Research Article
BibTex RIS Cite
Year 2024, Volume: 11 Issue: 3, 1111 - 1124, 30.08.2024
https://doi.org/10.18596/jotcsa.1453941

Abstract

References

  • 1. Feng W Bin, Zhu XL, Liu XQ, Fu M Sen, Ma X, Jia SJ, et al. Relaxor nature in Ba5RZr3Nb7O30 (R= La, Nd, Sm) tetragonal tungsten bronze new system. J Am Ceram Soc [Internet]. 2018 Apr 24;101(4):1623–31. Available from: <URL>.
  • 2. Zhu XL, Liu XQ, Chen XM. Crystal Structure and Dielectric Properties of Sr5RTi3Nb7O30 (R=La, Nd, Sm, and Eu) Tungsten Bronze Ceramics. J Am Ceram Soc [Internet]. 2011 Jun;94(6):1829–36. Available from: <URL>.
  • 3. Roulland F, Josse M, Castel E, Maglione M. Influence of ceramic process and Eu content on the composite multiferroic properties of the Ba6−2xLn2xFe1+xNb9−xO30 TTB system. Solid State Sci [Internet]. 2009 Sep;11(9):1709–16. Available from: <URL>.
  • 4. Fang L, Peng X, Li C, Hu C, Wu B, Zhou H. Dielectric Properties of Ba4Sm2Fe2M8O30 (M=Nb, Ta) with Tetragonal Bronze Structure. J Am Ceram Soc [Internet]. 2010 Sep 12;93(9):2430–3. Available from: <URL>.
  • 5. Bendahhou A, Marchet P, El-Houssaine A, El Barkany S, Abou-Salama M. Relationship between structural and dielectric properties of Zn-substituted Ba5CaTi2−xZnxNb8O30 tetragonal tungsten bronze. CrystEngComm [Internet]. 2021;23(1):163–73. Available from: <URL>.
  • 6. Botella P, Solsona B, García-González E, González-Calbet JM, López Nieto JM. The hydrothermal synthesis of tetragonal tungsten bronze-based catalysts for the selective oxidation of hydrocarbons. Chem Commun [Internet]. 2007;(47):5040–2. Available from: <URL>.
  • 7. Jindal S, Vasishth A, Devi S, Anand G. A review on tungsten bronze ferroelectric ceramics as electrically tunable devices. Integr Ferroelectr [Internet]. 2018 Jan 2;186(1):1–9. Available from: <URL>.
  • 8. Shimizu K, Kato H, Kobayashi M, Kakihana M. Synthesis and photocatalytic properties of tetragonal tungsten bronze type oxynitrides. Appl Catal B Environ [Internet]. 2017 Jun;206:444–8. Available from: <URL>.
  • 9. İlhan M, Güleryüz LF. Cathodoluminescence and photoluminescence of BaTa2O6:Sm3+ phosphor depending on the sintering temperature. Chem Pap [Internet]. 2022 Nov;76(11):6963–74. Available from: <URL>.
  • 10. Ekmekçi MK, İlhan M, Başak AS, Deniz S. Structural and Luminescence Properties of Sm3+ Doped TTB -Type BaTa2O6 Ceramic Phosphors. J Fluoresc [Internet]. 2015 Nov 26;25(6):1757–62. Available from: <URL>.
  • 11. İlhan M, Keskin İÇ, Gültekin S. Assessing of Photoluminescence and Thermoluminescence Properties of Dy3+ Doped White Light Emitter TTB-Lead Metatantalate Phosphor. J Electron Mater [Internet]. 2020 Apr 17;49(4):2436–49. Available from: <URL>.
  • 12. İlhan M, Keskin İÇ. Analysis of Judd–Ofelt parameters and radioluminescence results of SrNb2O6 :Dy3+ phosphors synthesized via molten salt method. Phys Chem Chem Phys [Internet]. 2020;22(35):19769–78. Available from: <URL>.
  • 13. Ekmekçi MK, İlhan M, Güleryüz LF, Mergen A. Study on molten salt synthesis, microstructural determination and white light emitting properties of CoNb2O6:Dy3+ phosphor. Optik (Stuttg) [Internet]. 2017 Jan;128:26–33. Available from: <URL>.
  • 14. Tressaud A. Structural architecture and physical properties of some inorganic fluoride series: a review. J Fluor Chem [Internet]. 2011 Oct;132(10):651–9. Available from: <URL>.
  • 15. İlhan M, Ekmekçi MK, Mergen A, Yaman C. Photoluminescence characterization and heat treatment effect on luminescence behavior of BaTa2O6 :Dy3+ phosphor. Int J Appl Ceram Technol [Internet]. 2017 Nov 13;14(6):1134–43. Available from: <URL>.
  • 16. İlhan M, Keskin İÇ. Evaluation of the Structural, Near-Infrared Luminescence, and Radioluminescence Properties of Nd3+ Activated TTB-Lead Metatantalate Phosphors. J Turkish Chem Soc Sect A Chem [Internet]. 2023 May 31;10(2):453–64. Available from: <URL>.
  • 17. Xu T, Zhao X, Zhu Y. Synthesis of Hexagonal BaTa2O6 Nanorods and Influence of Defects on the Photocatalytic Activity. J Phys Chem B [Internet]. 2006 Dec 1;110(51):25825–32. Available from: <URL>.
  • 18. Layden GK. Polymorphism of BaTa2O6. Mater Res Bull [Internet]. 1967 May;2(5):533–9. Available from: <URL>.
  • 19. Keskin İÇ, İlhan M. Thermoluminescence Kinetic Parameters and Radioluminescence of RE3+ (RE = Pr, Sm, Tb, Ho, Er)-Doped Barium Tantalate Phosphors. J Electron Mater [Internet]. 2023 Aug 31;52(8):5614–30. Available from: <URL>.
  • 20. Layden GK. Dielectric and structure studies of hexagonal BaTa2O6. Mater Res Bull [Internet]. 1968 Apr;3(4):349–59. Available from: <URL>.
  • 21. İlhan M, Mergen A, Sarıoğlu C, Yaman C. Heat capacity measurements on BaTa2O6 and derivation of its thermodynamic functions. J Therm Anal Calorim [Internet]. 2017 May 29;128(2):707–11. Available from: <URL>.
  • 22. Kato H, Kudo A. New tantalate photocatalysts for water decomposition into H2 and O2. Chem Phys Lett [Internet]. 1998 Oct;295(5–6):487–92. Available from: <URL>.
  • 23. İlhan M, Güleryüz LF. Boron doping effect on the structural, spectral properties and charge transfer mechanism of orthorhombic tungsten bronze β-SrTa2O6 :Eu3+ phosphor. RSC Adv [Internet]. 2023;13(18):12375–85. Available from: <URL>.
  • 24. İlhan M, Güleryüz LF, Katı Mİ. Exploring the effect of boron on the grain morphology change and spectral properties of Eu3+ activated barium tantalate phosphor. RSC Adv [Internet]. 2024;14(4):2687–96. Available from: <URL>.
  • 25. Başak AS, Ekmekçi MK, Erdem M, Ilhan M, Mergen A. Investigation of Boron-doping Effect on Photoluminescence Properties of CdNb2O6: Eu3+ Phosphors. J Fluoresc [Internet]. 2016 Mar 11;26(2):719–24. Available from: <URL>.
  • 26. İlhan M, Ekmekçi MK, Güleryüz LF. Effect of boron incorporation on the structural, morphological, and spectral properties of CdNb2O6:Dy3+ phosphor synthesized by molten salt process. Mater Sci Eng B [Internet]. 2023 Dec;298:116858. Available from: <URL>.
  • 27. Zhang X, Wang B, Huang W, Chen Y, Wang G, Zeng L, et al. Synergistic Boron Doping of Semiconductor and Dielectric Layers for High-Performance Metal Oxide Transistors: Interplay of Experiment and Theory. J Am Chem Soc [Internet]. 2018 Oct 3;140(39):12501–10. Available from: <URL>.
  • 28. Mazumder R, Seal A, Sen A, Maiti HS. Effect of Boron Addition on the Dielectric Properties of Giant Dielectric CaCu3Ti4O12. Ferroelectrics [Internet]. 2005 Oct;326(1):103–8. Available from: <URL>.
  • 29. Li Z, Zhou W, Su X, Luo F, Huang Y, Wang C. Effect of boron doping on microwave dielectric properties of SiC powder synthesized by combustion synthesis. J Alloys Compd [Internet]. 2011 Jan;509(3):973–6. Available from: <URL>.
  • 30. Cullity BD, Stock SR. Elements of X-ray Diffraction. USA: Prentice Hall; 2001.
  • 31. Gardner J, Morrison FD. A-site size effect in a family of unfilled ferroelectric tetragonal tungsten bronzes: Ba4R0.67Nb10O30 (R= La, Nd, Sm, Gd, Dy and Y). Dalt Trans [Internet]. 2014;43(30):11687–95. Available from: <URL>.
  • 32. Polyxeni V, Nikolaos D P, Nikos S, Sotirios X, Evangelos H. Temperature effects on grain growth phenomena and magnetic properties of silicon steels used in marine applications. Ann Mar Sci [Internet]. 2023 Jun 21;7(1):40–4. Available from: <URL>.
  • 33. Güleryüz LF, İlhan M. Structural, morphological, spectral properties and high quantum efficiency of Eu3+, B3+ co-activated double perovskite Ba2GdMO6 (M= Nb, Ta) phosphors. Mater Sci Eng B [Internet]. 2024 Jun;304:117373. Available from: <URL>.
  • 34. Mahapatro J, Agrawal S. Effect of Eu3+ ions on electrical and dielectric properties of barium hexaferrites prepared by solution combustion method. Ceram Int [Internet]. 2021 Jul;47(14):20529–43. Available from: <URL>.
  • 35. Evangeline T G, Annamalai A R, Ctibor P. Effect of Europium Addition on the Microstructure and Dielectric Properties of CCTO Ceramic Prepared Using Conventional and Microwave Sintering. Molecules [Internet]. 2023 Feb 8;28(4):1649. Available from: <URL>.
  • 36. Esha IN, Al-Amin M, Toma FTZ, Hossain E, Khan MNI, Maria KH. Synthesis and analysis of the influence of Eu3+ on the structural, ferromagnetic, dielectric and conductive characteristics of Ni0.4Zn0.45Cu0.15Fe(2-x)EuxO4 composites using conventional double sintering ceramic method. J Ceram Process Res [Internet]. 2019 Oct;20(5):530–9. Available from: <URL>.
  • 37. Shah MR, Akther Hossain AKM. Structural and dielectric properties of La substituted polycrystalline Ca(Ti0.5Fe0.5)O3. Mater Sci [Internet]. 2013 Jan 25;31(1):80–7. Available from: <URL>.
  • 38. Kadam AA, Shinde SS, Yadav SP, Patil PS, Rajpure KY. Structural, morphological, electrical and magnetic properties of Dy doped Ni–Co substitutional spinel ferrite. J Magn Magn Mater [Internet]. 2013 Mar;329:59–64. Available from: <URL>.
  • 39. Tan YQ, Yu Y, Hao YM, Dong SY, Yang YW. Structure and dielectric properties of Ba5NdCu1.5Nb8.5O30−δ tungsten bronze ceramics. Mater Res Bull [Internet]. 2013 May;48(5):1934–8. Available from: <URL>.
  • 40. Rayssi C, El.Kossi S, Dhahri J, Khirouni K. Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1−xCo4x/3O3 (0≤x≤0.1). RSC Adv [Internet]. 2018;8(31):17139–50. Available from: <URL>.
  • 41. Wagner KW. Zur Theorie der unvollkommenen Dielektrika. Ann Phys [Internet]. 1913 Jan 14;345(5):817–55. Available from: <URL>.
  • 42. Maxwell JC. A treatise on electricity and magnetism. London: Caleredon press, Oxford University; 1873.
  • 43. Saengvong P, Chanlek N, Srepusharawoot P, Harnchana V, Thongbai P. Enhancing giant dielectric properties of Ta5+ ‐doped Na1/2Y1/2Cu3Ti4O12 ceramics by engineering grain and grain boundary. J Am Ceram Soc [Internet]. 2022 May 15;105(5):3447–55. Available from: <URL>.
  • 44. Karmakar S, Mohanty HS, Behera D. Exploration of alternating current conduction mechanism and dielectric relaxation with Maxwell–Wagner effect in NiO–CdO–Gd2O3 nanocomposites. Eur Phys J Plus [Internet]. 2021 Oct 15;136(10):1038. Available from: <URL>.
  • 45. Samet M, Kallel A, Serghei A. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of composite materials: Scaling laws and applications. J Compos Mater [Internet]. 2022 Aug 28;56(20):3197–217. Available from: <URL>.
  • 46. Mach TP, Ding Y, Binder JR. Impact of Particle and Crystallite Size of Ba0.6Sr0.4TiO3 on the Dielectric Properties of BST/P(VDF-TrFE) Composites in Fully Printed Varactors. Polymers (Basel) [Internet]. 2022 Nov 19;14(22):5027. Available from: <URL>.
  • 47. Kurnia, Heriansyah, Suharyadi E. Study on The Influence of Crystal Structure and Grain Size on Dielectric Properties of Manganese Ferrite (MnFe2O4) Nanoparticles. IOP Conf Ser Mater Sci Eng [Internet]. 2017 May;202:012046. Available from: <URL>.
  • 48. Chi EO, Gandini A, Ok KM, Zhang L, Halasyamani PS. Syntheses, Structures, Second-Harmonic Generating, and Ferroelectric Properties of Tungsten Bronzes:  A6M2M‘8O30 (A= Sr2+, Ba2+, or Pb2+ ; M= Ti4+, Zr4+, or Hf4+ ; M‘= Nb5+ or Ta5+). Chem Mater [Internet]. 2004 Sep 1;16(19):3616–22. Available from: <URL>.
  • 49. Rotaru A, Arnold DC, Daoud-Aladine A, Morrison FD. Origin and stability of the dipolar response in a family of tetragonal tungsten bronze relaxors. Phys Rev B [Internet]. 2011 May 31;83(18):184302. Available from: <URL>.
  • 50. Neurgaonkar RR, Nelson JG, Oliver JR. Ferroelectric properties of the tungsten bronze M2+6M4+2Nb8O30 solid solution systems. Mater Res Bull [Internet]. 1992 Jun;27(6):677–84. Available from: <URL>.
  • 51. Stennett MC, Reaney IM, Miles GC, Woodward DI, West AR, Kirk CA, et al. Dielectric and structural studies of Ba2MTi2Nb3O15 (BMTNO15, M=Bi3+, La3+, Nd3+, Sm3+, Gd3+) tetragonal tungsten bronze-structured ceramics. J Appl Phys [Internet]. 2007 May 15;101(10):104114. Available from: <URL>.
  • 52. Li G, Cheng L, Liao F, Tian S, Jing X, Lin J. Luminescent and structural properties of the series Ba6−xEuxTi2+xTa8−xO30 and Ba4−yKyEu2Ti4−yTa6+yO30. J Solid State Chem [Internet]. 2004 Mar;177(3):875–82. Available from: <URL>.
  • 53. Sati PC, Kumar M, Chhoker S, Jewariya M. Influence of Eu substitution on structural, magnetic, optical and dielectric properties of BiFeO3 multiferroic ceramics. Ceram Int [Internet]. 2015 Mar;41(2):2389–98. Available from: <URL>.
  • 54. Ganguly P, Jha AK. Enhanced characteristics of Ba5SmTi3Nb7O30 ferroelectric nanocrystalline ceramic prepared by mechanical activation process: A comparative study. Mater Res Bull [Internet]. 2011 May;46(5):692–7. Available from: <URL>.
  • 55. Kumar P, Kar M. Effect of structural transition on magnetic and optical properties of Ca and Ti co-substituted BiFeO3 ceramics. J Alloys Compd [Internet]. 2014 Jan;584:566–72. Available from: <URL>.
  • 56. Chakrabarti A, Bera J. Effect of La-substitution on the structure and dielectric properties of BaBi4Ti4O15 ceramics. J Alloys Compd [Internet]. 2010 Sep;505(2):668–74. Available from: <URL>.
  • 57. Fei Liu S, Jun Wu Y, Li J, Ming Chen X. Effects of oxygen vacancies on dielectric, electrical, and ferroelectric properties of Ba4Nd2Fe2Nb8O30 ceramics. Appl Phys Lett [Internet]. 2014 Feb 24;104(8):082912. Available from: <URL>.
  • 58. Kendall KR, Thomas JK, Loye HC. Synthesis and ionic conductivity of a new series of modified Aurivillius phases. Chem Mater [Internet]. 1995 Jan 1;7(1):50–7. Available from: <URL>.
  • 59. İlhan M, Ekmekci MK, Esmer K. Structural and dielectric properties of Eu3+,B3+ co-doped CoNb2O6 ceramic. J Turkish Chem Soc Sect A Chem [Internet]. 2024 May 15;11(2):765–74. Available from: <URL>.
  • 60. Chandra Sati P, Arora M, Chauhan S, Kumar M, Chhoker S. Effect of Dy substitution on structural, magnetic and optical properties of BiFeO3 ceramics. J Phys Chem Solids [Internet]. 2014 Jan;75(1):105–8. Available from: <URL>.
  • 61. Nadeem M, Khan W, Khan S, Husain S, Ansari A. Tailoring dielectric properties and multiferroic behavior of nanocrystalline BiFeO3 via Ni doping. J Appl Phys [Internet]. 2018 Oct 28;124(16):164105. Available from: <URL>.

Structural and Dielectric Properties of RE3+, B3+ co-doped (RE3+=Sm3+, Dy3+) BaTa2O6 Tetragonal Tungsten Bronze-Type Ceramics

Year 2024, Volume: 11 Issue: 3, 1111 - 1124, 30.08.2024
https://doi.org/10.18596/jotcsa.1453941

Abstract

In this paper, the effect of boron doping on dielectric properties was investigated using BaTa2O6:xSm3+, yB3+ (x=5 mol%, y= 0, 5, 15, 30, 50, 70, 100 mol%) and BaTa2O6:xDy3+, yB3+ (x=10 mol%, y= 0, 5, 15, 30, 50, 70, 100 mol%) tungsten bronze ceramics fabricated by the conventional solid-state synthesis. XRD (X-ray diffraction) results revealed a single BaTa2O6 phase with space group P4/mbm (127) for both series. Additionally, in both series, there was an increase in crystallite sizes and cell parameters with increasing B3+ concentration. SEM (scanning electron microscopy) examinations indicated that the increase of boron promoted grain growth and grain elongation. In impedance results, in both series, increasing boron concentration up to 100 mol% increased the dielectric constant. Moreover, the presence of boron was associated with a relaxing transition in the B-site substitution of RE3+ (RE=Sm, Dy) ions and a contribution to the dielectric permittivity, while the increase in tetragonality or c/a ratio for both series was ascribed to the increase in the ferroelectric Curie temperature. In both series, a decrease in dielectric loss (tan δ) occurred, which was explained by the increasing sintering temperature effect with increasing boron, reducing the mobility of oxygen vacancies.

References

  • 1. Feng W Bin, Zhu XL, Liu XQ, Fu M Sen, Ma X, Jia SJ, et al. Relaxor nature in Ba5RZr3Nb7O30 (R= La, Nd, Sm) tetragonal tungsten bronze new system. J Am Ceram Soc [Internet]. 2018 Apr 24;101(4):1623–31. Available from: <URL>.
  • 2. Zhu XL, Liu XQ, Chen XM. Crystal Structure and Dielectric Properties of Sr5RTi3Nb7O30 (R=La, Nd, Sm, and Eu) Tungsten Bronze Ceramics. J Am Ceram Soc [Internet]. 2011 Jun;94(6):1829–36. Available from: <URL>.
  • 3. Roulland F, Josse M, Castel E, Maglione M. Influence of ceramic process and Eu content on the composite multiferroic properties of the Ba6−2xLn2xFe1+xNb9−xO30 TTB system. Solid State Sci [Internet]. 2009 Sep;11(9):1709–16. Available from: <URL>.
  • 4. Fang L, Peng X, Li C, Hu C, Wu B, Zhou H. Dielectric Properties of Ba4Sm2Fe2M8O30 (M=Nb, Ta) with Tetragonal Bronze Structure. J Am Ceram Soc [Internet]. 2010 Sep 12;93(9):2430–3. Available from: <URL>.
  • 5. Bendahhou A, Marchet P, El-Houssaine A, El Barkany S, Abou-Salama M. Relationship between structural and dielectric properties of Zn-substituted Ba5CaTi2−xZnxNb8O30 tetragonal tungsten bronze. CrystEngComm [Internet]. 2021;23(1):163–73. Available from: <URL>.
  • 6. Botella P, Solsona B, García-González E, González-Calbet JM, López Nieto JM. The hydrothermal synthesis of tetragonal tungsten bronze-based catalysts for the selective oxidation of hydrocarbons. Chem Commun [Internet]. 2007;(47):5040–2. Available from: <URL>.
  • 7. Jindal S, Vasishth A, Devi S, Anand G. A review on tungsten bronze ferroelectric ceramics as electrically tunable devices. Integr Ferroelectr [Internet]. 2018 Jan 2;186(1):1–9. Available from: <URL>.
  • 8. Shimizu K, Kato H, Kobayashi M, Kakihana M. Synthesis and photocatalytic properties of tetragonal tungsten bronze type oxynitrides. Appl Catal B Environ [Internet]. 2017 Jun;206:444–8. Available from: <URL>.
  • 9. İlhan M, Güleryüz LF. Cathodoluminescence and photoluminescence of BaTa2O6:Sm3+ phosphor depending on the sintering temperature. Chem Pap [Internet]. 2022 Nov;76(11):6963–74. Available from: <URL>.
  • 10. Ekmekçi MK, İlhan M, Başak AS, Deniz S. Structural and Luminescence Properties of Sm3+ Doped TTB -Type BaTa2O6 Ceramic Phosphors. J Fluoresc [Internet]. 2015 Nov 26;25(6):1757–62. Available from: <URL>.
  • 11. İlhan M, Keskin İÇ, Gültekin S. Assessing of Photoluminescence and Thermoluminescence Properties of Dy3+ Doped White Light Emitter TTB-Lead Metatantalate Phosphor. J Electron Mater [Internet]. 2020 Apr 17;49(4):2436–49. Available from: <URL>.
  • 12. İlhan M, Keskin İÇ. Analysis of Judd–Ofelt parameters and radioluminescence results of SrNb2O6 :Dy3+ phosphors synthesized via molten salt method. Phys Chem Chem Phys [Internet]. 2020;22(35):19769–78. Available from: <URL>.
  • 13. Ekmekçi MK, İlhan M, Güleryüz LF, Mergen A. Study on molten salt synthesis, microstructural determination and white light emitting properties of CoNb2O6:Dy3+ phosphor. Optik (Stuttg) [Internet]. 2017 Jan;128:26–33. Available from: <URL>.
  • 14. Tressaud A. Structural architecture and physical properties of some inorganic fluoride series: a review. J Fluor Chem [Internet]. 2011 Oct;132(10):651–9. Available from: <URL>.
  • 15. İlhan M, Ekmekçi MK, Mergen A, Yaman C. Photoluminescence characterization and heat treatment effect on luminescence behavior of BaTa2O6 :Dy3+ phosphor. Int J Appl Ceram Technol [Internet]. 2017 Nov 13;14(6):1134–43. Available from: <URL>.
  • 16. İlhan M, Keskin İÇ. Evaluation of the Structural, Near-Infrared Luminescence, and Radioluminescence Properties of Nd3+ Activated TTB-Lead Metatantalate Phosphors. J Turkish Chem Soc Sect A Chem [Internet]. 2023 May 31;10(2):453–64. Available from: <URL>.
  • 17. Xu T, Zhao X, Zhu Y. Synthesis of Hexagonal BaTa2O6 Nanorods and Influence of Defects on the Photocatalytic Activity. J Phys Chem B [Internet]. 2006 Dec 1;110(51):25825–32. Available from: <URL>.
  • 18. Layden GK. Polymorphism of BaTa2O6. Mater Res Bull [Internet]. 1967 May;2(5):533–9. Available from: <URL>.
  • 19. Keskin İÇ, İlhan M. Thermoluminescence Kinetic Parameters and Radioluminescence of RE3+ (RE = Pr, Sm, Tb, Ho, Er)-Doped Barium Tantalate Phosphors. J Electron Mater [Internet]. 2023 Aug 31;52(8):5614–30. Available from: <URL>.
  • 20. Layden GK. Dielectric and structure studies of hexagonal BaTa2O6. Mater Res Bull [Internet]. 1968 Apr;3(4):349–59. Available from: <URL>.
  • 21. İlhan M, Mergen A, Sarıoğlu C, Yaman C. Heat capacity measurements on BaTa2O6 and derivation of its thermodynamic functions. J Therm Anal Calorim [Internet]. 2017 May 29;128(2):707–11. Available from: <URL>.
  • 22. Kato H, Kudo A. New tantalate photocatalysts for water decomposition into H2 and O2. Chem Phys Lett [Internet]. 1998 Oct;295(5–6):487–92. Available from: <URL>.
  • 23. İlhan M, Güleryüz LF. Boron doping effect on the structural, spectral properties and charge transfer mechanism of orthorhombic tungsten bronze β-SrTa2O6 :Eu3+ phosphor. RSC Adv [Internet]. 2023;13(18):12375–85. Available from: <URL>.
  • 24. İlhan M, Güleryüz LF, Katı Mİ. Exploring the effect of boron on the grain morphology change and spectral properties of Eu3+ activated barium tantalate phosphor. RSC Adv [Internet]. 2024;14(4):2687–96. Available from: <URL>.
  • 25. Başak AS, Ekmekçi MK, Erdem M, Ilhan M, Mergen A. Investigation of Boron-doping Effect on Photoluminescence Properties of CdNb2O6: Eu3+ Phosphors. J Fluoresc [Internet]. 2016 Mar 11;26(2):719–24. Available from: <URL>.
  • 26. İlhan M, Ekmekçi MK, Güleryüz LF. Effect of boron incorporation on the structural, morphological, and spectral properties of CdNb2O6:Dy3+ phosphor synthesized by molten salt process. Mater Sci Eng B [Internet]. 2023 Dec;298:116858. Available from: <URL>.
  • 27. Zhang X, Wang B, Huang W, Chen Y, Wang G, Zeng L, et al. Synergistic Boron Doping of Semiconductor and Dielectric Layers for High-Performance Metal Oxide Transistors: Interplay of Experiment and Theory. J Am Chem Soc [Internet]. 2018 Oct 3;140(39):12501–10. Available from: <URL>.
  • 28. Mazumder R, Seal A, Sen A, Maiti HS. Effect of Boron Addition on the Dielectric Properties of Giant Dielectric CaCu3Ti4O12. Ferroelectrics [Internet]. 2005 Oct;326(1):103–8. Available from: <URL>.
  • 29. Li Z, Zhou W, Su X, Luo F, Huang Y, Wang C. Effect of boron doping on microwave dielectric properties of SiC powder synthesized by combustion synthesis. J Alloys Compd [Internet]. 2011 Jan;509(3):973–6. Available from: <URL>.
  • 30. Cullity BD, Stock SR. Elements of X-ray Diffraction. USA: Prentice Hall; 2001.
  • 31. Gardner J, Morrison FD. A-site size effect in a family of unfilled ferroelectric tetragonal tungsten bronzes: Ba4R0.67Nb10O30 (R= La, Nd, Sm, Gd, Dy and Y). Dalt Trans [Internet]. 2014;43(30):11687–95. Available from: <URL>.
  • 32. Polyxeni V, Nikolaos D P, Nikos S, Sotirios X, Evangelos H. Temperature effects on grain growth phenomena and magnetic properties of silicon steels used in marine applications. Ann Mar Sci [Internet]. 2023 Jun 21;7(1):40–4. Available from: <URL>.
  • 33. Güleryüz LF, İlhan M. Structural, morphological, spectral properties and high quantum efficiency of Eu3+, B3+ co-activated double perovskite Ba2GdMO6 (M= Nb, Ta) phosphors. Mater Sci Eng B [Internet]. 2024 Jun;304:117373. Available from: <URL>.
  • 34. Mahapatro J, Agrawal S. Effect of Eu3+ ions on electrical and dielectric properties of barium hexaferrites prepared by solution combustion method. Ceram Int [Internet]. 2021 Jul;47(14):20529–43. Available from: <URL>.
  • 35. Evangeline T G, Annamalai A R, Ctibor P. Effect of Europium Addition on the Microstructure and Dielectric Properties of CCTO Ceramic Prepared Using Conventional and Microwave Sintering. Molecules [Internet]. 2023 Feb 8;28(4):1649. Available from: <URL>.
  • 36. Esha IN, Al-Amin M, Toma FTZ, Hossain E, Khan MNI, Maria KH. Synthesis and analysis of the influence of Eu3+ on the structural, ferromagnetic, dielectric and conductive characteristics of Ni0.4Zn0.45Cu0.15Fe(2-x)EuxO4 composites using conventional double sintering ceramic method. J Ceram Process Res [Internet]. 2019 Oct;20(5):530–9. Available from: <URL>.
  • 37. Shah MR, Akther Hossain AKM. Structural and dielectric properties of La substituted polycrystalline Ca(Ti0.5Fe0.5)O3. Mater Sci [Internet]. 2013 Jan 25;31(1):80–7. Available from: <URL>.
  • 38. Kadam AA, Shinde SS, Yadav SP, Patil PS, Rajpure KY. Structural, morphological, electrical and magnetic properties of Dy doped Ni–Co substitutional spinel ferrite. J Magn Magn Mater [Internet]. 2013 Mar;329:59–64. Available from: <URL>.
  • 39. Tan YQ, Yu Y, Hao YM, Dong SY, Yang YW. Structure and dielectric properties of Ba5NdCu1.5Nb8.5O30−δ tungsten bronze ceramics. Mater Res Bull [Internet]. 2013 May;48(5):1934–8. Available from: <URL>.
  • 40. Rayssi C, El.Kossi S, Dhahri J, Khirouni K. Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1−xCo4x/3O3 (0≤x≤0.1). RSC Adv [Internet]. 2018;8(31):17139–50. Available from: <URL>.
  • 41. Wagner KW. Zur Theorie der unvollkommenen Dielektrika. Ann Phys [Internet]. 1913 Jan 14;345(5):817–55. Available from: <URL>.
  • 42. Maxwell JC. A treatise on electricity and magnetism. London: Caleredon press, Oxford University; 1873.
  • 43. Saengvong P, Chanlek N, Srepusharawoot P, Harnchana V, Thongbai P. Enhancing giant dielectric properties of Ta5+ ‐doped Na1/2Y1/2Cu3Ti4O12 ceramics by engineering grain and grain boundary. J Am Ceram Soc [Internet]. 2022 May 15;105(5):3447–55. Available from: <URL>.
  • 44. Karmakar S, Mohanty HS, Behera D. Exploration of alternating current conduction mechanism and dielectric relaxation with Maxwell–Wagner effect in NiO–CdO–Gd2O3 nanocomposites. Eur Phys J Plus [Internet]. 2021 Oct 15;136(10):1038. Available from: <URL>.
  • 45. Samet M, Kallel A, Serghei A. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of composite materials: Scaling laws and applications. J Compos Mater [Internet]. 2022 Aug 28;56(20):3197–217. Available from: <URL>.
  • 46. Mach TP, Ding Y, Binder JR. Impact of Particle and Crystallite Size of Ba0.6Sr0.4TiO3 on the Dielectric Properties of BST/P(VDF-TrFE) Composites in Fully Printed Varactors. Polymers (Basel) [Internet]. 2022 Nov 19;14(22):5027. Available from: <URL>.
  • 47. Kurnia, Heriansyah, Suharyadi E. Study on The Influence of Crystal Structure and Grain Size on Dielectric Properties of Manganese Ferrite (MnFe2O4) Nanoparticles. IOP Conf Ser Mater Sci Eng [Internet]. 2017 May;202:012046. Available from: <URL>.
  • 48. Chi EO, Gandini A, Ok KM, Zhang L, Halasyamani PS. Syntheses, Structures, Second-Harmonic Generating, and Ferroelectric Properties of Tungsten Bronzes:  A6M2M‘8O30 (A= Sr2+, Ba2+, or Pb2+ ; M= Ti4+, Zr4+, or Hf4+ ; M‘= Nb5+ or Ta5+). Chem Mater [Internet]. 2004 Sep 1;16(19):3616–22. Available from: <URL>.
  • 49. Rotaru A, Arnold DC, Daoud-Aladine A, Morrison FD. Origin and stability of the dipolar response in a family of tetragonal tungsten bronze relaxors. Phys Rev B [Internet]. 2011 May 31;83(18):184302. Available from: <URL>.
  • 50. Neurgaonkar RR, Nelson JG, Oliver JR. Ferroelectric properties of the tungsten bronze M2+6M4+2Nb8O30 solid solution systems. Mater Res Bull [Internet]. 1992 Jun;27(6):677–84. Available from: <URL>.
  • 51. Stennett MC, Reaney IM, Miles GC, Woodward DI, West AR, Kirk CA, et al. Dielectric and structural studies of Ba2MTi2Nb3O15 (BMTNO15, M=Bi3+, La3+, Nd3+, Sm3+, Gd3+) tetragonal tungsten bronze-structured ceramics. J Appl Phys [Internet]. 2007 May 15;101(10):104114. Available from: <URL>.
  • 52. Li G, Cheng L, Liao F, Tian S, Jing X, Lin J. Luminescent and structural properties of the series Ba6−xEuxTi2+xTa8−xO30 and Ba4−yKyEu2Ti4−yTa6+yO30. J Solid State Chem [Internet]. 2004 Mar;177(3):875–82. Available from: <URL>.
  • 53. Sati PC, Kumar M, Chhoker S, Jewariya M. Influence of Eu substitution on structural, magnetic, optical and dielectric properties of BiFeO3 multiferroic ceramics. Ceram Int [Internet]. 2015 Mar;41(2):2389–98. Available from: <URL>.
  • 54. Ganguly P, Jha AK. Enhanced characteristics of Ba5SmTi3Nb7O30 ferroelectric nanocrystalline ceramic prepared by mechanical activation process: A comparative study. Mater Res Bull [Internet]. 2011 May;46(5):692–7. Available from: <URL>.
  • 55. Kumar P, Kar M. Effect of structural transition on magnetic and optical properties of Ca and Ti co-substituted BiFeO3 ceramics. J Alloys Compd [Internet]. 2014 Jan;584:566–72. Available from: <URL>.
  • 56. Chakrabarti A, Bera J. Effect of La-substitution on the structure and dielectric properties of BaBi4Ti4O15 ceramics. J Alloys Compd [Internet]. 2010 Sep;505(2):668–74. Available from: <URL>.
  • 57. Fei Liu S, Jun Wu Y, Li J, Ming Chen X. Effects of oxygen vacancies on dielectric, electrical, and ferroelectric properties of Ba4Nd2Fe2Nb8O30 ceramics. Appl Phys Lett [Internet]. 2014 Feb 24;104(8):082912. Available from: <URL>.
  • 58. Kendall KR, Thomas JK, Loye HC. Synthesis and ionic conductivity of a new series of modified Aurivillius phases. Chem Mater [Internet]. 1995 Jan 1;7(1):50–7. Available from: <URL>.
  • 59. İlhan M, Ekmekci MK, Esmer K. Structural and dielectric properties of Eu3+,B3+ co-doped CoNb2O6 ceramic. J Turkish Chem Soc Sect A Chem [Internet]. 2024 May 15;11(2):765–74. Available from: <URL>.
  • 60. Chandra Sati P, Arora M, Chauhan S, Kumar M, Chhoker S. Effect of Dy substitution on structural, magnetic and optical properties of BiFeO3 ceramics. J Phys Chem Solids [Internet]. 2014 Jan;75(1):105–8. Available from: <URL>.
  • 61. Nadeem M, Khan W, Khan S, Husain S, Ansari A. Tailoring dielectric properties and multiferroic behavior of nanocrystalline BiFeO3 via Ni doping. J Appl Phys [Internet]. 2018 Oct 28;124(16):164105. Available from: <URL>.
There are 61 citations in total.

Details

Primary Language English
Subjects Inorganic Materials, Physical Properties of Materials
Journal Section RESEARCH ARTICLES
Authors

Mustafa İlhan 0000-0001-7826-9614

Mehmet İsmail Katı 0000-0002-9225-730X

Lütfiye Feray Güleryüz 0000-0003-0052-6187

Early Pub Date July 12, 2024
Publication Date August 30, 2024
Submission Date March 16, 2024
Acceptance Date May 27, 2024
Published in Issue Year 2024 Volume: 11 Issue: 3

Cite

Vancouver İlhan M, Katı Mİ, Güleryüz LF. Structural and Dielectric Properties of RE3+, B3+ co-doped (RE3+=Sm3+, Dy3+) BaTa2O6 Tetragonal Tungsten Bronze-Type Ceramics. JOTCSA. 2024;11(3):1111-24.