18. Singh D, Rawat D, Isha. Microwave-assisted synthesis of silver nanoparticles from Origanum majorana and Citrus sinensis leaf and their antibacterial activity: a green chemistry approach. Bioresour Bioprocess [Internet]. 2016 Dec 16;3(1):14. Available from: <URL>.
  • 19. Chand K, Cao D, Eldin Fouad D, Hussain Shah A, Qadeer Dayo A, Zhu K, et al. Green synthesis, characterization and photocatalytic application of silver nanoparticles synthesized by various plant extracts. Arab J Chem [Internet]. 2020 Nov 1;13(11):8248–61. Available from: <URL>.
  • 20. Sorescu AA, Nuţă A, Ion RM, Ioana-Raluca ŞB. Green synthesis of silver nanoparticles using plant extracts. In: The 4th International Virtual Conference on Advanced Scientific Results. 2016. p. 188–93.
  • 21. Elia P, Zach R, Hazan S, Kolusheva S, Porat Z, Zeiri Y. Green synthesis of gold nanoparticles using plant extracts as reducing agents. Int J Nanomedicine [Internet]. 2014 Aug 20;9(1):4007–21. Available from: <URL>.
  • 22. Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv [Internet]. 2013 Mar 1;31(2):346–56. Available from: <URL>.
  • 23. Choudhary MK, Kataria J, Cameotra SS, Singh J. A facile biomimetic preparation of highly stabilized silver nanoparticles derived from seed extract of Vigna radiata and evaluation of their antibacterial activity. Appl Nanosci [Internet]. 2016 Jan 19;6(1):105–11. Available from: <URL>.
  • 24. Vazhacharickal PJ, Krishna GS. Green Synthesis of Silver, Copper and Zinc Nanoparticles from Mung bean (Vigna radiata) and Cowpea (Vigna unguiculata) Exudates and Evaluation of their Antibacterial Activity: An Overview. Int J Curr Res Acad Rev [Internet]. 2022;10(6):48–81. Available from: <URL>.
  • 25. Banerjee P, Satapathy M, Mukhopahayay A, Das P. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour Bioprocess [Internet]. 2014 Dec 24;1(1):3. Available from: <URL>.
  • 26. Lourthuraj AA, Selvam MM, Hussain MS, Abdel-Warith AWA, Younis EMI, Al-Asgah NA. Dye degradation, antimicrobial and larvicidal activity of silver nanoparticles biosynthesized from Cleistanthus collinus. Saudi J Biol Sci [Internet]. 2020 Jul 1;27(7):1753–9. Available from: <URL>.
  • 27. Bahri S, Sharma Bhatia Sushma Moitra S, Sharma N, Bhatt R, Sinha Borthakur N, Agarwal R, et al. Influence of silver nanoparticles on seedlings of Vigna radiata (L.) R.Wilczek. DU J Undergrad Res Innov [Internet]. 2016;2(1):142–8. Available from: <URL>.
  • 28. Anju TR, Parvathy S, Sruthimol S, Jomol J, Mahi M. Assessment of Seed Germination and Growth of Vigna radiata L in the Presence of Green Synthesised and chemically Synthesised Nanoparticles. Curr Trends Biotechnol Pharm [Internet]. 2022 Jun 20;16:38–46. Available from: <URL>.
  • 29. Hou D, Yousaf L, Xue Y, Hu J, Wu J, Hu X, et al. Mung Bean (Vigna radiata L.): Bioactive Polyphenols, Polysaccharides, Peptides, and Health Benefits. Nutrients [Internet]. 2019 May 31;11(6):1238. Available from: <URL>.
  • 30. Ramakrishna A, Ravishankar GA. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav [Internet]. 2011;6(11):1720–31. Available from: <URL>.
  • 31. Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita M. Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. Int J Mol Sci [Internet]. 2013 May 3;14(5):9643–84. Available from: <URL>.
  • 32. Ilyas M, Khan WA, Ali T, Ahmad N, Khan Z, Fazal H, et al. Cold Stress-induced Seed Germination and Biosynthesis of Polyphenolics Content in Medicinally Important Brassica rapa. Phytomedicine Plus [Internet]. 2022 Feb 1;2(1):100185. Available from: <URL>.
  • 33. Krishna Surendar K, Varshini S V., Deepa Sankari R, Susithra N, Kavitha S, Shankar M. Impact of Salt Stress (NaCl) on Seed Germination, Photosynthetic Pigments of Green Gram Cultivars of Co6 and Co8. Plant Gene Trait [Internet]. 2014;5(6):40–4. Available from: <URL>.
  • 34. Ghorbanpour A, Mami Y, Ashournezhad M, Abri F, Amani M. Effect of salinity and drought stress on germination of fenugreek. African J Agric Res [Internet]. 2011 Oct 26;6(24):5529–32. Available from: <URL>.
  • 35. Okçu G, Demi̇r Kaya M, Atak M. Effects of Salt and Drought Stresses on Germination and Seedling Growth of Pea (Pisum sativum L.). Turkish J Agric For [Internet]. 2005 Jan 1;29(4):237–42. Available from: <URL>.
  • 36. Theertha KP, Ashok SK, Abraham T, Revathy R, Sajini T. Exploring the antibacterial potential of green synthesized silver nanoparticle decorated on functionalized multi-walled carbon nanotube: synthesis and analysis. Chem Pap [Internet]. 2024 Feb 16;78(3):1601–11. Available from: <URL>.
  • 37. Vidyasagar, Patel RR, Singh SK, Singh M. Green synthesis of silver nanoparticles: methods, biological applications, delivery and toxicity. Mater Adv [Internet]. 2023 Apr 24;4(8):1831–49. Available from: <URL>.
  • 38. Salem SS. A mini review on green nanotechnology and its development in biological effects. Arch Microbiol [Internet]. 2023 Apr 22;205(4):128. Available from: <URL>.
  • 39. Arshad F, Naikoo GA, Hassan IU, Chava SR, El-Tanani M, Aljabali AA, et al. Bioinspired and Green Synthesis of Silver Nanoparticles for Medical Applications: A Green Perspective. Appl Biochem Biotechnol [Internet]. 2023 Sep 5;Article in Press:1–34. Available from: <URL>.
  • 40. Liaqat N, Jahan N, Khalil-ur-Rahman, Anwar T, Qureshi H. Green synthesized silver nanoparticles: Optimization, characterization, antimicrobial activity, and cytotoxicity study by hemolysis assay. Front Chem [Internet]. 2022 Aug 29;10:952006. Available from: <URL>.
  • 41. Tippayawat P, Phromviyo N, Boueroy P, Chompoosor A. Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. PeerJ [Internet]. 2016 Oct 19;4(10):e2589. Available from: <URL>.
  • 42. Vijayan R, Joseph S, Mathew B. Green synthesis of silver nanoparticles using Nervalia zeylanica leaf extract and evaluation of their antioxidant, catalytic, and antimicrobial potentials. Part Sci Technol [Internet]. 2019 Oct 3;37(7):809–19. Available from: <URL>.
  • 43. Ma Y, Dias MC, Freitas H. Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants. Front Plant Sci [Internet]. 2020 Nov 13;11(13):591911. Available from: <URL>.
  • 44. Benlioğlu B, Özkan U. Germination and Early Growth Performances of Mung Bean (Vigna radiata (L.) Wilczek) Genotypes Under Salinity Stress. Tekirdağ Ziraat Fakültesi Derg [Internet]. 2020 Sep 29;17(3):318–28. Available from: <URL>.
  • 45. Jincya M, Prasad VBR, Jeyakumara P, Senthila A, Manivannan N. Evaluation of green gram genotypes for drought tolerance by PEG (polyethylene glycol) induced drought stress at seedling stage. Legum Res - An Int J [Internet]. 2019 Sep 23;44(6):684–91. Available from: <URL>.
  • 46. Babu TN, Varaprasad D, Bindu YH, Kumari MK, Dakshayani L, Reddy MC, et al. Impact of Heavy Metals (Cr, Pb and Sn) on In Vitro Seed Germination and Seedling Growth of Green Gram (Vigna radiata (L.) R. Wilczek). Curr Trends Biotechnol Pharm [Internet]. 2014;8(2):160–5. Available from: <URL>.
  • 47. Singh D, Sharma NL. Effect of Chromium on Seed Germination and Seedling Growth of Green Garm (Phaseols aureus L) and Chickpea (Cicer arietinum L). Int J Appl Nat Sci [Internet]. 2017;6(2):37–46. Available from: <URL>.
  • 48. Parayil SP, Praseetha KA, Abhilash ES. Study on Germination and Growth of Chromium Treated Green Gram, Vigna radiata (L.). Nat Environ Pollut Technol [Internet]. 2014;13(1):221–3. Available from: <URL>.
  • 49. Sharma KR, Giri G. Quantification of Phenolic and Flavonoid Content, Antioxidant Activity, and Proximate Composition of Some Legume Seeds Grown in Nepal. Salmerón I, editor. Int J Food Sci [Internet]. 2022 Aug 29;2022:4629290. Available from: <URL>.
  • 50. Kabré J d’Arc W, Dah-Nouvlessounon D, Hama-Ba F, Agonkoun A, Guinin F, Sina H, et al. Mung Bean (Vigna radiata (L.) R. Wilczek) from Burkina Faso Used as Antidiabetic, Antioxidant and Antimicrobial Agent. Plants [Internet]. 2022 Dec 16;11(24):3556. Available from: <URL>.
  • 51. Moodley JS, Krishna SBN, Pillay K, Sershen, Govender P. Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Adv Nat Sci Nanosci Nanotechnol [Internet]. 2018 Mar 9;9(1):015011. Available from: <URL>.
  • 52. Calderón-Jiménez B, Johnson ME, Montoro Bustos AR, Murphy KE, Winchester MR, Vega Baudrit JR. Silver Nanoparticles: Technological Advances, Societal Impacts, and Metrological Challenges. Front Chem [Internet]. 2017 Feb 21;5:6. Available from: <URL>.
  • 53. Wei S, Wang Y, Tang Z, Hu J, Su R, Lin J, et al. A size-controlled green synthesis of silver nanoparticles by using the berry extract of Sea Buckthorn and their biological activities. New J Chem [Internet]. 2020 Jun 8;44(22):9304–12. Available from: <URL>.
  • 54. Ibrahim HMM. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radiat Res Appl Sci [Internet]. 2015 Jul 1;8(3):265–75. Available from: <URL>.
  • 55. Kumari R, Singh JS, Singh DP. Biogenic synthesis and spatial distribution of silver nanoparticles in the legume mungbean plant (Vigna radiata L.). Plant Physiol Biochem [Internet]. 2017 Jan 1;110:158–66. Available from: <URL>.
  • 56. Hamouda RA, Hussein MH, Abo-elmagd RA, Bawazir SS. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci Rep [Internet]. 2019 Sep 10;9(1):13071. Available from: <URL>.
  • 57. Ragamathunnisa M, Jasmine Vasantha Rani E, Padmavathy R, Radha N. Spectroscopic study on Thiourea and Thiosemicarbazide in Nonaqueous media. IOSR J Appl Phys [Internet]. 2013;4(1):5–8. Available from: <URL>.
  • 58. He Y, Wei F, Ma Z, Zhang H, Yang Q, Yao B, et al. Green synthesis of silver nanoparticles using seed extract of Alpinia katsumadai, and their antioxidant, cytotoxicity, and antibacterial activities. RSC Adv [Internet]. 2017 Aug 15;7(63):39842–51. Available from: <URL>.
  • 59. Pirtarighat S, Ghannadnia M, Baghshahi S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J Nanostructure Chem [Internet]. 2019 Mar 4;9(1):1–9. Available from: <URL>.
  • 60. Edison TNJI, Lee YR, Sethuraman MG. Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye. Spectrochim Acta Part A Mol Biomol Spectrosc [Internet]. 2016 May 15;161:122–9. Available from: <URL>.
  • 61. Hemlata, Meena PR, Singh AP, Tejavath KK. Biosynthesis of Silver Nanoparticles Using Cucumis prophetarum Aqueous Leaf Extract and Their Antibacterial and Antiproliferative Activity Against Cancer Cell Lines. ACS Omega [Internet]. 2020 Mar 17;5(10):5520–8. Available from: <URL>.
  • 62. Ashraf H, Anjum T, Riaz S, Naseem S. Microwave-Assisted Green Synthesis and Characterization of Silver Nanoparticles Using Melia azedarach for the Management of Fusarium Wilt in Tomato. Front Microbiol [Internet]. 2020 Mar 10;11:238. Available from: <URL>.
  • 63. Nazrina Camalxaman S, Md Zain Z, Amom Z, Mustakim M, Mohamed E, Sham Rambely A. In vitro Antimicrobial Activity of Vigna radiata (L) Wilzeck Extracts Against Gram Negative Enteric Bacteria. World Appl Sci J [Internet]. 2013;21(10):1490–4. Available from: <URL>.
  • 64. Burdușel AC, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E. Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview. Nanomaterials [Internet]. 2018 Aug 31;8(9):681. Available from: <URL>.
  • 65. Castillo-Henríquez L, Alfaro-Aguilar K, Ugalde-Álvarez J, Vega-Fernández L, Montes de Oca-Vásquez G, Vega-Baudrit JR. Green Synthesis of Gold and Silver Nanoparticles from Plant Extracts and Their Possible Applications as Antimicrobial Agents in the Agricultural Area. Nanomaterials [Internet]. 2020 Sep 7;10(9):1763. Available from: <URL>.
  • 66. Abou El-Nour KMM, Eftaiha A, Al-Warthan A, Ammar RAA. Synthesis and applications of silver nanoparticles. Arab J Chem [Internet]. 2010 Jul 1;3(3):135–40. Available from: <URL>.
  • 67. Zhang Z, Shen W, Xue J, Liu Y, Liu Y, Yan P, et al. Recent advances in synthetic methods and applications of silver nanostructures. Nanoscale Res Lett [Internet]. 2018 Dec 18;13(1):54. Available from: <URL>.
  • 68. Siddiqi KS, Husen A, Rao RAK. A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnology [Internet]. 2018 Dec 16;16(1):14. Available from: <URL>.
  • 69. Liao C, Li Y, Tjong S. Bactericidal and Cytotoxic Properties of Silver Nanoparticles. Int J Mol Sci [Internet]. 2019 Jan 21;20(2):449. Available from: <URL>.
  • 70. Vega-Baudrit J, Gamboa SM, Rojas ER, Martinez VV. Synthesis and characterization of silver nanoparticles and their application as an antibacterial agent. Int J Biosens Bioelectron [Internet]. 2019;5(5):166–73. Available from: <URL>.
  • 71. Garibo D, Borbón-Nuñez HA, de León JND, García Mendoza E, Estrada I, Toledano-Magaña Y, et al. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Sci Rep [Internet]. 2020 Jul 30;10(1):12805. Available from: <URL>.
Year 2024, Volume: 11 Issue: 3, 981 - 994, 30.08.2024
https://doi.org/10.18596/jotcsa.1335103

Abstract

References

  • 1. Hasan KMF, Xiaoyi L, Shaoqin Z, Horváth PG, Bak M, Bejó L, et al. Functional silver nanoparticles synthesis from sustainable point of view: 2000 to 2023 ‒ A review on game changing materials. Heliyon [Internet]. 2022 Dec 1;8(12):e12322. Available from: <URL>.
  • 2. Revathy R, Joseph J, Augustine C, Sajini T, Mathew B. Synthesis and catalytic applications of silver nanoparticles: a sustainable chemical approach using indigenous reducing and capping agents from Hyptis capitata. Environ Sci Adv [Internet]. 2022 Sep 27;1(4):491–505. Available from: <URL>.
  • 3. Syafiuddin A, Salmiati, Salim MR, Beng Hong Kueh A, Hadibarata T, Nur H. A Review of Silver Nanoparticles: Research Trends, Global Consumption, Synthesis, Properties, and Future Challenges. J Chinese Chem Soc [Internet]. 2017 Jul 8;64(7):732–56. Available from: <URL>.
  • 4. Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int J Nanomedicine [Internet]. 2020 Apr;Volume 15:2555–62. Available from: <URL>.
  • 5. Khan A, Ahmad N, Fazal H, Ali M, Akbar F, Khan I, et al. Biogenic synthesis of silver nanoparticles using Rubus fruticosus extract and their antibacterial efficacy against Erwinia caratovora and Ralstonia solanacearum phytopathogens. RSC Adv [Internet]. 2024 Feb 14;14(9):5754–63. Available from: <URL>.
  • 6. Nair GM, Sajini T, Mathew B. Advanced green approaches for metal and metal oxide nanoparticles synthesis and their environmental applications. Talanta Open [Internet]. 2022 Aug 1;5:100080. Available from: <URL>.
  • 7. Raut S, Bhatavadekar A, Chougule R, Lekhak U. Silver nanoparticles synthesis from Crinum moorei: Optimization, characterization, kinetics and catalytic application. South African J Bot [Internet]. 2024 Feb 1;165:494–504. Available from: <URL>.
  • 8. Suriati G, Mariatti M, Azizan A. Synthesis of Silver Nanoparticles by Chemical Reduction Method: Effect of Reducing Agent and Surfactant Concentration. Int J Automot Mech Eng [Internet]. 2014 Dec 30;10(1):1920–7. Available from: <URL>.
  • 9. Ogundare SA, Adesetan TO, Muungani G, Moodley V, Amaku JF, Atewolara-Odule OC, et al. Catalytic degradation of methylene blue dye and antibacterial activity of biosynthesized silver nanoparticles using Peltophorum pterocarpum (DC.) leaves. Environ Sci Adv [Internet]. 2023 Feb 6;2(2):247–56. Available from: <URL>.
  • 10. Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv [Internet]. 2019 Jan 21;9(5):2673–702. Available from: <URL>.
  • 11. Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res [Internet]. 2016 Jan 1;7(1):17–28. Available from: <URL>.
  • 12. Patra JK, Baek KH. Green Nanobiotechnology: Factors Affecting Synthesis and Characterization Techniques. J Nanomater [Internet]. 2014 Jan 1;2014(1):417305. Available from: <URL>.
  • 13. Saha S, Malik MM, Qureshi MS. Microwave Synthesis of Silver Nanoparticles. Nano Hybrids [Internet]. 2013 May;4:99–112. Available from: <URL>.
  • 14. Joseph S, Mathew B. Microwave-assisted facile synthesis of silver nanoparticles in aqueous medium and investigation of their catalytic and antibacterial activities. J Mol Liq [Internet]. 2014 Sep 1;197:346–52. Available from: <URL>.
  • 15. Joseph S, Mathew B. Microwave Assisted Biosynthesis of Silver Nanoparticles Using the Rhizome Extract of Alpinia galanga and Evaluation of Their Catalytic and Antimicrobial Activities. J Nanoparticles [Internet]. 2014 May 13;2014:967802. Available from: <URL>.
  • 16. Seku K, Gangapuram BR, Pejjai B, Kadimpati KK, Golla N. Microwave-assisted synthesis of silver nanoparticles and their application in catalytic, antibacterial and antioxidant activities. J Nanostructure Chem [Internet]. 2018 Jun 8;8(2):179–88. Available from: <URL>.
  • 17. Sreeram KJ, Nidhin M, Nair BU. Microwave assisted template synthesis of silver nanoparticles. Bull Mater Sci [Internet]. 2008 Dec 28;31(7):937–42. Available from: <URL>.
  • 18. Singh D, Rawat D, Isha. Microwave-assisted synthesis of silver nanoparticles from Origanum majorana and Citrus sinensis leaf and their antibacterial activity: a green chemistry approach. Bioresour Bioprocess [Internet]. 2016 Dec 16;3(1):14. Available from: <URL>.
  • 19. Chand K, Cao D, Eldin Fouad D, Hussain Shah A, Qadeer Dayo A, Zhu K, et al. Green synthesis, characterization and photocatalytic application of silver nanoparticles synthesized by various plant extracts. Arab J Chem [Internet]. 2020 Nov 1;13(11):8248–61. Available from: <URL>.
  • 20. Sorescu AA, Nuţă A, Ion RM, Ioana-Raluca ŞB. Green synthesis of silver nanoparticles using plant extracts. In: The 4th International Virtual Conference on Advanced Scientific Results. 2016. p. 188–93.
  • 21. Elia P, Zach R, Hazan S, Kolusheva S, Porat Z, Zeiri Y. Green synthesis of gold nanoparticles using plant extracts as reducing agents. Int J Nanomedicine [Internet]. 2014 Aug 20;9(1):4007–21. Available from: <URL>.
  • 22. Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv [Internet]. 2013 Mar 1;31(2):346–56. Available from: <URL>.
  • 23. Choudhary MK, Kataria J, Cameotra SS, Singh J. A facile biomimetic preparation of highly stabilized silver nanoparticles derived from seed extract of Vigna radiata and evaluation of their antibacterial activity. Appl Nanosci [Internet]. 2016 Jan 19;6(1):105–11. Available from: <URL>.
  • 24. Vazhacharickal PJ, Krishna GS. Green Synthesis of Silver, Copper and Zinc Nanoparticles from Mung bean (Vigna radiata) and Cowpea (Vigna unguiculata) Exudates and Evaluation of their Antibacterial Activity: An Overview. Int J Curr Res Acad Rev [Internet]. 2022;10(6):48–81. Available from: <URL>.
  • 25. Banerjee P, Satapathy M, Mukhopahayay A, Das P. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour Bioprocess [Internet]. 2014 Dec 24;1(1):3. Available from: <URL>.
  • 26. Lourthuraj AA, Selvam MM, Hussain MS, Abdel-Warith AWA, Younis EMI, Al-Asgah NA. Dye degradation, antimicrobial and larvicidal activity of silver nanoparticles biosynthesized from Cleistanthus collinus. Saudi J Biol Sci [Internet]. 2020 Jul 1;27(7):1753–9. Available from: <URL>.
  • 27. Bahri S, Sharma Bhatia Sushma Moitra S, Sharma N, Bhatt R, Sinha Borthakur N, Agarwal R, et al. Influence of silver nanoparticles on seedlings of Vigna radiata (L.) R.Wilczek. DU J Undergrad Res Innov [Internet]. 2016;2(1):142–8. Available from: <URL>.
  • 28. Anju TR, Parvathy S, Sruthimol S, Jomol J, Mahi M. Assessment of Seed Germination and Growth of Vigna radiata L in the Presence of Green Synthesised and chemically Synthesised Nanoparticles. Curr Trends Biotechnol Pharm [Internet]. 2022 Jun 20;16:38–46. Available from: <URL>.
  • 29. Hou D, Yousaf L, Xue Y, Hu J, Wu J, Hu X, et al. Mung Bean (Vigna radiata L.): Bioactive Polyphenols, Polysaccharides, Peptides, and Health Benefits. Nutrients [Internet]. 2019 May 31;11(6):1238. Available from: <URL>.
  • 30. Ramakrishna A, Ravishankar GA. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav [Internet]. 2011;6(11):1720–31. Available from: <URL>.
  • 31. Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita M. Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. Int J Mol Sci [Internet]. 2013 May 3;14(5):9643–84. Available from: <URL>.
  • 32. Ilyas M, Khan WA, Ali T, Ahmad N, Khan Z, Fazal H, et al. Cold Stress-induced Seed Germination and Biosynthesis of Polyphenolics Content in Medicinally Important Brassica rapa. Phytomedicine Plus [Internet]. 2022 Feb 1;2(1):100185. Available from: <URL>.
  • 33. Krishna Surendar K, Varshini S V., Deepa Sankari R, Susithra N, Kavitha S, Shankar M. Impact of Salt Stress (NaCl) on Seed Germination, Photosynthetic Pigments of Green Gram Cultivars of Co6 and Co8. Plant Gene Trait [Internet]. 2014;5(6):40–4. Available from: <URL>.
  • 34. Ghorbanpour A, Mami Y, Ashournezhad M, Abri F, Amani M. Effect of salinity and drought stress on germination of fenugreek. African J Agric Res [Internet]. 2011 Oct 26;6(24):5529–32. Available from: <URL>.
  • 35. Okçu G, Demi̇r Kaya M, Atak M. Effects of Salt and Drought Stresses on Germination and Seedling Growth of Pea (Pisum sativum L.). Turkish J Agric For [Internet]. 2005 Jan 1;29(4):237–42. Available from: <URL>.
  • 36. Theertha KP, Ashok SK, Abraham T, Revathy R, Sajini T. Exploring the antibacterial potential of green synthesized silver nanoparticle decorated on functionalized multi-walled carbon nanotube: synthesis and analysis. Chem Pap [Internet]. 2024 Feb 16;78(3):1601–11. Available from: <URL>.
  • 37. Vidyasagar, Patel RR, Singh SK, Singh M. Green synthesis of silver nanoparticles: methods, biological applications, delivery and toxicity. Mater Adv [Internet]. 2023 Apr 24;4(8):1831–49. Available from: <URL>.
  • 38. Salem SS. A mini review on green nanotechnology and its development in biological effects. Arch Microbiol [Internet]. 2023 Apr 22;205(4):128. Available from: <URL>.
  • 39. Arshad F, Naikoo GA, Hassan IU, Chava SR, El-Tanani M, Aljabali AA, et al. Bioinspired and Green Synthesis of Silver Nanoparticles for Medical Applications: A Green Perspective. Appl Biochem Biotechnol [Internet]. 2023 Sep 5;Article in Press:1–34. Available from: <URL>.
  • 40. Liaqat N, Jahan N, Khalil-ur-Rahman, Anwar T, Qureshi H. Green synthesized silver nanoparticles: Optimization, characterization, antimicrobial activity, and cytotoxicity study by hemolysis assay. Front Chem [Internet]. 2022 Aug 29;10:952006. Available from: <URL>.
  • 41. Tippayawat P, Phromviyo N, Boueroy P, Chompoosor A. Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. PeerJ [Internet]. 2016 Oct 19;4(10):e2589. Available from: <URL>.
  • 42. Vijayan R, Joseph S, Mathew B. Green synthesis of silver nanoparticles using Nervalia zeylanica leaf extract and evaluation of their antioxidant, catalytic, and antimicrobial potentials. Part Sci Technol [Internet]. 2019 Oct 3;37(7):809–19. Available from: <URL>.
  • 43. Ma Y, Dias MC, Freitas H. Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants. Front Plant Sci [Internet]. 2020 Nov 13;11(13):591911. Available from: <URL>.
  • 44. Benlioğlu B, Özkan U. Germination and Early Growth Performances of Mung Bean (Vigna radiata (L.) Wilczek) Genotypes Under Salinity Stress. Tekirdağ Ziraat Fakültesi Derg [Internet]. 2020 Sep 29;17(3):318–28. Available from: <URL>.
  • 45. Jincya M, Prasad VBR, Jeyakumara P, Senthila A, Manivannan N. Evaluation of green gram genotypes for drought tolerance by PEG (polyethylene glycol) induced drought stress at seedling stage. Legum Res - An Int J [Internet]. 2019 Sep 23;44(6):684–91. Available from: <URL>.
  • 46. Babu TN, Varaprasad D, Bindu YH, Kumari MK, Dakshayani L, Reddy MC, et al. Impact of Heavy Metals (Cr, Pb and Sn) on In Vitro Seed Germination and Seedling Growth of Green Gram (Vigna radiata (L.) R. Wilczek). Curr Trends Biotechnol Pharm [Internet]. 2014;8(2):160–5. Available from: <URL>.
  • 47. Singh D, Sharma NL. Effect of Chromium on Seed Germination and Seedling Growth of Green Garm (Phaseols aureus L) and Chickpea (Cicer arietinum L). Int J Appl Nat Sci [Internet]. 2017;6(2):37–46. Available from: <URL>.
  • 48. Parayil SP, Praseetha KA, Abhilash ES. Study on Germination and Growth of Chromium Treated Green Gram, Vigna radiata (L.). Nat Environ Pollut Technol [Internet]. 2014;13(1):221–3. Available from: <URL>.
  • 49. Sharma KR, Giri G. Quantification of Phenolic and Flavonoid Content, Antioxidant Activity, and Proximate Composition of Some Legume Seeds Grown in Nepal. Salmerón I, editor. Int J Food Sci [Internet]. 2022 Aug 29;2022:4629290. Available from: <URL>.
  • 50. Kabré J d’Arc W, Dah-Nouvlessounon D, Hama-Ba F, Agonkoun A, Guinin F, Sina H, et al. Mung Bean (Vigna radiata (L.) R. Wilczek) from Burkina Faso Used as Antidiabetic, Antioxidant and Antimicrobial Agent. Plants [Internet]. 2022 Dec 16;11(24):3556. Available from: <URL>.
  • 51. Moodley JS, Krishna SBN, Pillay K, Sershen, Govender P. Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Adv Nat Sci Nanosci Nanotechnol [Internet]. 2018 Mar 9;9(1):015011. Available from: <URL>.
  • 52. Calderón-Jiménez B, Johnson ME, Montoro Bustos AR, Murphy KE, Winchester MR, Vega Baudrit JR. Silver Nanoparticles: Technological Advances, Societal Impacts, and Metrological Challenges. Front Chem [Internet]. 2017 Feb 21;5:6. Available from: <URL>.
  • 53. Wei S, Wang Y, Tang Z, Hu J, Su R, Lin J, et al. A size-controlled green synthesis of silver nanoparticles by using the berry extract of Sea Buckthorn and their biological activities. New J Chem [Internet]. 2020 Jun 8;44(22):9304–12. Available from: <URL>.
  • 54. Ibrahim HMM. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radiat Res Appl Sci [Internet]. 2015 Jul 1;8(3):265–75. Available from: <URL>.
  • 55. Kumari R, Singh JS, Singh DP. Biogenic synthesis and spatial distribution of silver nanoparticles in the legume mungbean plant (Vigna radiata L.). Plant Physiol Biochem [Internet]. 2017 Jan 1;110:158–66. Available from: <URL>.
  • 56. Hamouda RA, Hussein MH, Abo-elmagd RA, Bawazir SS. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci Rep [Internet]. 2019 Sep 10;9(1):13071. Available from: <URL>.
  • 57. Ragamathunnisa M, Jasmine Vasantha Rani E, Padmavathy R, Radha N. Spectroscopic study on Thiourea and Thiosemicarbazide in Nonaqueous media. IOSR J Appl Phys [Internet]. 2013;4(1):5–8. Available from: <URL>.
  • 58. He Y, Wei F, Ma Z, Zhang H, Yang Q, Yao B, et al. Green synthesis of silver nanoparticles using seed extract of Alpinia katsumadai, and their antioxidant, cytotoxicity, and antibacterial activities. RSC Adv [Internet]. 2017 Aug 15;7(63):39842–51. Available from: <URL>.
  • 59. Pirtarighat S, Ghannadnia M, Baghshahi S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J Nanostructure Chem [Internet]. 2019 Mar 4;9(1):1–9. Available from: <URL>.
  • 60. Edison TNJI, Lee YR, Sethuraman MG. Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye. Spectrochim Acta Part A Mol Biomol Spectrosc [Internet]. 2016 May 15;161:122–9. Available from: <URL>.
  • 61. Hemlata, Meena PR, Singh AP, Tejavath KK. Biosynthesis of Silver Nanoparticles Using Cucumis prophetarum Aqueous Leaf Extract and Their Antibacterial and Antiproliferative Activity Against Cancer Cell Lines. ACS Omega [Internet]. 2020 Mar 17;5(10):5520–8. Available from: <URL>.
  • 62. Ashraf H, Anjum T, Riaz S, Naseem S. Microwave-Assisted Green Synthesis and Characterization of Silver Nanoparticles Using Melia azedarach for the Management of Fusarium Wilt in Tomato. Front Microbiol [Internet]. 2020 Mar 10;11:238. Available from: <URL>.
  • 63. Nazrina Camalxaman S, Md Zain Z, Amom Z, Mustakim M, Mohamed E, Sham Rambely A. In vitro Antimicrobial Activity of Vigna radiata (L) Wilzeck Extracts Against Gram Negative Enteric Bacteria. World Appl Sci J [Internet]. 2013;21(10):1490–4. Available from: <URL>.
  • 64. Burdușel AC, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E. Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview. Nanomaterials [Internet]. 2018 Aug 31;8(9):681. Available from: <URL>.
  • 65. Castillo-Henríquez L, Alfaro-Aguilar K, Ugalde-Álvarez J, Vega-Fernández L, Montes de Oca-Vásquez G, Vega-Baudrit JR. Green Synthesis of Gold and Silver Nanoparticles from Plant Extracts and Their Possible Applications as Antimicrobial Agents in the Agricultural Area. Nanomaterials [Internet]. 2020 Sep 7;10(9):1763. Available from: <URL>.
  • 66. Abou El-Nour KMM, Eftaiha A, Al-Warthan A, Ammar RAA. Synthesis and applications of silver nanoparticles. Arab J Chem [Internet]. 2010 Jul 1;3(3):135–40. Available from: <URL>.
  • 67. Zhang Z, Shen W, Xue J, Liu Y, Liu Y, Yan P, et al. Recent advances in synthetic methods and applications of silver nanostructures. Nanoscale Res Lett [Internet]. 2018 Dec 18;13(1):54. Available from: <URL>.
  • 68. Siddiqi KS, Husen A, Rao RAK. A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnology [Internet]. 2018 Dec 16;16(1):14. Available from: <URL>.
  • 69. Liao C, Li Y, Tjong S. Bactericidal and Cytotoxic Properties of Silver Nanoparticles. Int J Mol Sci [Internet]. 2019 Jan 21;20(2):449. Available from: <URL>.
  • 70. Vega-Baudrit J, Gamboa SM, Rojas ER, Martinez VV. Synthesis and characterization of silver nanoparticles and their application as an antibacterial agent. Int J Biosens Bioelectron [Internet]. 2019;5(5):166–73. Available from: <URL>.
  • 71. Garibo D, Borbón-Nuñez HA, de León JND, García Mendoza E, Estrada I, Toledano-Magaña Y, et al. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Sci Rep [Internet]. 2020 Jul 30;10(1):12805. Available from: <URL>.
There are 71 citations in total.

Details

Primary Language English
Subjects Natural Products and Bioactive Compounds
Journal Section RESEARCH ARTICLES
Authors

Tissamol Abraham This is me

K. P. Theertha This is me

Sachin K. Ashok This is me

Jebin Joseph This is me

T Sajini 0000-0002-1819-8153

Early Pub Date June 22, 2024
Publication Date August 30, 2024
Submission Date July 31, 2023
Acceptance Date May 7, 2024
Published in Issue Year 2024 Volume: 11 Issue: 3

Cite

Vancouver Abraham T, Theertha KP, Ashok SK, Joseph J, Sajini T. Exploring the Antibacterial Efficacy of Silver Nanoparticles Synthesized through Abiotic Stress-Induced Germinated Seeds of Vigna radiata: A Comparative Analysis. JOTCSA. 2024;11(3):981-94.