Phoenix Dactylifera Hydrochar as a Green Modification Material Based on Glassy Carbon Electrodes for the Detection of Methylene Blue
Year 2024,
Volume: 11 Issue: 4, 1397 - 1406, 03.12.2024
Mohamed Bendany
,
Khalid Ait Ben Brahim
,
Youssra El Hamdouni
,
Hajar Oumoussa
,
Zineb Hammi
,
Nouhaila Gadda
,
Najoua Labjar
,
Abdelouahed Dahrouch
,
Souad El Hajjaji
Abstract
A novel electrochemically sensitive sensor has been developed based on Hydrochar derived from Phoenix dactylifera was prepared for the detection of Methylene Blue (MB). These hydrochar (HC) have been used for the modification of the glassy carbon electrode (GCE). This electrode was characterized by scanning electron microscopy (SEM). The electrochemical properties of MB in the modified electrode (HC/GCE) were studied by square-wave voltammetry (SWV) and cyclic voltammetry (CV) under optimized conditions. Owing to a synergistic effect, the HC/GCE exhibited an obvious electrocatalytic effect on positively charged MB. The influence of experimental variables (accumulation time, supporting electrolyte, pH) was studied. Under optimized conditions, the constructed sensor illustrated a linear voltammetric curve for the MB in the concentration interval from 10-4M to 10-10M, with a detection limit of 0.2nM. A study of the effect of interference on sensor functionality was carried out, as well as an analysis of MB recovery in real wastewater samples. The modified electrode offers numerous advantages, including easy preparation, low detection limit, high sensitivity, good repeatability, short response time and an effective detection platform for MB in wastewater.
References
- 1. Hossain MA, Mahbbat Ali M, Islam TSA. Comparative adsorption of Methylene blue on different low cost adsorbents by continuous column process. Int Lett Chem Phys Astron [Internet]. 2018 Jan;77:26–34. Available from: <URL>.
- 2. Kim KH, Ihm SK. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: A review. J Hazard Mater [Internet]. 2011 Feb;186(1):16–34. Available from: <URL>.
- 3. H. A. dyes. J. W. & S. Berneth. In Ullmann’s Encyclopedia of Industrial Chemistry. 2011.
- 4. Carole M, Mathelin C, Croce S, Brasse D, Gairard B, Gharbi M, et al. Methylene blue dye, an accurate dye for sentinel lymph node identification in early breast cancer. Anticancer Res [Internet]. 2009;29:4119–26. Available from: <URL>.
- 5. Chen W, Chen L, Yang S, Chen Z, Qian G, Zhang S, et al. A novel technique for localization of small pulmonary nodules. Chest [Internet]. 2007 May;131(5):1526–31. Available from: <URL>.
- 6. Giuliano AE, Kirgan DM, Guenther JM, Morton DL. Lymphatic mapping and sentinel lymphadenectomy for breast cancer. Ann Surg [Internet]. 1994 Sep;220(3):391–401. Available from: <URL>.
- 7. Bélaz-David N, Decosterd LA, Appenzeller M, Ruetsch YA, Chioléro R, Buclin T, et al. Spectrophotometric determination of methylene blue in biological fluids after ion-pair extraction and evidence of its adsorption on plastic polymers. Eur J Pharm Sci [Internet]. 1997 Nov 1;5(6):335–45. Available from: <URL>.
- 8. Xu J, Dai L, Wu B, Ding T, Zhu J, Lin H, et al. Determination of methylene blue residues in aquatic products by liquid chromatography‐tandem mass spectrometry. J Sep Sci [Internet]. 2009 Dec 11;32(23–24):4193–9. Available from: <URL>.
- 9. Peter C, Hongwan D, Küpfer A, Lauterburg BH. Pharmacokinetics and organ distribution of intravenous and oral methylene blue. Eur J Clin Pharmacol [Internet]. 2000 Jun 19;56(3):247–50. Available from: <URL>.
- 10. Salhab M, Al sarakbi W, Mokbel K. Skin and fat necrosis of the breast following methylene blue dye injection for sentinel node biopsy in a patient with breast cancer. Int Semin Surg Oncol [Internet]. 2005 Dec 28;2(1):26. Available from: <URL>.
- 11. Bai SW, Huh EH, Jung DJ, Park JH, Rha KH, Kim SK, et al. Urinary tract injuries during pelvic surgery: Incidence rates and predisposing factors. Int Urogynecol J [Internet]. 2006 Aug 30;17(4):360–4. Available from: <URL>.
- 12. Lipskikh OI, Korotkova EI, Khristunova YP, Barek J, Kratochvil B. Sensors for voltammetric determination of food azo dyes - A critical review. Electrochim Acta [Internet]. 2018 Jan;260:974–85. Available from: <URL>.
13. Albert M, Lessin MS, Gilchrist BF. Methylene blue: Dangerous dye for neonates. J Pediatr Surg [Internet]. 2003 Aug;38(8):1244–5. Available from: <URL>.
- 14. Sheynkin YR, Starr C, Li PS, Goldstein M. Effect of methylene blue, indigo carmine, and renografin on human sperm motility. Urology [Internet]. 1999 Jan;53(1):214–7. Available from: <URL>.
- 15. Hassan SS, Sirajuddin, Solangi AR, Agheem MH, Junejo Y, Kalwar NH, et al. Ultra-fast catalytic reduction of dyes by ionic liquid recoverable and reusable mefenamic acid derived gold nanoparticles. J Hazard Mater [Internet]. 2011 Jun;190(1–3):1030–6. Available from: <URL>.
- 16. Veisi H, Razeghi S, Mohammadi P, Hemmati S. Silver nanoparticles decorated on thiol-modified magnetite nanoparticles (Fe3O4/SiO2-Pr-S-Ag) as a recyclable nanocatalyst for degradation of organic dyes. Mater Sci Eng C [Internet]. 2019 Apr;97:624–31. Available from: <URL>.
- 17. Singh J, Kumar V, Kim KH, Rawat M. Biogenic synthesis of copper oxide nanoparticles using plant extract and its prodigious potential for photocatalytic degradation of dyes. Environ Res [Internet]. 2019 Oct;177:108569. Available from: <URL>.
- 18. Borwitzky H, Haefeli WE, Burhenne J. Analysis of methylene blue in human urine by capillary electrophoresis. J Chromatogr B [Internet]. 2005 Nov 5;826(1–2):244–51. Available from: <URL>.
- 19. Disanto AR, Wagner JG. Pharmacokinetics of highly ionized drugs I: Methylene blue—whole blood, urine, and tissue assays. J Pharm Sci [Internet]. 1972 Apr;61(4):598–602. Available from: <URL>.
- 20. Disanto AR, Wagner JG. Pharmacokinetics of highly ionized drugs II: Methylene blue—absorption, metabolism, and excretion in man and dog after oral administration. J Pharm Sci [Internet]. 1972 Jul;61(7):1086–90. Available from: <URL>.
- 21. Nicolai SH de A, Rodrigues PR., Agostinho SM., Rubim JC. Electrochemical and spectroelectrochemical (SERS) studies of the reduction of methylene blue on a silver electrode. J Electroanal Chem [Internet]. 2002 May;527(1–2):103–11. Available from: <URL>.
- 22. Amini N, Shamsipur M, Gholivand MB, Barati A. A glassy carbon electrode modified with carbon quantum dots and polyalizarin yellow R dyes for enhanced electrocatalytic oxidation and nanomolar detection of l-cysteine. Microchem J [Internet]. 2017 Mar;131:9–14. Available from: <URL>.
- 23. Mahmoudi-Moghaddam H, Tajik S, Beitollahi H. A new electrochemical DNA biosensor based on modified carbon paste electrode using graphene quantum dots and ionic liquid for determination of topotecan. Microchem J [Internet]. 2019 Nov;150:104085. Available from: <URL>.
- 24. Pedrozo-Penafiel MJ, Miranda-Andrades JR, Gutierrez-Beleño LM, Larrudé DG, Aucelio RQ. Indirect voltammetric determination of thiomersal in influenza vaccine using photo-degradation and graphene quantum dots modified glassy carbon electrode. Talanta [Internet]. 2020 Aug;215:120938. Available from: <URL>.
- 25. Hasanzadeh M, Hashemzadeh N, Shadjou N, Eivazi-Ziaei J, Khoubnasabjafari M, Jouyban A. Sensing of doxorubicin hydrochloride using graphene quantum dot modified glassy carbon electrode. J Mol Liq [Internet]. 2016 Sep;221:354–7. Available from: <URL>.
- 26. Li J, Zhao F, Zhao J, Zeng B. Adsorptive and stripping behavior of methylene blue at gold electrodes in the presence of cationic gemini surfactants. Electrochim Acta [Internet]. 2005 Oct;51(2):297–303. Available from: <URL>.
- 27. Tonlé IK, Ngameni E, Tcheumi HL, Tchiéda V, Carteret C, Walcarius A. Sorption of methylene blue on an organoclay bearing thiol groups and application to electrochemical sensing of the dye. Talanta [Internet]. 2008 Jan 15;74(4):489–97. Available from: <URL>.
- 28. Hassan SS, Nafady A, Sirajuddin, Solangi AR, Kalhoro MS, Abro MI, et al. Ultra-trace level electrochemical sensor for methylene blue dye based on nafion stabilized ibuprofen derived gold nanoparticles. Sensors Actuators B Chem [Internet]. 2015 Mar;208:320–6. Available from: <URL>.
- 29. Hayat M, Shah A, Nisar J, Shah I, Haleem A, Ashiq MN. A novel electrochemical sensing platform for the sensitive detection and degradation monitoring of methylene blue. Catalysts [Internet]. 2022 Mar 8;12(3):306. Available from: <URL>.
- 30. Abioye AM, Ani FN. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review. Renew Sustain Energy Rev [Internet]. 2015 Dec;52:1282–93. Available from: <URL>.
- 31. Yang S, Wang S, Liu X, Li L. Biomass derived interconnected hierarchical micro-meso-macro- porous carbon with ultrahigh capacitance for supercapacitors. Carbon N Y [Internet]. 2019 Jun;147:540–9. Available from: <URL>.
- 32. Xiao K, Liu H, Li Y, Yi L, Zhang X, Hu H, et al. Correlations between hydrochar properties and chemical constitution of orange peel waste during hydrothermal carbonization. Bioresour Technol [Internet]. 2018 Oct;265:432–6. Available from: <URL>.
- 33. Sevilla M, Fuertes AB, Mokaya R. High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials. Energy Environ Sci [Internet]. 2011;4(4):1400–10. Available from: <URL>.
- 34. Madhu R, Veeramani V, Chen SM. Heteroatom-enriched and renewable banana-stem-derived porous carbon for the electrochemical determination of nitrite in various water samples. Sci Rep [Internet]. 2014 Apr 23;4(1):4679. Available from: <URL>.
- 35. Wang L, Zhang Q, Chen S, Xu F, Chen S, Jia J, et al. Electrochemical sensing and biosensing platform based on biomass-derived macroporous carbon materials. Anal Chem [Internet]. 2014 Feb 4;86(3):1414–21. Available from: <URL>.
- 36. Hei Y, Li X, Zhou X, Liu J, Sun M, Sha T, et al. Electrochemical sensing platform based on kelp-derived hierarchical meso-macroporous carbons. Anal Chim Acta [Internet]. 2018 Mar;1003:16–25. Available from: <URL>.
- 37. Espro C, Satira A, Mauriello F, Anajafi Z, Moulaee K, Iannazzo D, et al. Orange peels-derived hydrochar for chemical sensing applications. Sensors Actuators B Chem [Internet]. 2021 Aug;341:130016. Available from: <URL>.
- 38. Fang J, Zhan L, Ok YS, Gao B. Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. J Ind Eng Chem [Internet]. 2018 Jan;57:15–21. Available from: <URL>.
- 39. Pistone A, Espro C. Current trends on turning biomass wastes into carbon materials for electrochemical sensing and rechargeable battery applications. Curr Opin Green Sustain Chem [Internet]. 2020 Dec;26:100374. Available from: <URL>.
- 40. Cancelliere R, Cianciaruso M, Carbone K, Micheli L. Biochar: A sustainable slternative in the development of electrochemical printed platforms. Chemosensors [Internet]. 2022 Aug 22;10(8):344. Available from: <URL>.
- 41. Solangi AG, Tahira A, Bhatti MA, Hulio AA, Chang AS, Solangi ZA, et al. Facile synthesis of NiCo2O4 nanostructures with abundant surface oxygen vacancies, and reduced content of Co and Ni valence states for the efficient and bifunctional electrochemical and photocatalytic oxidation of methylene blue. Microchem J [Internet]. 2024 Apr;199:110046. Available from: <URL>.
- 42. Gong J, Guo Y, Lu J, Cheng Y, Wang H. TEMPO oxidized nanofiber carbon quantum dots/TiO2 composites with enhanced photocatalytic activity for degradation of methylene blue. Chem Phys Lett [Internet]. 2022 Feb;788:139297. Available from: <URL>.
- 43. Belter M, Sajnóg A, Barałkiewicz D. Over a century of detection and quantification capabilities in analytical chemistry – Historical overview and trends. Talanta [Internet]. 2014 Nov;129:606–16. Available from: <URL>.
- 44. Soto PC, Salamanca-Neto CAR, Moraes JT, Sartori ER, Bessegato GG, Lopes F, et al. A novel sensing platform based on self-doped TiO2 nanotubes for methylene blue dye electrochemical monitoring during its electro-Fenton degradation. J Solid State Electrochem [Internet]. 2020 Aug 28;24(8):1951–9. Available from: <URL>.
Year 2024,
Volume: 11 Issue: 4, 1397 - 1406, 03.12.2024
Mohamed Bendany
,
Khalid Ait Ben Brahim
,
Youssra El Hamdouni
,
Hajar Oumoussa
,
Zineb Hammi
,
Nouhaila Gadda
,
Najoua Labjar
,
Abdelouahed Dahrouch
,
Souad El Hajjaji
References
- 1. Hossain MA, Mahbbat Ali M, Islam TSA. Comparative adsorption of Methylene blue on different low cost adsorbents by continuous column process. Int Lett Chem Phys Astron [Internet]. 2018 Jan;77:26–34. Available from: <URL>.
- 2. Kim KH, Ihm SK. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: A review. J Hazard Mater [Internet]. 2011 Feb;186(1):16–34. Available from: <URL>.
- 3. H. A. dyes. J. W. & S. Berneth. In Ullmann’s Encyclopedia of Industrial Chemistry. 2011.
- 4. Carole M, Mathelin C, Croce S, Brasse D, Gairard B, Gharbi M, et al. Methylene blue dye, an accurate dye for sentinel lymph node identification in early breast cancer. Anticancer Res [Internet]. 2009;29:4119–26. Available from: <URL>.
- 5. Chen W, Chen L, Yang S, Chen Z, Qian G, Zhang S, et al. A novel technique for localization of small pulmonary nodules. Chest [Internet]. 2007 May;131(5):1526–31. Available from: <URL>.
- 6. Giuliano AE, Kirgan DM, Guenther JM, Morton DL. Lymphatic mapping and sentinel lymphadenectomy for breast cancer. Ann Surg [Internet]. 1994 Sep;220(3):391–401. Available from: <URL>.
- 7. Bélaz-David N, Decosterd LA, Appenzeller M, Ruetsch YA, Chioléro R, Buclin T, et al. Spectrophotometric determination of methylene blue in biological fluids after ion-pair extraction and evidence of its adsorption on plastic polymers. Eur J Pharm Sci [Internet]. 1997 Nov 1;5(6):335–45. Available from: <URL>.
- 8. Xu J, Dai L, Wu B, Ding T, Zhu J, Lin H, et al. Determination of methylene blue residues in aquatic products by liquid chromatography‐tandem mass spectrometry. J Sep Sci [Internet]. 2009 Dec 11;32(23–24):4193–9. Available from: <URL>.
- 9. Peter C, Hongwan D, Küpfer A, Lauterburg BH. Pharmacokinetics and organ distribution of intravenous and oral methylene blue. Eur J Clin Pharmacol [Internet]. 2000 Jun 19;56(3):247–50. Available from: <URL>.
- 10. Salhab M, Al sarakbi W, Mokbel K. Skin and fat necrosis of the breast following methylene blue dye injection for sentinel node biopsy in a patient with breast cancer. Int Semin Surg Oncol [Internet]. 2005 Dec 28;2(1):26. Available from: <URL>.
- 11. Bai SW, Huh EH, Jung DJ, Park JH, Rha KH, Kim SK, et al. Urinary tract injuries during pelvic surgery: Incidence rates and predisposing factors. Int Urogynecol J [Internet]. 2006 Aug 30;17(4):360–4. Available from: <URL>.
- 12. Lipskikh OI, Korotkova EI, Khristunova YP, Barek J, Kratochvil B. Sensors for voltammetric determination of food azo dyes - A critical review. Electrochim Acta [Internet]. 2018 Jan;260:974–85. Available from: <URL>.
13. Albert M, Lessin MS, Gilchrist BF. Methylene blue: Dangerous dye for neonates. J Pediatr Surg [Internet]. 2003 Aug;38(8):1244–5. Available from: <URL>.
- 14. Sheynkin YR, Starr C, Li PS, Goldstein M. Effect of methylene blue, indigo carmine, and renografin on human sperm motility. Urology [Internet]. 1999 Jan;53(1):214–7. Available from: <URL>.
- 15. Hassan SS, Sirajuddin, Solangi AR, Agheem MH, Junejo Y, Kalwar NH, et al. Ultra-fast catalytic reduction of dyes by ionic liquid recoverable and reusable mefenamic acid derived gold nanoparticles. J Hazard Mater [Internet]. 2011 Jun;190(1–3):1030–6. Available from: <URL>.
- 16. Veisi H, Razeghi S, Mohammadi P, Hemmati S. Silver nanoparticles decorated on thiol-modified magnetite nanoparticles (Fe3O4/SiO2-Pr-S-Ag) as a recyclable nanocatalyst for degradation of organic dyes. Mater Sci Eng C [Internet]. 2019 Apr;97:624–31. Available from: <URL>.
- 17. Singh J, Kumar V, Kim KH, Rawat M. Biogenic synthesis of copper oxide nanoparticles using plant extract and its prodigious potential for photocatalytic degradation of dyes. Environ Res [Internet]. 2019 Oct;177:108569. Available from: <URL>.
- 18. Borwitzky H, Haefeli WE, Burhenne J. Analysis of methylene blue in human urine by capillary electrophoresis. J Chromatogr B [Internet]. 2005 Nov 5;826(1–2):244–51. Available from: <URL>.
- 19. Disanto AR, Wagner JG. Pharmacokinetics of highly ionized drugs I: Methylene blue—whole blood, urine, and tissue assays. J Pharm Sci [Internet]. 1972 Apr;61(4):598–602. Available from: <URL>.
- 20. Disanto AR, Wagner JG. Pharmacokinetics of highly ionized drugs II: Methylene blue—absorption, metabolism, and excretion in man and dog after oral administration. J Pharm Sci [Internet]. 1972 Jul;61(7):1086–90. Available from: <URL>.
- 21. Nicolai SH de A, Rodrigues PR., Agostinho SM., Rubim JC. Electrochemical and spectroelectrochemical (SERS) studies of the reduction of methylene blue on a silver electrode. J Electroanal Chem [Internet]. 2002 May;527(1–2):103–11. Available from: <URL>.
- 22. Amini N, Shamsipur M, Gholivand MB, Barati A. A glassy carbon electrode modified with carbon quantum dots and polyalizarin yellow R dyes for enhanced electrocatalytic oxidation and nanomolar detection of l-cysteine. Microchem J [Internet]. 2017 Mar;131:9–14. Available from: <URL>.
- 23. Mahmoudi-Moghaddam H, Tajik S, Beitollahi H. A new electrochemical DNA biosensor based on modified carbon paste electrode using graphene quantum dots and ionic liquid for determination of topotecan. Microchem J [Internet]. 2019 Nov;150:104085. Available from: <URL>.
- 24. Pedrozo-Penafiel MJ, Miranda-Andrades JR, Gutierrez-Beleño LM, Larrudé DG, Aucelio RQ. Indirect voltammetric determination of thiomersal in influenza vaccine using photo-degradation and graphene quantum dots modified glassy carbon electrode. Talanta [Internet]. 2020 Aug;215:120938. Available from: <URL>.
- 25. Hasanzadeh M, Hashemzadeh N, Shadjou N, Eivazi-Ziaei J, Khoubnasabjafari M, Jouyban A. Sensing of doxorubicin hydrochloride using graphene quantum dot modified glassy carbon electrode. J Mol Liq [Internet]. 2016 Sep;221:354–7. Available from: <URL>.
- 26. Li J, Zhao F, Zhao J, Zeng B. Adsorptive and stripping behavior of methylene blue at gold electrodes in the presence of cationic gemini surfactants. Electrochim Acta [Internet]. 2005 Oct;51(2):297–303. Available from: <URL>.
- 27. Tonlé IK, Ngameni E, Tcheumi HL, Tchiéda V, Carteret C, Walcarius A. Sorption of methylene blue on an organoclay bearing thiol groups and application to electrochemical sensing of the dye. Talanta [Internet]. 2008 Jan 15;74(4):489–97. Available from: <URL>.
- 28. Hassan SS, Nafady A, Sirajuddin, Solangi AR, Kalhoro MS, Abro MI, et al. Ultra-trace level electrochemical sensor for methylene blue dye based on nafion stabilized ibuprofen derived gold nanoparticles. Sensors Actuators B Chem [Internet]. 2015 Mar;208:320–6. Available from: <URL>.
- 29. Hayat M, Shah A, Nisar J, Shah I, Haleem A, Ashiq MN. A novel electrochemical sensing platform for the sensitive detection and degradation monitoring of methylene blue. Catalysts [Internet]. 2022 Mar 8;12(3):306. Available from: <URL>.
- 30. Abioye AM, Ani FN. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review. Renew Sustain Energy Rev [Internet]. 2015 Dec;52:1282–93. Available from: <URL>.
- 31. Yang S, Wang S, Liu X, Li L. Biomass derived interconnected hierarchical micro-meso-macro- porous carbon with ultrahigh capacitance for supercapacitors. Carbon N Y [Internet]. 2019 Jun;147:540–9. Available from: <URL>.
- 32. Xiao K, Liu H, Li Y, Yi L, Zhang X, Hu H, et al. Correlations between hydrochar properties and chemical constitution of orange peel waste during hydrothermal carbonization. Bioresour Technol [Internet]. 2018 Oct;265:432–6. Available from: <URL>.
- 33. Sevilla M, Fuertes AB, Mokaya R. High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials. Energy Environ Sci [Internet]. 2011;4(4):1400–10. Available from: <URL>.
- 34. Madhu R, Veeramani V, Chen SM. Heteroatom-enriched and renewable banana-stem-derived porous carbon for the electrochemical determination of nitrite in various water samples. Sci Rep [Internet]. 2014 Apr 23;4(1):4679. Available from: <URL>.
- 35. Wang L, Zhang Q, Chen S, Xu F, Chen S, Jia J, et al. Electrochemical sensing and biosensing platform based on biomass-derived macroporous carbon materials. Anal Chem [Internet]. 2014 Feb 4;86(3):1414–21. Available from: <URL>.
- 36. Hei Y, Li X, Zhou X, Liu J, Sun M, Sha T, et al. Electrochemical sensing platform based on kelp-derived hierarchical meso-macroporous carbons. Anal Chim Acta [Internet]. 2018 Mar;1003:16–25. Available from: <URL>.
- 37. Espro C, Satira A, Mauriello F, Anajafi Z, Moulaee K, Iannazzo D, et al. Orange peels-derived hydrochar for chemical sensing applications. Sensors Actuators B Chem [Internet]. 2021 Aug;341:130016. Available from: <URL>.
- 38. Fang J, Zhan L, Ok YS, Gao B. Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. J Ind Eng Chem [Internet]. 2018 Jan;57:15–21. Available from: <URL>.
- 39. Pistone A, Espro C. Current trends on turning biomass wastes into carbon materials for electrochemical sensing and rechargeable battery applications. Curr Opin Green Sustain Chem [Internet]. 2020 Dec;26:100374. Available from: <URL>.
- 40. Cancelliere R, Cianciaruso M, Carbone K, Micheli L. Biochar: A sustainable slternative in the development of electrochemical printed platforms. Chemosensors [Internet]. 2022 Aug 22;10(8):344. Available from: <URL>.
- 41. Solangi AG, Tahira A, Bhatti MA, Hulio AA, Chang AS, Solangi ZA, et al. Facile synthesis of NiCo2O4 nanostructures with abundant surface oxygen vacancies, and reduced content of Co and Ni valence states for the efficient and bifunctional electrochemical and photocatalytic oxidation of methylene blue. Microchem J [Internet]. 2024 Apr;199:110046. Available from: <URL>.
- 42. Gong J, Guo Y, Lu J, Cheng Y, Wang H. TEMPO oxidized nanofiber carbon quantum dots/TiO2 composites with enhanced photocatalytic activity for degradation of methylene blue. Chem Phys Lett [Internet]. 2022 Feb;788:139297. Available from: <URL>.
- 43. Belter M, Sajnóg A, Barałkiewicz D. Over a century of detection and quantification capabilities in analytical chemistry – Historical overview and trends. Talanta [Internet]. 2014 Nov;129:606–16. Available from: <URL>.
- 44. Soto PC, Salamanca-Neto CAR, Moraes JT, Sartori ER, Bessegato GG, Lopes F, et al. A novel sensing platform based on self-doped TiO2 nanotubes for methylene blue dye electrochemical monitoring during its electro-Fenton degradation. J Solid State Electrochem [Internet]. 2020 Aug 28;24(8):1951–9. Available from: <URL>.