Research Article
BibTex RIS Cite

Study of Chromophores Potential in Binahong Leaf Extracts for Solar Cell Development

Year 2024, Volume: 11 Issue: 4, 1651 - 1658, 03.12.2024
https://doi.org/10.18596/jotcsa.1217367

Abstract

Solar cell material from organic chromophores is interesting to develop because it has adjustable electronic and optical properties, the material is relatively cheap, the manufacturing method is simple, environmentally friendly, and easy to recycle. This research aims to study the potential of leaf extract from binahong as a raw material for the development of organic solar cells in terms of its chromophore. The study was carried out through an analysis of leaf extracts from binahong with red stems and leaf extracts from binahong with green stems with the help of a UV-VIS spectrophotometer instrument and a Shimadzu LCMS – 8040 LC/MS instrument. The compounds identified from each extract through their LCMS chromatograms were then characterized computationally using gamess applications with the DFT method and 6.31G* basis set. The results showed that the leaf extract from binahong with red stems had a different color and band gap than the leaf extract from binahong with green stems. This is because the red-stemmed binahong leaf extract has an excess of 3 compounds, namely kaempferol-3-(6"-malonyl glucoside), prodelphinidin B1, and prodelphinidin C2. The LCMS chromatogram showed that there were 55 bioactive compounds identified in the leaf extract from binahong with red stems and 52 compounds identified in the leaf extract from binahong with green stems. Of all these compounds, the majority, namely 44 compounds in the leaf extract from binahong leaves with red stems and 42 compounds in the leaf extract from binahong with green stems, are chromophores that have the potential to be used as raw materials for developing solar cells.

References

  • 1. International Energy Agency. World energy outlook 2021. 2021;
  • 2. Perera F. Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: Solutions exist. Int J Environ Res Public Health [Internet]. 2017 Dec 23;15(1):16. Available from: <URL>.
  • 3. International Energy Agency. Net zero by 2050 a roadmap for the global energy sector. 2021; Available from: <URL>.
  • 4. Gielen D, Boshell F, Saygin D, Bazilian MD, Wagner N, Gorini R. The role of renewable energy in the global energy transformation. Energy Strateg Rev [Internet]. 2019 Apr 1;24:38–50. Available from: <URL>.
  • 5. Handayani NA, Ariyanti D. Potency of solar energy applications in Indonesia. Int J Renew Energy Dev [Internet]. 2012 Jul 1;1(2):33–8. Available from: <URL>.
  • 6. Anonymous. Durasi penyinaran matahar [Internet]. [cited 2022 Apr 13]. Available from: <URL>.
  • 7. Hamdi S. Mengenal lama penyinaran matahari sebagai salah satu parameter klimatologi. Ber Dirgant [Internet]. 2014;15(1):7–16. Available from: <URL>.
  • 8. Shockley W, Queisser H. Detailed balance limit of efficiency of p–n junction solar cells. In: Renewable Energy [Internet]. Routledge; 2018. p. 35–54. Available from: <URL>.
  • 9. Tiedje T, Yablonovitch E, Cody GD, Brooks BG. Limiting efficiency of silicon solar cells. IEEE Trans Electron Devices [Internet]. 1984 May;31(5):711–6. Available from: <URL>.
  • 10. NREL. Best research-cell efficiency chart [Internet]. [cited 2024 Sep 13]. Available from: <URL>.
  • 11. Almosni S, Delamarre A, Jehl Z, Suchet D, Cojocaru L, Giteau M, et al. Material challenges for solar cells in the twenty-first century: Directions in emerging technologies. Sci Technol Adv Mater [Internet]. 2018 Dec 31;19(1):336–69. Available from: <URL>.
  • 12. Zhou Y, Fuentes-Hernandez C, Khan TM, Liu JC, Hsu J, Shim JW, et al. Recyclable organic solar cells on cellulose nanocrystal substrates. Sci Rep [Internet]. 2013 Mar 25;3(1):1536. Available from: <URL>.
  • 13. Zhong S, Yap BK, Zhong Z, Ying L. Review on Y6-based semiconductor materials and their future development via machine learning. Crystals [Internet]. 2022 Jan 24;12(2):168. Available from: <URL>.
  • 14. Greenham NC, Moratti SC, Bradley DDC, Friend RH, Holmes AB. Efficient light-emitting diodes based on polymers with high electron affinities. Nature [Internet]. 1993 Oct 14;365(6447):628–30. Available from: <URL>.
  • 15. Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN, Taliani C, et al. Electroluminescence in conjugated polymers. Nature [Internet]. 1999 Jan 14;397(6715):121–8. Available from: <URL>.
  • 16. Schmidt-Mende L, Fechtenkötter A, Müllen K, Moons E, Friend RH, MacKenzie JD. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science (80- ) [Internet]. 2001 Aug 10;293(5532):1119–22. Available from: <URL>.
  • 17. Dance ZEX, Ahrens MJ, Vega AM, Ricks AB, McCamant DW, Ratner MA, et al. Direct observation of the preference of hole transfer over electron transfer for radical Ion pair recombination in donor−bridge−acceptor molecules. J Am Chem Soc [Internet]. 2008 Jan 1;130(3):830–2. Available from: <URL>.
  • 18. Palma M, Levin J, Lemaur V, Liscio A, Palermo V, Cornil J, et al. Self‐organization and nanoscale electronic properties of azatriphenylene‐based architectures: A scanning probe microscopy study. Adv Mater [Internet]. 2006 Dec 18;18(24):3313–7. Available from: <URL>.
  • 19. Chen X, Jeon YM, Jang JW, Qin L, Huo F, Wei W, et al. On-wire lithography-generated molecule-based transport junctions: A new testbed for molecular electronics. J Am Chem Soc [Internet]. 2008 Jul 1;130(26):8166–8. Available from: <URL>.
  • 20. Forrest SR. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature [Internet]. 2004 Apr 29;428(6986):911–8. Available from: <URL>.
  • 21. Etienne T, Chbibi L, Michaux C, Perpète EA, Assfeld X, Monari A. All-organic chromophores for dye-sensitized solar cells: A theoretical study on aggregation. Dye Pigment [Internet]. 2014 Feb 1;101:203–11. Available from: <URL>.
  • 22. Ayalew WA, Ayele DW. Dye-sensitized solar cells using natural dye as light-harvesting materials extracted from Acanthus sennii chiovenda flower and Euphorbia cotinifolia leaf. J Sci Adv Mater Devices [Internet]. 2016 Dec 1;1(4):488–94. Available from: <URL>.
  • 23. Cahyani N, Sanjaya IGM. Potensi senyawa betalain pada ekstrak biji binahong berbatang merah (Anredera cordifolia) sebagai fotosensitizer dye sensitized solar cell (DSSC). Al-Kimia [Internet]. 2021 Dec 31;9(2):103–14. Available from: <URL>.
  • 24. Luceño-Sánchez JA, Díez-Pascual AM, Peña Capilla R. Materials for photovoltaics: State of art and recent developments. Int J Mol Sci [Internet]. 2019 Feb 23;20(4):976. Available from: <URL>.
  • 25. Setiawan IN, Giriantari IAD, Ariastina WG, Swamardika IBA. Effect of solvents on natural dyes extraction from mangosteen waste for dye sensitized solar cell application. Int J Eng Emerg Technol [Internet]. 2018;3(2):129–32. Available from: <URL>.
  • 26. Dwitiyanti YH, Elya B, Bahtiar A. Impact of solvent on the characteristics of standardized binahong Leaf (Anredera cordifolia (ten.) steenis). Pharmacogn J [Internet]. 2019 Dec 1;11(6s):1463–70. Available from: <URL>.
  • 27. Jarosz G, Marczyński R, Signerski R. Effect of band gap on power conversion efficiency of single-junction semiconductor photovoltaic cells under white light phosphor-based LED illumination. Mater Sci Semicond Process [Internet]. 2020 Mar 1;107:104812. Available from: <URL>.
  • 28. Pawar N, Shinde M, Junna L. Stabilization of food colourant and antimicrobial activity in fruit extracts of Basella rubra L. Int J Pharmacogn Phytochem Res [Internet]. 2018;10(1):43–7. Available from: <URL>.
  • 29. Masniah, Manurung J. Phytochemicals screening and activities of binahong (Anredera cordifolia [TEN.] steenis) leaves and beetroots (Beta vulgaris L.) in increasing swimming endurance in mice. Asian J Pharm Clin Res [Internet]. 2019 Mar 14;12(4):235–7. Available from: <URL>.
  • 30. Kislenko SA, Amirov RK, Popel’ OS, Samoilov IS. Dye-sensitized solar cells: Present state and prospects for future development. Therm Eng [Internet]. 2010 Nov 26 [cited 2024 Dec 1];57(11):969–75. Available from: <URL>.
  • 31. Fujisawa J ichi, Eda T, Hanaya M. Comparative study of conduction-band and valence-band edges of TiO2, SrTiO3, and BaTiO3 by ionization potential measurements. Chem Phys Lett [Internet]. 2017 Oct 1;685:23–6. Available from: <URL>.
  • 32. Bledowski M, Wang L, Ramakrishnan A, Khavryuchenko O V., Khavryuchenko VD, Ricci PC, et al. Visible-light photocurrent response of TiO2–polyheptazine hybrids: evidence for interfacial charge-transfer absorption. Phys Chem Chem Phys [Internet]. 2011 Nov 29;13(48):21511. Available from: <URL>.
  • 33. Wazzan NA. A DFT/TDDFT investigation on the efficiency of novel dyes with ortho-fluorophenyl units (A1) and incorporating benzotriazole / benzothiadiazole / phthalimide units (A2) as organic photosensitizers with D–A2–π–A1 configuration for solar cell applications. J Comput Electron [Internet]. 2019 Jun;18(2):375–95. Available from: <URL>.
  • 34. Feldt S. Alternative Redox Couples for Dye-Sensitized Solar Cells [Internet]. [Uppsala, Sweden]: Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology; 2013. Available from: <URL>.
  • 35. Iftikhar H, Sonai GG, Hashmi SG, Nogueira AF, Lund PD. Progress on electrolytes development in dye-sensitized solar cells. Materials [Internet]. 2019 Jun 21;12(12):1998. Available from: <URL>.
Year 2024, Volume: 11 Issue: 4, 1651 - 1658, 03.12.2024
https://doi.org/10.18596/jotcsa.1217367

Abstract

References

  • 1. International Energy Agency. World energy outlook 2021. 2021;
  • 2. Perera F. Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: Solutions exist. Int J Environ Res Public Health [Internet]. 2017 Dec 23;15(1):16. Available from: <URL>.
  • 3. International Energy Agency. Net zero by 2050 a roadmap for the global energy sector. 2021; Available from: <URL>.
  • 4. Gielen D, Boshell F, Saygin D, Bazilian MD, Wagner N, Gorini R. The role of renewable energy in the global energy transformation. Energy Strateg Rev [Internet]. 2019 Apr 1;24:38–50. Available from: <URL>.
  • 5. Handayani NA, Ariyanti D. Potency of solar energy applications in Indonesia. Int J Renew Energy Dev [Internet]. 2012 Jul 1;1(2):33–8. Available from: <URL>.
  • 6. Anonymous. Durasi penyinaran matahar [Internet]. [cited 2022 Apr 13]. Available from: <URL>.
  • 7. Hamdi S. Mengenal lama penyinaran matahari sebagai salah satu parameter klimatologi. Ber Dirgant [Internet]. 2014;15(1):7–16. Available from: <URL>.
  • 8. Shockley W, Queisser H. Detailed balance limit of efficiency of p–n junction solar cells. In: Renewable Energy [Internet]. Routledge; 2018. p. 35–54. Available from: <URL>.
  • 9. Tiedje T, Yablonovitch E, Cody GD, Brooks BG. Limiting efficiency of silicon solar cells. IEEE Trans Electron Devices [Internet]. 1984 May;31(5):711–6. Available from: <URL>.
  • 10. NREL. Best research-cell efficiency chart [Internet]. [cited 2024 Sep 13]. Available from: <URL>.
  • 11. Almosni S, Delamarre A, Jehl Z, Suchet D, Cojocaru L, Giteau M, et al. Material challenges for solar cells in the twenty-first century: Directions in emerging technologies. Sci Technol Adv Mater [Internet]. 2018 Dec 31;19(1):336–69. Available from: <URL>.
  • 12. Zhou Y, Fuentes-Hernandez C, Khan TM, Liu JC, Hsu J, Shim JW, et al. Recyclable organic solar cells on cellulose nanocrystal substrates. Sci Rep [Internet]. 2013 Mar 25;3(1):1536. Available from: <URL>.
  • 13. Zhong S, Yap BK, Zhong Z, Ying L. Review on Y6-based semiconductor materials and their future development via machine learning. Crystals [Internet]. 2022 Jan 24;12(2):168. Available from: <URL>.
  • 14. Greenham NC, Moratti SC, Bradley DDC, Friend RH, Holmes AB. Efficient light-emitting diodes based on polymers with high electron affinities. Nature [Internet]. 1993 Oct 14;365(6447):628–30. Available from: <URL>.
  • 15. Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN, Taliani C, et al. Electroluminescence in conjugated polymers. Nature [Internet]. 1999 Jan 14;397(6715):121–8. Available from: <URL>.
  • 16. Schmidt-Mende L, Fechtenkötter A, Müllen K, Moons E, Friend RH, MacKenzie JD. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science (80- ) [Internet]. 2001 Aug 10;293(5532):1119–22. Available from: <URL>.
  • 17. Dance ZEX, Ahrens MJ, Vega AM, Ricks AB, McCamant DW, Ratner MA, et al. Direct observation of the preference of hole transfer over electron transfer for radical Ion pair recombination in donor−bridge−acceptor molecules. J Am Chem Soc [Internet]. 2008 Jan 1;130(3):830–2. Available from: <URL>.
  • 18. Palma M, Levin J, Lemaur V, Liscio A, Palermo V, Cornil J, et al. Self‐organization and nanoscale electronic properties of azatriphenylene‐based architectures: A scanning probe microscopy study. Adv Mater [Internet]. 2006 Dec 18;18(24):3313–7. Available from: <URL>.
  • 19. Chen X, Jeon YM, Jang JW, Qin L, Huo F, Wei W, et al. On-wire lithography-generated molecule-based transport junctions: A new testbed for molecular electronics. J Am Chem Soc [Internet]. 2008 Jul 1;130(26):8166–8. Available from: <URL>.
  • 20. Forrest SR. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature [Internet]. 2004 Apr 29;428(6986):911–8. Available from: <URL>.
  • 21. Etienne T, Chbibi L, Michaux C, Perpète EA, Assfeld X, Monari A. All-organic chromophores for dye-sensitized solar cells: A theoretical study on aggregation. Dye Pigment [Internet]. 2014 Feb 1;101:203–11. Available from: <URL>.
  • 22. Ayalew WA, Ayele DW. Dye-sensitized solar cells using natural dye as light-harvesting materials extracted from Acanthus sennii chiovenda flower and Euphorbia cotinifolia leaf. J Sci Adv Mater Devices [Internet]. 2016 Dec 1;1(4):488–94. Available from: <URL>.
  • 23. Cahyani N, Sanjaya IGM. Potensi senyawa betalain pada ekstrak biji binahong berbatang merah (Anredera cordifolia) sebagai fotosensitizer dye sensitized solar cell (DSSC). Al-Kimia [Internet]. 2021 Dec 31;9(2):103–14. Available from: <URL>.
  • 24. Luceño-Sánchez JA, Díez-Pascual AM, Peña Capilla R. Materials for photovoltaics: State of art and recent developments. Int J Mol Sci [Internet]. 2019 Feb 23;20(4):976. Available from: <URL>.
  • 25. Setiawan IN, Giriantari IAD, Ariastina WG, Swamardika IBA. Effect of solvents on natural dyes extraction from mangosteen waste for dye sensitized solar cell application. Int J Eng Emerg Technol [Internet]. 2018;3(2):129–32. Available from: <URL>.
  • 26. Dwitiyanti YH, Elya B, Bahtiar A. Impact of solvent on the characteristics of standardized binahong Leaf (Anredera cordifolia (ten.) steenis). Pharmacogn J [Internet]. 2019 Dec 1;11(6s):1463–70. Available from: <URL>.
  • 27. Jarosz G, Marczyński R, Signerski R. Effect of band gap on power conversion efficiency of single-junction semiconductor photovoltaic cells under white light phosphor-based LED illumination. Mater Sci Semicond Process [Internet]. 2020 Mar 1;107:104812. Available from: <URL>.
  • 28. Pawar N, Shinde M, Junna L. Stabilization of food colourant and antimicrobial activity in fruit extracts of Basella rubra L. Int J Pharmacogn Phytochem Res [Internet]. 2018;10(1):43–7. Available from: <URL>.
  • 29. Masniah, Manurung J. Phytochemicals screening and activities of binahong (Anredera cordifolia [TEN.] steenis) leaves and beetroots (Beta vulgaris L.) in increasing swimming endurance in mice. Asian J Pharm Clin Res [Internet]. 2019 Mar 14;12(4):235–7. Available from: <URL>.
  • 30. Kislenko SA, Amirov RK, Popel’ OS, Samoilov IS. Dye-sensitized solar cells: Present state and prospects for future development. Therm Eng [Internet]. 2010 Nov 26 [cited 2024 Dec 1];57(11):969–75. Available from: <URL>.
  • 31. Fujisawa J ichi, Eda T, Hanaya M. Comparative study of conduction-band and valence-band edges of TiO2, SrTiO3, and BaTiO3 by ionization potential measurements. Chem Phys Lett [Internet]. 2017 Oct 1;685:23–6. Available from: <URL>.
  • 32. Bledowski M, Wang L, Ramakrishnan A, Khavryuchenko O V., Khavryuchenko VD, Ricci PC, et al. Visible-light photocurrent response of TiO2–polyheptazine hybrids: evidence for interfacial charge-transfer absorption. Phys Chem Chem Phys [Internet]. 2011 Nov 29;13(48):21511. Available from: <URL>.
  • 33. Wazzan NA. A DFT/TDDFT investigation on the efficiency of novel dyes with ortho-fluorophenyl units (A1) and incorporating benzotriazole / benzothiadiazole / phthalimide units (A2) as organic photosensitizers with D–A2–π–A1 configuration for solar cell applications. J Comput Electron [Internet]. 2019 Jun;18(2):375–95. Available from: <URL>.
  • 34. Feldt S. Alternative Redox Couples for Dye-Sensitized Solar Cells [Internet]. [Uppsala, Sweden]: Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology; 2013. Available from: <URL>.
  • 35. Iftikhar H, Sonai GG, Hashmi SG, Nogueira AF, Lund PD. Progress on electrolytes development in dye-sensitized solar cells. Materials [Internet]. 2019 Jun 21;12(12):1998. Available from: <URL>.
There are 35 citations in total.

Details

Primary Language English
Subjects Instrumental Methods, Theory and Design of Materials
Journal Section RESEARCH ARTICLES
Authors

I Gusti Made Sanjaya 0000-0003-4336-7374

Pirim Setiarso 0000-0003-2178-7423

Publication Date December 3, 2024
Submission Date December 11, 2022
Acceptance Date October 5, 2024
Published in Issue Year 2024 Volume: 11 Issue: 4

Cite

Vancouver Sanjaya IGM, Setiarso P. Study of Chromophores Potential in Binahong Leaf Extracts for Solar Cell Development. JOTCSA. 2024;11(4):1651-8.