Review
BibTex RIS Cite

Nano-Catalytic Synthesis of 5-Substituted 1H Tetrazole Derivatives and Biological Applications

Year 2024, Volume: 11 Issue: 4, 1495 - 1514, 03.12.2024
https://doi.org/10.18596/jotcsa.1436801

Abstract

This review explores the innovative use of nano-catalysts in the synthesis of 5-substituted 1H-tetrazole derivatives, highlighting their significant biological applications. The novel methodologies discussed demonstrate enhanced efficiency and selectivity in the production of these compounds. Key findings include the optimization of reaction conditions and the discovery of new catalytic pathways that improve yield and reduce reaction time. The synthesized tetrazole derivatives exhibit strong potential as therapeutic agents due to their biological activity. This work provides a comprehensive overview of the state-of-the-art techniques in nano-catalytic synthesis, emphasizing their practical applications in medicinal chemistry and materials science.

Ethical Statement

Ethical approval was not required, as the study conducted did not involve any ethical concerns or issues.

References

  • 1. Butler RN, Fox A, Collier S, Burke LA. Pentazole chemistry: The mechanism of the reaction of aryldiazonium chlorides with azide ion at −80 °C: Concerted versus stepwise formation of arylpentazoles, detection of a pentazene intermediate, a combined 1H and 15N NMR experimental and ab initio theoretical study. J Chem Soc Perkin Trans 2 [Internet]. 1998 Jan 1;1998(10):2243–8. Available from: <URL>.
  • 2. Jursic BS, Leblanc BW. Preparation of tetrazoles from organic nitriles and sodium azide in micellar media. J Heterocycl Chem [Internet]. 1998 Mar 11;35(2):405–8. Available from: <URL>.
  • 3. Izsák D, Klapötke TM, Lutter FH, Pflüger C. Tailoring the energetic properties of 5‐(5‐Amino‐1,2,3‐triazol‐4‐yl)tetraz­ole and ts derivatives by salt formation: from sensitive primary to insensitive secondary explosives. Eur J Inorg Chem [Internet]. 2016 Apr 18;2016(11):1720–9. Available from: <URL>.
  • 4. Singh H, Singh Chawla A, Kapoor VK, Paul D, Malhotra RK. Medicinal chemistry of tetrazoles. In: Progress in Medicinal Chemistry [Internet]. Elsevier; 1980. p. 151–83. Available from: <URL>.
  • 5. Okabayashi T, Kano H, Makisumi Y. Action of substituted azaindolizines on microorganisms. I. action on lactic acid bacteria. Chem Pharm Bull [Internet]. 1960 Feb 25;8(2):157–62. Available from: <URL>.
  • 6. Sangal SK, Kumar A. Synthesis of some new antifungal tetrazolyl sulfides. J. Ind. Chem. Soc. 1986; 63; 351–3.
  • 7. Witkowski JT, Robins RK, Sidwell RW, Simon LN. Design, synthesis, and broad spectrum antiviral activity of 1-.beta.-D-ribofuranosyl-1,2,4-triazole-3-carboxamide and related nucleosides. J Med Chem [Internet]. 1972 Nov 1;15(11):1150–4. Available from: <URL>.
  • 8. Stewart KD, Loren S, Frey L, Otis E, Klinghofer V, Hulkower KI. Discovery of a new cyclooxygenase-2 lead compound through 3-D database searching and combinatorial chemistry. Bioorg Med Chem Lett [Internet]. 1998 Mar 3;8(5):529–34. Available from: <URL>.
  • 9. Ray SM, Lahiri SC. Studies on 5‐(Indan‐1′‐yl) tetrazoles as potential non‐steroidal antiinflammatory agents. ChemInform. 1990;21(46).
  • 10. Goodman RP, Schaap IAT, Tardin CF, Erben CM, Berry RM, Schmidt CF, et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofab- rication. Science [Internet]. 2005 Dec 9;310 (5754):1661–5. Available from: <URL>.
  • 11. Regan BC, Aloni S, Jensen K, Ritchie RO, Zettl A. Nanocrystal-powered nanomotor. Nano Lett [Internet]. 2005 Sep 1;5(9):1730–3. Available from: <URL>.
  • 12. Grunes J, Zhu J, Somorjai GA. Catalysis and nanoscience. Chem Commun [Internet]. 2003 Sep 2;3(18):2257–60. Available from: <URL>.
  • 13. Somorjai GA, McCrea K. Roadmap for catalysis science in the 21st century: A personal view of building the future on past and present accomplishments. Appl Catal A Gen [Internet]. 2001 Dec 20;222(1–2):3–18. Available from: <URL>.
  • 14. Roy A, Bharadvaja N. Silver nanoparticle synthesis from Plumbago zeylanica and its dye degradation activity. Bioinspired, Biomim Nanobiomaterials [Internet]. 2019 Jun 1;8(2):130–40. Available from: <URL>.
  • 15. Nacci A, Cioffi N. Nano-catalysts and nano-technologies for green organic synthesis. Molecules [Internet]. 2011 Feb 9;16(2):1452–3. Available from: <URL>.
  • 16. Patil A, Mishra V, Thakur S, Riyaz B, Kaur A, Khursheed R, et al. Nanotechnology derived nanotools in biomedical perspectives: An update. Curr Nanosci [Internet]. 2019 Apr 26;15(2):137–46. Available from: <URL>.
  • 17. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J Nanotechnol [Internet]. 2018 Apr 3;9(1):1050–74. Available from: <URL>.
  • 18. Tan YY, Yap PK, Xin Lim GL, Mehta M, Chan Y, Ng SW, et al. Perspectives and advancements in the design of nanomaterials for targeted cancer theranostics. Chem Biol Interact [Internet]. 2020 Sep 25;329:109221. Available from: <URL>.
  • 19. Senanayake SD, Stacchiola D, Rodriguez JA. Unique properties of ceria nanoparticles supported on metals: Novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction. Acc Chem Res [Internet]. 2013 Aug 20;46(8):1702–11. Available from: <URL>.
  • 20. Zahin N, Anwar R, Tewari D, Kabir MT, Sajid A, Mathew B, et al. Nanoparticles and its biomedical applications in health and diseases: Special focus on drug delivery. Environ Sci Pollut Res [Internet]. 2020 Jun 11;27(16):19151–68. Available from: <URL>.
  • 21. C. Thomas S, Harshita, Kumar Mishra P, Talegaonkar S. Ceramic nanoparticles: Fabrication methods and applications in drug delivery. Curr Pharm Desig [Internet]. 2015;21(42):6165–88. Available from: <URL>.
  • 22. Chaudhary RG, Bhusari GS, Tiple AD, Rai AR, Somkuvar SR, Potbhare AK, et al. Metal/metal oxide nanoparticles: Toxicity, applications, and future prospects. Curr Pharm Des [Internet]. 2019 Dec 17;25(37):4013–29. Available from: <URL>.
  • 23. Loomba L, Scarabelli T. Metallic nanoparticles and their medicinal potential. Part II: Aluminosilicates, nanobiomagnets, quantum dots and cochleates. Ther Deliv [Internet]. 2013 Sep 11;4(9):1179–96. Available from: <URL>.
  • 24. Mishra V, Bansal KK, Verma A, Yadav N, Thakur S, Sudhakar K, et al. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics [Internet]. 2018 Oct 18;10(4):191. Available from: <URL>.
  • 25. Puente Santiago AR, Fernandez‐Delgado O, Gomez A, Ahsan MA, Echegoyen L. Fullerenes as key components for low‐dimensional (photo)electro-catalytic nanohybrid materials. Angew Chem Int Ed [Internet]. 2021 Jan 4;60(1):122–41. Available from: <URL>.
  • 26. Tajzad I, Ghasali E. Production methods of CNT-reinforced al matrix composites: A review. J Compos Compd [Internet]. 2020 Feb 1;2(1):1–9. Available from: <URL>.
  • 27. Candelaria SL, Shao Y, Zhou W, Li X, Xiao J, Zhang JG, et al. Nanostructured carbon for energy storage and conversion. Nano Energy [Internet]. 2012 Mar 1;1(2):195–220. Available from: <URL>.
  • 28. Yan K, Chen A. Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized noble-metal-free Cu–Cr catalyst. Energy [Internet]. 2013 Sep 1;58:357–63. Available from: <URL>.
  • 29. Choudary BM, Mulukutla RS, Klabunde KJ. Benzylation of aromatic compounds with different crystallites of MgO. J Am Chem Soc [Internet]. 2003 Feb 1;125(8):2020–1. Available from: <URL>.
  • 30. Kreibig U, Vollmer M. Optical properties of metal clusters [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 1995. (Springer Series in Materials Science; vol. 25). Available from: <URL>.
  • 31. Liz-Marzán LM. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir [Internet]. 2006 Jan 1;22(1):32–41. Available from: <URL>.
  • 32. Tao AR, Habas S, Yang P. Shape control of colloidal metal nanocrystals. Small [Internet]. 2008 Mar 3;4(3):310–25. Available from: <URL>.
  • 33. Toshima N, Yonezawa T. Bimetallic nanoparticles—novel materials for chemical and physical applications. New J Chem [Internet]. 1998 Jan 1;22(11):1179–201. Available from: <URL>.
  • 34. Gladysz JA. Recoverable catalysts. Ultimate goals, criteria of evaluation, and the green chemistry interface. Pure Appl Chem [Internet]. 2001 Aug 1;73(8):1319–24. Available from: <URL>.
  • 35. Sharma N, Ojha H, Bharadwaj A, Pathak DP, Sharma RK. Preparation and catalytic applications of nanomaterials: A review. RSC Adv [Internet]. 2015 Jun 15;5(66):53381–403. Available from: <URL>.
  • 36. Kajbafvala A, Ghorbani H, Paravar A, Samberg JP, Kajbafvala E, Sadrnezhaad SK. Effects of morphology on photocatalytic performance of Zinc oxide nanostructures synthesized by rapid microwave irradiation methods. Superlattices Microstruct [Internet]. 2012 Apr 1;51(4):512–22. Available from: <URL>.
  • 37. Mazloumi M, Shahcheraghi N, Kajbafvala A, Zanganeh S, Lak A, Mohajerani MS, et al. 3D bundles of self-assembled lanthanum hydroxide nanorods via a rapid microwave-assisted route. J Alloys Compd [Internet]. 2009 Apr 3;473(1–2):283–7. Available from: <URL>.
  • 38. Bayati MR, Molaei R, Kajbafvala A, Zanganeh S, Zargar HR, Janghorban K. Investigation on hydrophilicity of micro-arc oxidized TiO2 nano/micro-porous layers. Electrochim Acta [Internet]. 2010 Aug 1;55(20):5786–92. Available from: <URL>.
  • 39. Kajbafvala A, Samberg JP, Ghorbani H, Kajbafvala E, Sadrnezhaad SK. Effects of initial precursor and microwave irradiation on step-by-step synthesis of zinc oxide nano-architectures. Mater Lett [Internet]. 2012 Jan 15;67(1):342–5. Available from: <URL>.
  • 40. Zanganeh S, Kajbafvala A, Zanganeh N, Molaei R, Bayati MR, Zargar HR, et al. Hydrothermal synthesis and characterization of TiO2 nanostructures using LiOH as a solvent. Adv Powder Technol [Internet]. 2011 May 1;22(3):336–9. Available from: <URL>.
  • 41. Wittenberger SJ. Recent developments in tetrazole chemistry. A review. Org Prep Proced Int [Internet]. 1994 Oct;26(5):499–531. Available from: <URL>.
  • 42. Patani GA, LaVoie EJ. Bioisosterism:  A rational approach in drug design. Chem Rev [Internet]. 1996 Jan 1;96(8):3147–76. Available from: <URL>.
  • 43. Mittal R, Awasthi SK. Recent advances in the synthesis of 5-substituted 1H-tetrazoles: A complete survey (2013–2018). Synthesis [Internet]. 2019 Oct 1;51(20):3765–83. Available from: <URL>.
  • 44. Liljebris C, Larsen SD, Ogg D, Palazuk BJ, Bleasdale JE. Investigation of potential bioisosteric replacements for the carboxyl groups of peptidomimetic inhibitors of protein tyrosine phosphatase 1B:  Identification of a tetrazole-containing inhibitor with cellular activity. J Med Chem [Internet]. 2002 Apr 1;45(9):1785–98. Available from: <URL>.
  • 45. Herr RJ. 5-Substituted-1H-tetrazoles as carboxylic acid isosteres: Medicinal chemistry and synthetic methods. Bioorg Med Chem [Internet]. 2002 Nov 1;10(11):3379–93. Available from: <URL>.
  • 46. Kraus JL. Isosterism and molecular modification in drug design : Tetrazole analogue of GABA : Effects on enzymes of the γ-aminobutyrate system. Pharmacol Res Commun [Internet]. 1983 Feb 1;15(2):183–9. Available from: <URL>.
  • 47. Roh J, Vávrová K, Hrabálek A. Synthesis and functionalization of 5‐substituted tetrazoles. European J Org Chem [Internet]. 2012 Nov 8;2012(31):6101–18. Available from: <URL>.
  • 48. Alterman M, Hallberg A. Fast microwave-assisted preparation of aryl and vinyl nitriles and the corresponding tetrazoles from organo-halides. J Org Chem [Internet]. 2000 Nov 1;65(23):7984–9. Available from: <URL>.
  • 49. Fürmeier S, Metzger JO. Synthesis of new heterocyclic fatty compounds. European J Org Chem [Internet]. 2003 Mar 11;2003(5):885–93. Available from: <URL>.
  • 50. Gutmann B, Roduit J, Roberge D, Kappe CO. Synthesis of 5‐substituted 1H ‐tetrazoles from nitriles and hydrazoic acid by using a safe and scalable high‐temperature microreactor approach. Angew Chemie Int Ed [Internet]. 2010 Sep 17;49(39):7101–5. Available from: <URL>.
  • 51. Amantini D, Beleggia R, Fringuelli F, Pizzo F, Vaccaro L. TBAF-catalyzed synthesis of 5-substituted 1H-tetrazoles under solventless conditions. J Org Chem [Internet]. 2004 Apr 1;69(8):2896–8. Available from: <URL>.
  • 52. Myznikov L V., Roh J, Artamonova T V., Hrabalek A, Koldobskii GI. Tetrazoles: LI. Synthesis of 5-substituted tetrazoles under microwave activation. Russ J Org Chem [Internet]. 2007 May;43(5):765–7. Available from: <URL>.
  • 53. Sajjadi M, Nasrollahzadeh M, Ghafuri H, Baran T, Orooji Y, Baran NY, et al. Modified chitosan-zeolite supported Pd nanoparticles: A reusable catalyst for the synthesis of 5-substituted-1H-tetrazoles from aryl halides. Int J Biol Macromol [Internet]. 2022 Jun 1;209:1573–85. Available from: <URL>.
  • 54. Himo F, Demko ZP, Noodleman L, Sharpless KB. Mechanisms of tetrazole formation by addition of azide to nitriles. J Am Chem Soc [Internet]. 2002 Oct 1;124(41):12210–6. Available from: <URL>.
  • 55. Esirden İ, Erken E, Kaya M, Sen F. Monodisperse Pt NPs@rGO as highly efficient and reusable heterogeneous catalysts for the synthesis of 5-substituted 1H-tetrazole derivatives. Catal Sci Technol [Internet]. 2015 Aug 17;5(9):4452–7. Available from: <URL>.
  • 56. Abdollahi-Alibeik M, Moaddeli A. Multi-component one-pot reaction of aldehyde, hydroxylamine and sodium azide catalyzed by Cu-MCM-41 nanoparticles: A novel method for the synthesis of 5-substituted 1H-tetrazole derivatives. New J Chem [Internet]. 2015 Mar 5;39(3):2116–22. Available from: <URL>.
  • 57. Kumar A, Kumar S, Khajuria Y, Awasthi SK. A comparative study between heterogeneous stannous chloride loaded silica nanoparticles and a homogeneous stannous chloride catalyst in the synthesis of 5-substituted 1H-tetrazole. RSC Adv [Internet]. 2016 Aug 8;6(79):75227–33. Available from: <URL>.
  • 58. Nasrollahzadeh M, Nezafat Z, Bidgoli NSS, Shafiei N. Use of tetrazoles in catalysis and energetic applications: Recent developments. Mol Catal [Internet]. 2021 Aug 1;513:111788. Available from: <URL>.
  • 59. Razavi N, Akhlaghinia B. Cu(ii) immobilized on aminated epichlorohydrin activated silica (CAES): as a new, green and efficient nanocatalyst for preparation of 5-substituted-1H-tetrazoles. RSC Adv [Internet]. 2015 Jan 20;5(16):12372–81. Available from: <URL>.
  • 60. Yıldız Y, Esirden İ, Erken E, Demir E, Kaya M, Şen F. Microwave (Mw)‐assisted synthesis of 5‐substituted 1H‐tetrazoles via [3+2] cycloaddition catalyzed by Mw‐Pd/Co nanoparticles decorated on multi‐walled carbon nanotubes. ChemistrySelect [Internet]. 2016 Jun 9;1(8):1695–701. Available from: <URL>.
  • 61. Benson FR. The chemistry of the tetrazoles. Chem Rev [Internet]. 1947 Aug 1;41(1):1–61. Available from: <URL>.
  • 62. Hantzsch A, Vagt A. Ueber das sogenannte diazoguanidin. Justus Liebigs Ann Chem [Internet]. 1901 Jan 24;314(3):339–69. Available from: <URL>.
  • 63. Mihina JS, Herbst RM. The reaction of nitriles with hydrazoic acid: Synthesis of monosubstituted tetrazoles. J Org Chem [Internet]. 1950 Sep 1;15(5):1082–92. Available from: <URL>.
  • 64. Herbst RM, Wilson KR. Apparent acidic dissociation of some 5-aryltetrazoles 1. J Org Chem [Internet]. 1957 Oct 1;22(10):1142–5. Available from: <URL>.
  • 65. Finnegan WG, Henry RA, Lofquist R. An improved synthesis of 5-substituted tetrazoles. J Am Chem Soc [Internet]. 1958 Aug 1;80(15):3908–11. Available from: <URL>.
  • 66. Kumar A, Narayanan R, Shechter H. Rearrangement reactions of (hydroxyphenyl) carbenes. J Org Chem [Internet]. 1996 Jan 1;61(13):4462–5. Available from: <URL>.
  • 67. Demko ZP, Sharpless KB. Preparation of 5-substituted 1H-tetrazoles from nitriles in water. J Org Chem [Internet]. 2001 Nov 1;66(24):7945–50. Available from: <URL>.
  • 68. Lakshmi Kantam M, Kumar KBS, Sridhar C. Nanocrystalline ZnO as an efficient heterogeneous catalyst for the synthesis of 5‐substituted 1H‐tetrazoles. Adv Synth Catal [Internet]. 2005 Jul 19;347(9):1212–4. Available from: <URL>.
  • 69. Kumar A, Ramani T, Sreedhar B. Magnetically separable CuFe2O4 nanoparticles in PEG: A recyclable catalytic system for the amination of aryl iodides. Synlett. 2013;24(8):938–42.
  • 70. Rama V, Kanagaraj K, Pitchumani K. Syntheses of 5-substituted 1H-tetrazoles catalyzed by reusable CoY zeolite. J Org Chem [Internet]. 2011 Nov 4;76(21):9090–5. Available from: <URL>.
  • 71. Dehghani F, Sardarian AR, Esmaeilpour M. Salen complex of Cu(II) supported on superparamagnetic Fe3O4@SiO2 nanoparticles: An efficient and recyclable catalyst for synthesis of 1- and 5-substituted 1H-tetrazoles. J Organomet Chem [Internet]. 2013 Oct 15;743:87–96. Available from: <URL>.
  • 72. Mani P, Sharma C, Kumar S, Awasthi SK. Efficient heterogeneous silver nanoparticles catalyzed one-pot synthesis of 5-substituted 1H-tetrazoles. J Mol Catal A Chem [Internet]. 2014 Oct 1;392:150–6. Available from: <URL>.
  • 73. Dallinger D, Kappe CO. Microwave-assisted synthesis in water as solvent. Chem Rev [Internet]. 2007 Jun 1;107(6):2563–91. Available from: <URL>.
  • 74. de la Hoz A, Loupy A. Microwaves in organic synthesis [Internet]. John Wiley & Sons; 2013. Available from: <URL>.
  • 75. Roberts BA, Strauss CR. Toward rapid, “green”, predictable microwave-assisted synthesis. Acc Chem Res [Internet]. 2005 Aug 1;38(8):653–61. Available from: <URL>.
  • 76. Yoneyama H, Usami Y, Komeda S, Harusawa S. Efficient transformation of inactive nitriles into 5-substituted 1H-tetrazoles using microwave irradiation and their applications. Synthesis [Internet]. 2013;45(8):1051–9. Available from: <URL>.
  • 77. Shelkar R, Singh A, Nagarkar J. Amberlyst-15 catalyzed synthesis of 5-substituted 1-H-tetrazole via [3+2] cycloaddition of nitriles and sodium azide. Tetrahedron Lett [Internet]. 2013 Jan 2;54(1):106–9. Available from: <URL>.
  • 78. Sridhar M, Mallu KKR, Jillella R, Godala KR, Beeram CR, Chinthala N. One-step synthesis of 5-substituted 1H-tetrazoles from an aldehyde by reaction with acetohydroxamic acid and sodium azide under Bi (OTf) 3 catalysis. Synthesis [Internet]. 2013;45(4):507–10. Available from: <URL>.
  • 79. Fazeli A, Oskooie HA, Beheshtiha YS, Heravi MM, Valizadeh H, Bamoharram FF. Heteropolyacid catalyzed click synthesis of 5-substituted 1H-tetrazoles from [bmim]N3 and nitriles under solvent-free conditions. Monatshefte für Chemie - Chem Mon [Internet]. 2013 Sep 12;144(9):1407–10. Available from: <URL>.
  • 80. Rekunge DS, Indalkar KS, Chaturbhuj GU. Activated Fuller’s earth as an inexpensive, eco-friendly, efficient catalyst for the synthesis of 5-aryl 1-H-tetrazole via [3+2] cycloaddition of nitriles and sodium azide. Tetrahedron Lett [Internet]. 2016 Dec 21;57(51):5815–9. Available from: <URL>.
  • 81. Kolo K, Sajadi SM. An efficient synthesis of 5-alkylthio and 5-arylthiotetrazoles using Fe3O4 nanoparticles as a magnetically recoverable and reusable catalyst. Lett Org Chem [Internet]. 2013;10:688–92. Available from: <URL>.
  • 82. Sharghi H, Ebrahimpourmoghaddam S, Doroodmand MM. Facile synthesis of 5-substituted-1H-tetrazoles and 1-substituted-1H-tetrazoles catalyzed by recyclable 4′-phenyl-2,2′:6′,2″-terpyridine copper(II) complex immobilized onto activated multi-walled carbon nanotubes. J Organomet Chem [Internet]. 2013 Aug 15;738:41–8. Available from: <URL>.
  • 83. Esmaeilpour M, Sardarian AR, Firouzabadi H. N-heterocyclic carbene-Pd(II) complex based on theophylline supported on Fe3O4@SiO2 nanoparticles: Highly active, durable and magnetically separable catalyst for green Suzuki-Miyaura and Sonogashira-Hagihara coupling reactions. J Organomet Chem [Internet]. 2018 Oct 15;873:22–34. Available from: <URL>.
  • 84. Kumar S, Kumar A, Agarwal A, Awasthi SK. Synthetic application of gold nanoparticles and auric chloride for the synthesis of 5-substituted 1H-tetrazoles. RSC Adv [Internet]. 2015 Feb 24;5(28):21651–8. Available from: <URL>.
  • 85. Abrishami F, Ebrahimikia M, Rafiee F. Facile synthesis of 5-substituted-1H-tetrazoles catalyzed by reusable nickel zirconium phosphate nanocatalyst. Iran J Catal [Internet]. 2024 Feb 3;6(3):245–51. Available from: <URL>.
  • 86. Erken E, Esirden İ, Kaya M, Sen F. A rapid and novel method for the synthesis of 5-substituted 1H-tetrazole catalyzed by exceptional reusable monodisperse Pt NPs@AC under the microwave irradiation. RSC Adv [Internet]. 2015 Aug 11;5(84):68558–64. Available from: <URL>.
  • 87. Safaei-Ghomi J, Paymard-Samani S. Facile and rapid synthesis of 5-substituted 1H-tetrazoles VIA a multicomponent domino reaction using nickel(II) oxide nanoparticles as catalyst. Chem Heterocycl Compd [Internet]. 2015 Feb 6;50(11):1567–74. Available from: <URL>.
  • 88. Esmaeilpour M, Javidi J, Nowroozi Dodeji F, Mokhtari Abarghoui M. Facile synthesis of 1- and 5-substituted 1H-tetrazoles catalyzed by recyclable ligand complex of copper(II) supported on superparamagnetic Fe3O4@SiO2 nanoparticles. J Mol Catal A Chem [Internet]. 2014 Nov 1;393:18–29. Available from: <URL>.
  • 89. Kumar Akula R, S. Adimulam C, Gangaram S, Kengiri R, Banda N, R. Pamulaparthy S. CuFe2O4 Nanoparticle mediated method for the synthesis of 5-substituted 1H-tetrazoles from (E)-aldoximes. Lett Org Chem [Internet]. 2014 Apr;11(6):440–5. Available from: <URL>.
  • 90. Zamani L, Mirjalili BBF, Zomorodian K, Zomorodian S. Synthesis and characterization of 5-substituted 1H-tetrazoles in the presence of nano-TiCl4.SiO2. South African J Chem [Internet]. 2015;68:133–7. Available from: <URL>.
  • 91. Zarghani M, Akhlaghinia B. Magnetically separable Fe3O4@chitin as an eco-friendly nanocatalyst with high efficiency for green synthesis of 5-substituted-1H-tetrazoles under solvent-free conditions. RSC Adv [Internet]. 2016 Mar 29;6(38):31850–60. Available from: <URL>.
  • 92. Ghorbani-Choghamarani A, Shiri L, Azadi G. The first report on the eco-friendly synthesis of 5-substituted 1H-tetrazoles in PEG catalyzed by Cu(ii) immobilized on Fe3O4@SiO2@ l-arginine as a novel, recyclable and non-corrosive catalyst. RSC Adv [Internet]. 2016 Apr 4;6(39):32653–60. Available from: <URL>.
  • 93. Soltani Rad MN, Behrouz S, Sadeghi Dehchenari V, Hoseini SJ. Cu/Graphene/Clay nanohybrid: A highly efficient heterogeneous nanocatalyst for synthesis of new 5‐substituted‐1H‐tetrazole derivatives tethered to bioactive N ‐heterocyclic cores. J Heterocycl Chem [Internet]. 2017 Jan 18;54(1):355–65. Available from: <URL>.
  • 94. Nikoorazm M, Ghorbani-Choghamaranai A, Khanmoradi M, Moradi P. Synthesis and characterization of Cu(II)-Adenine-MCM-41 as stable and efficient mesoporous catalyst for the synthesis of 5-substituted 1H-tetrazoles and 1H-indazolo [1,2-b]phthalazine-triones. J Porous Mater [Internet]. 2018 Dec 1;25(6):1831–42. Available from: <URL>.
  • 95. Sardarian AR, Eslahi H, Esmaeilpour M. Copper(II) Complex supported on Fe3O4@SiO2 coated by polyvinyl alcohol as reusable nanocatalyst in N ‐arylation of amines and N(H) ‐ heterocycles and green synthesis of 1H‐tetrazoles. ChemistrySelect [Internet]. 2018 Feb 7;3(5):1499–511. Available from: <URL>.
  • 96. Moradi P, Ghorbani‐Choghamarani A. Efficient synthesis of 5‐substituted tetrazoles catalysed by palladium– S ‐methylisothiourea complex supported on boehmite nanoparticles. Appl Organomet Chem [Internet]. 2017 May 4;31(5):e3602. Available from: <URL>.
  • 97. Ram VJ, Sethi A, Nath M, Pratap R. The chemistry of heterocycles: Nomenclature and chemistry of three-to-five membered heterocycles [Internet]. The Chemistry of Heterocycles: Nomenclature and Chemistry of Three to Five Membered Heterocycles. Elsevier; 2019. 1–489 p. Available from: <URL>.
  • 98. Schocken MJ, Creekmore RW, Theodoridis G, Nystrom GJ, Robinson RA. Microbial transformation of the tetrazolinone herbicide F5231. Appl Environ Microbiol [Internet]. 1989 May;55(5):1220–2. Available from: <URL>.
  • 99. Ariza-Roldán A, López-Cardoso M, Tlahuext H, Vargas-Pineda G, Román-Bravo P, Acevedo-Quiroz M, et al. Synthesis, characterization, and biological evaluation of eight new organotin(IV) complexes derived from (1R, 2S) ephedrinedithiocarbamate ligand. Inorganica Chim Acta [Internet]. 2022 May 1;534:120810. Available from: <URL>.
  • 100. Malik MA, Al-Thabaiti SA, Malik MA. Synthesis, structure optimization and antifungal screening of novel tetrazole ring bearing acyl-hydrazones. Int J Mol Sci [Internet]. 2012 Aug 30;13(9):10880–98. Available from: <URL>.
  • 101. Muralikrishna S, Raveendrareddy P, Ravindranath L, Harikrishna S, Jagadeeswara P. Synthesis characterization and antitumor activity of thiazole derivatives containing indole moiety bearing-tetrazole. Der Pharma Chem [Internet]. 2013;5(6):87–93. Available from: <URL>.
  • 102. Bachar SC, Lahiri SC. Synthesis of chloro and bromo substituted 5-(indan-1’-yl)tetrazoles and 5-(indan-1’-yl)methyltetrazoles as possible analgesic agents. Die Pharm - An Int J Pharm Sci [Internet]. 2004;59(6):435–8. Available from: <URL>.
  • 103. Ostrovskii VA, Koren AO. Alkylation and related electrophilic reactions at endocyclic nitrogen atoms in the chemistry of tetrazoles. Heterocycles [Internet]. 2000 Jun 1;53(6):1421–48. Available from: <URL>.
  • 104. Mohite P B, Bhaskar VH. Potential pharmacological activities of tetrazoles in the new millennium. Int J PharmTech Res CODEN [Internet]. 3(3):1557–66. Available from: <URL>.
  • 105. Adamec J, Waisser K, Kuneš J, Kaustová J. A note on the antitubercular activities of 1‐Aryl‐5‐benzylsulfanyltetrazoles. Arch Pharm (Weinheim) [Internet]. 2005 Aug 1;338(8):385–9. Available from: <URL>.
  • 106. Katritzky AR, Jaina R, Petrukhin R, Denisenko S, Schelenz T. QSAR correlations of the algistatic Activity of 5-Amino-1-Aryl-1H-Tetrazoles. SAR QSAR Environ Res [Internet]. 2001 Jun 1;12(3):259–66. Available from: <URL>.
  • 107. Li Y, Li PK, Roberts MJ, Arend RC, Samant RS, Buchsbaum DJ. Multi-targeted therapy of cancer by niclosamide: A new application for an old drug. Cancer Lett [Internet]. 2014 Jul 10;349(1):8–14. Available from: <URL>.
  • 108. Berquin IM, Edwards IJ, Chen YQ. Multi-targeted therapy of cancer by omega-3 fatty acids. Cancer Lett [Internet]. 2008 Oct 8;269(2):363–77. Available from: <URL>.
  • 109. Block KI, Gyllenhaal C, Lowe L, Amedei A, Amin ARMR, Amin A, et al. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin Cancer Biol [Internet]. 2015 Dec 1;35:S276–304. Available from: <URL>.
  • 110. Shamsuzzaman, Asif M, Ali A, Mashrai A, Khanam H, Sherwani A, et al. Synthesis and biological evaluation of steroidal tetrazoles as antiproliferative and antioxidant agents. Chem Bull [Internet]. 2014;3(11):1075–80. Available from: <URL>.
  • 111. Arshad M, Bhat AR, Pokharel S, Kim JE, Lee EJ, Athar F, et al. Synthesis, characterization and anticancer screening of some novel piperonyl–tetrazole derivatives. Eur J Med Chem [Internet]. 2014 Jan 7;71:229–36. Available from: <URL>.
  • 112. Bhaskar VH, Mohite PB. Synthesis, characterization and evaluation of anticancer activity of some tetrazole derivatives. J Optoelectron Biomed Mater [Internet]. 2(4):249–59. Available from: <URL>.
  • 113. Upadhayaya RS, Sinha N, Jain S, Kishore N, Chandra R, Arora SK. Optically active antifungal azoles: Synthesis and antifungal activity of (2R,3S)-2-(2,4-difluorophenyl)-3-(5-{2-[4-aryl-piperazin-1-yl]-ethyl}-tetrazol-2-yl/1-yl)-1-[1,2,4]-triazol-1-yl-butan-2-ol. Bioorg Med Chem [Internet]. 2004 May 1;12(9):2225–38. Available from: <URL>.
  • 114. Collin X, Sauleau A, Coulon J. 1,2,4-Triazolo mercapto and aminonitriles as potent antifungal agents. Bioorg Med Chem Lett [Internet]. 2003 Aug 4;13(15):2601–5. Available from: <URL>.
  • 115. Mohareb RM, Ahmed HH, Elmegeed GA, Abd-Elhalim MM, Shafic RW. Development of new indole-derived neuroprotective agents. Bioorg Med Chem [Internet]. 2011 May 1;19(9):2966–74. Available from: <URL>.
  • 116. Adibi H, Rashidi A, Khodaei MM, Alizadeh A, Majnooni MB, Pakravan N, et al. Catecholthioether derivatives: preliminary study of in-vitro antimicrobial and antioxidant activities. Chem Pharm Bull [Internet]. 2011 Sep 1;59(9):1149–52. Available from: <URL>.
  • 117. Gao YL, Zhao GL, Liu W, Shao H, Wang YL, Xu WR, et al. Design, synthesis and in vivo hypoglycemic activity of tetrazole-bearing N-glycosides as SGLT2 inhibitors. Ind J Chem 2010; 49B;1499-1508.
  • 118. Muraglia E, Kinzel OD, Laufer R, Miller MD, Moyer G, Munshi V, et al. Tetrazole thioacetanilides: Potent non-nucleoside inhibitors of WT HIV reverse transcriptase and its K103N mutant. Bioorg Med Chem Lett [Internet]. 2006 May 15;16(10):2748–52. Available from: <URL>.
  • 119. Hutchinson DW, Naylor M. The antiviral activity of tetrazole phosphonic acids and their analogues. Nucleic Acids Res [Internet]. 1985 Dec 9;13(23):8519–30. Available from: <URL>.
  • 120. Alam M, Nami SAA, Husain A, Lee DU, Park S. Synthesis, characterization, X-ray diffraction, antimicrobial and in vitro cytotoxicity studies of 7a-Aza-B-homostigmast-5-eno [7a,7-d] tetrazole. Comptes Rendus Chim [Internet]. 2013 Jan 18;16(3):201–6. Available from: <URL>.
  • 121. Sun XY, Wei CX, Deng XQ, Sun ZG, Quan ZS. Synthesis and primary anticonvulsant activity evaluation of 6-alkyoxyl-tetrazolo[5,1-a]phthalazine derivatives. Arzneimittelforschung [Internet]. 2011 Dec 2;60(06):289–92. Available from: <URL>.
Year 2024, Volume: 11 Issue: 4, 1495 - 1514, 03.12.2024
https://doi.org/10.18596/jotcsa.1436801

Abstract

References

  • 1. Butler RN, Fox A, Collier S, Burke LA. Pentazole chemistry: The mechanism of the reaction of aryldiazonium chlorides with azide ion at −80 °C: Concerted versus stepwise formation of arylpentazoles, detection of a pentazene intermediate, a combined 1H and 15N NMR experimental and ab initio theoretical study. J Chem Soc Perkin Trans 2 [Internet]. 1998 Jan 1;1998(10):2243–8. Available from: <URL>.
  • 2. Jursic BS, Leblanc BW. Preparation of tetrazoles from organic nitriles and sodium azide in micellar media. J Heterocycl Chem [Internet]. 1998 Mar 11;35(2):405–8. Available from: <URL>.
  • 3. Izsák D, Klapötke TM, Lutter FH, Pflüger C. Tailoring the energetic properties of 5‐(5‐Amino‐1,2,3‐triazol‐4‐yl)tetraz­ole and ts derivatives by salt formation: from sensitive primary to insensitive secondary explosives. Eur J Inorg Chem [Internet]. 2016 Apr 18;2016(11):1720–9. Available from: <URL>.
  • 4. Singh H, Singh Chawla A, Kapoor VK, Paul D, Malhotra RK. Medicinal chemistry of tetrazoles. In: Progress in Medicinal Chemistry [Internet]. Elsevier; 1980. p. 151–83. Available from: <URL>.
  • 5. Okabayashi T, Kano H, Makisumi Y. Action of substituted azaindolizines on microorganisms. I. action on lactic acid bacteria. Chem Pharm Bull [Internet]. 1960 Feb 25;8(2):157–62. Available from: <URL>.
  • 6. Sangal SK, Kumar A. Synthesis of some new antifungal tetrazolyl sulfides. J. Ind. Chem. Soc. 1986; 63; 351–3.
  • 7. Witkowski JT, Robins RK, Sidwell RW, Simon LN. Design, synthesis, and broad spectrum antiviral activity of 1-.beta.-D-ribofuranosyl-1,2,4-triazole-3-carboxamide and related nucleosides. J Med Chem [Internet]. 1972 Nov 1;15(11):1150–4. Available from: <URL>.
  • 8. Stewart KD, Loren S, Frey L, Otis E, Klinghofer V, Hulkower KI. Discovery of a new cyclooxygenase-2 lead compound through 3-D database searching and combinatorial chemistry. Bioorg Med Chem Lett [Internet]. 1998 Mar 3;8(5):529–34. Available from: <URL>.
  • 9. Ray SM, Lahiri SC. Studies on 5‐(Indan‐1′‐yl) tetrazoles as potential non‐steroidal antiinflammatory agents. ChemInform. 1990;21(46).
  • 10. Goodman RP, Schaap IAT, Tardin CF, Erben CM, Berry RM, Schmidt CF, et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofab- rication. Science [Internet]. 2005 Dec 9;310 (5754):1661–5. Available from: <URL>.
  • 11. Regan BC, Aloni S, Jensen K, Ritchie RO, Zettl A. Nanocrystal-powered nanomotor. Nano Lett [Internet]. 2005 Sep 1;5(9):1730–3. Available from: <URL>.
  • 12. Grunes J, Zhu J, Somorjai GA. Catalysis and nanoscience. Chem Commun [Internet]. 2003 Sep 2;3(18):2257–60. Available from: <URL>.
  • 13. Somorjai GA, McCrea K. Roadmap for catalysis science in the 21st century: A personal view of building the future on past and present accomplishments. Appl Catal A Gen [Internet]. 2001 Dec 20;222(1–2):3–18. Available from: <URL>.
  • 14. Roy A, Bharadvaja N. Silver nanoparticle synthesis from Plumbago zeylanica and its dye degradation activity. Bioinspired, Biomim Nanobiomaterials [Internet]. 2019 Jun 1;8(2):130–40. Available from: <URL>.
  • 15. Nacci A, Cioffi N. Nano-catalysts and nano-technologies for green organic synthesis. Molecules [Internet]. 2011 Feb 9;16(2):1452–3. Available from: <URL>.
  • 16. Patil A, Mishra V, Thakur S, Riyaz B, Kaur A, Khursheed R, et al. Nanotechnology derived nanotools in biomedical perspectives: An update. Curr Nanosci [Internet]. 2019 Apr 26;15(2):137–46. Available from: <URL>.
  • 17. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J Nanotechnol [Internet]. 2018 Apr 3;9(1):1050–74. Available from: <URL>.
  • 18. Tan YY, Yap PK, Xin Lim GL, Mehta M, Chan Y, Ng SW, et al. Perspectives and advancements in the design of nanomaterials for targeted cancer theranostics. Chem Biol Interact [Internet]. 2020 Sep 25;329:109221. Available from: <URL>.
  • 19. Senanayake SD, Stacchiola D, Rodriguez JA. Unique properties of ceria nanoparticles supported on metals: Novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction. Acc Chem Res [Internet]. 2013 Aug 20;46(8):1702–11. Available from: <URL>.
  • 20. Zahin N, Anwar R, Tewari D, Kabir MT, Sajid A, Mathew B, et al. Nanoparticles and its biomedical applications in health and diseases: Special focus on drug delivery. Environ Sci Pollut Res [Internet]. 2020 Jun 11;27(16):19151–68. Available from: <URL>.
  • 21. C. Thomas S, Harshita, Kumar Mishra P, Talegaonkar S. Ceramic nanoparticles: Fabrication methods and applications in drug delivery. Curr Pharm Desig [Internet]. 2015;21(42):6165–88. Available from: <URL>.
  • 22. Chaudhary RG, Bhusari GS, Tiple AD, Rai AR, Somkuvar SR, Potbhare AK, et al. Metal/metal oxide nanoparticles: Toxicity, applications, and future prospects. Curr Pharm Des [Internet]. 2019 Dec 17;25(37):4013–29. Available from: <URL>.
  • 23. Loomba L, Scarabelli T. Metallic nanoparticles and their medicinal potential. Part II: Aluminosilicates, nanobiomagnets, quantum dots and cochleates. Ther Deliv [Internet]. 2013 Sep 11;4(9):1179–96. Available from: <URL>.
  • 24. Mishra V, Bansal KK, Verma A, Yadav N, Thakur S, Sudhakar K, et al. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics [Internet]. 2018 Oct 18;10(4):191. Available from: <URL>.
  • 25. Puente Santiago AR, Fernandez‐Delgado O, Gomez A, Ahsan MA, Echegoyen L. Fullerenes as key components for low‐dimensional (photo)electro-catalytic nanohybrid materials. Angew Chem Int Ed [Internet]. 2021 Jan 4;60(1):122–41. Available from: <URL>.
  • 26. Tajzad I, Ghasali E. Production methods of CNT-reinforced al matrix composites: A review. J Compos Compd [Internet]. 2020 Feb 1;2(1):1–9. Available from: <URL>.
  • 27. Candelaria SL, Shao Y, Zhou W, Li X, Xiao J, Zhang JG, et al. Nanostructured carbon for energy storage and conversion. Nano Energy [Internet]. 2012 Mar 1;1(2):195–220. Available from: <URL>.
  • 28. Yan K, Chen A. Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized noble-metal-free Cu–Cr catalyst. Energy [Internet]. 2013 Sep 1;58:357–63. Available from: <URL>.
  • 29. Choudary BM, Mulukutla RS, Klabunde KJ. Benzylation of aromatic compounds with different crystallites of MgO. J Am Chem Soc [Internet]. 2003 Feb 1;125(8):2020–1. Available from: <URL>.
  • 30. Kreibig U, Vollmer M. Optical properties of metal clusters [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 1995. (Springer Series in Materials Science; vol. 25). Available from: <URL>.
  • 31. Liz-Marzán LM. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir [Internet]. 2006 Jan 1;22(1):32–41. Available from: <URL>.
  • 32. Tao AR, Habas S, Yang P. Shape control of colloidal metal nanocrystals. Small [Internet]. 2008 Mar 3;4(3):310–25. Available from: <URL>.
  • 33. Toshima N, Yonezawa T. Bimetallic nanoparticles—novel materials for chemical and physical applications. New J Chem [Internet]. 1998 Jan 1;22(11):1179–201. Available from: <URL>.
  • 34. Gladysz JA. Recoverable catalysts. Ultimate goals, criteria of evaluation, and the green chemistry interface. Pure Appl Chem [Internet]. 2001 Aug 1;73(8):1319–24. Available from: <URL>.
  • 35. Sharma N, Ojha H, Bharadwaj A, Pathak DP, Sharma RK. Preparation and catalytic applications of nanomaterials: A review. RSC Adv [Internet]. 2015 Jun 15;5(66):53381–403. Available from: <URL>.
  • 36. Kajbafvala A, Ghorbani H, Paravar A, Samberg JP, Kajbafvala E, Sadrnezhaad SK. Effects of morphology on photocatalytic performance of Zinc oxide nanostructures synthesized by rapid microwave irradiation methods. Superlattices Microstruct [Internet]. 2012 Apr 1;51(4):512–22. Available from: <URL>.
  • 37. Mazloumi M, Shahcheraghi N, Kajbafvala A, Zanganeh S, Lak A, Mohajerani MS, et al. 3D bundles of self-assembled lanthanum hydroxide nanorods via a rapid microwave-assisted route. J Alloys Compd [Internet]. 2009 Apr 3;473(1–2):283–7. Available from: <URL>.
  • 38. Bayati MR, Molaei R, Kajbafvala A, Zanganeh S, Zargar HR, Janghorban K. Investigation on hydrophilicity of micro-arc oxidized TiO2 nano/micro-porous layers. Electrochim Acta [Internet]. 2010 Aug 1;55(20):5786–92. Available from: <URL>.
  • 39. Kajbafvala A, Samberg JP, Ghorbani H, Kajbafvala E, Sadrnezhaad SK. Effects of initial precursor and microwave irradiation on step-by-step synthesis of zinc oxide nano-architectures. Mater Lett [Internet]. 2012 Jan 15;67(1):342–5. Available from: <URL>.
  • 40. Zanganeh S, Kajbafvala A, Zanganeh N, Molaei R, Bayati MR, Zargar HR, et al. Hydrothermal synthesis and characterization of TiO2 nanostructures using LiOH as a solvent. Adv Powder Technol [Internet]. 2011 May 1;22(3):336–9. Available from: <URL>.
  • 41. Wittenberger SJ. Recent developments in tetrazole chemistry. A review. Org Prep Proced Int [Internet]. 1994 Oct;26(5):499–531. Available from: <URL>.
  • 42. Patani GA, LaVoie EJ. Bioisosterism:  A rational approach in drug design. Chem Rev [Internet]. 1996 Jan 1;96(8):3147–76. Available from: <URL>.
  • 43. Mittal R, Awasthi SK. Recent advances in the synthesis of 5-substituted 1H-tetrazoles: A complete survey (2013–2018). Synthesis [Internet]. 2019 Oct 1;51(20):3765–83. Available from: <URL>.
  • 44. Liljebris C, Larsen SD, Ogg D, Palazuk BJ, Bleasdale JE. Investigation of potential bioisosteric replacements for the carboxyl groups of peptidomimetic inhibitors of protein tyrosine phosphatase 1B:  Identification of a tetrazole-containing inhibitor with cellular activity. J Med Chem [Internet]. 2002 Apr 1;45(9):1785–98. Available from: <URL>.
  • 45. Herr RJ. 5-Substituted-1H-tetrazoles as carboxylic acid isosteres: Medicinal chemistry and synthetic methods. Bioorg Med Chem [Internet]. 2002 Nov 1;10(11):3379–93. Available from: <URL>.
  • 46. Kraus JL. Isosterism and molecular modification in drug design : Tetrazole analogue of GABA : Effects on enzymes of the γ-aminobutyrate system. Pharmacol Res Commun [Internet]. 1983 Feb 1;15(2):183–9. Available from: <URL>.
  • 47. Roh J, Vávrová K, Hrabálek A. Synthesis and functionalization of 5‐substituted tetrazoles. European J Org Chem [Internet]. 2012 Nov 8;2012(31):6101–18. Available from: <URL>.
  • 48. Alterman M, Hallberg A. Fast microwave-assisted preparation of aryl and vinyl nitriles and the corresponding tetrazoles from organo-halides. J Org Chem [Internet]. 2000 Nov 1;65(23):7984–9. Available from: <URL>.
  • 49. Fürmeier S, Metzger JO. Synthesis of new heterocyclic fatty compounds. European J Org Chem [Internet]. 2003 Mar 11;2003(5):885–93. Available from: <URL>.
  • 50. Gutmann B, Roduit J, Roberge D, Kappe CO. Synthesis of 5‐substituted 1H ‐tetrazoles from nitriles and hydrazoic acid by using a safe and scalable high‐temperature microreactor approach. Angew Chemie Int Ed [Internet]. 2010 Sep 17;49(39):7101–5. Available from: <URL>.
  • 51. Amantini D, Beleggia R, Fringuelli F, Pizzo F, Vaccaro L. TBAF-catalyzed synthesis of 5-substituted 1H-tetrazoles under solventless conditions. J Org Chem [Internet]. 2004 Apr 1;69(8):2896–8. Available from: <URL>.
  • 52. Myznikov L V., Roh J, Artamonova T V., Hrabalek A, Koldobskii GI. Tetrazoles: LI. Synthesis of 5-substituted tetrazoles under microwave activation. Russ J Org Chem [Internet]. 2007 May;43(5):765–7. Available from: <URL>.
  • 53. Sajjadi M, Nasrollahzadeh M, Ghafuri H, Baran T, Orooji Y, Baran NY, et al. Modified chitosan-zeolite supported Pd nanoparticles: A reusable catalyst for the synthesis of 5-substituted-1H-tetrazoles from aryl halides. Int J Biol Macromol [Internet]. 2022 Jun 1;209:1573–85. Available from: <URL>.
  • 54. Himo F, Demko ZP, Noodleman L, Sharpless KB. Mechanisms of tetrazole formation by addition of azide to nitriles. J Am Chem Soc [Internet]. 2002 Oct 1;124(41):12210–6. Available from: <URL>.
  • 55. Esirden İ, Erken E, Kaya M, Sen F. Monodisperse Pt NPs@rGO as highly efficient and reusable heterogeneous catalysts for the synthesis of 5-substituted 1H-tetrazole derivatives. Catal Sci Technol [Internet]. 2015 Aug 17;5(9):4452–7. Available from: <URL>.
  • 56. Abdollahi-Alibeik M, Moaddeli A. Multi-component one-pot reaction of aldehyde, hydroxylamine and sodium azide catalyzed by Cu-MCM-41 nanoparticles: A novel method for the synthesis of 5-substituted 1H-tetrazole derivatives. New J Chem [Internet]. 2015 Mar 5;39(3):2116–22. Available from: <URL>.
  • 57. Kumar A, Kumar S, Khajuria Y, Awasthi SK. A comparative study between heterogeneous stannous chloride loaded silica nanoparticles and a homogeneous stannous chloride catalyst in the synthesis of 5-substituted 1H-tetrazole. RSC Adv [Internet]. 2016 Aug 8;6(79):75227–33. Available from: <URL>.
  • 58. Nasrollahzadeh M, Nezafat Z, Bidgoli NSS, Shafiei N. Use of tetrazoles in catalysis and energetic applications: Recent developments. Mol Catal [Internet]. 2021 Aug 1;513:111788. Available from: <URL>.
  • 59. Razavi N, Akhlaghinia B. Cu(ii) immobilized on aminated epichlorohydrin activated silica (CAES): as a new, green and efficient nanocatalyst for preparation of 5-substituted-1H-tetrazoles. RSC Adv [Internet]. 2015 Jan 20;5(16):12372–81. Available from: <URL>.
  • 60. Yıldız Y, Esirden İ, Erken E, Demir E, Kaya M, Şen F. Microwave (Mw)‐assisted synthesis of 5‐substituted 1H‐tetrazoles via [3+2] cycloaddition catalyzed by Mw‐Pd/Co nanoparticles decorated on multi‐walled carbon nanotubes. ChemistrySelect [Internet]. 2016 Jun 9;1(8):1695–701. Available from: <URL>.
  • 61. Benson FR. The chemistry of the tetrazoles. Chem Rev [Internet]. 1947 Aug 1;41(1):1–61. Available from: <URL>.
  • 62. Hantzsch A, Vagt A. Ueber das sogenannte diazoguanidin. Justus Liebigs Ann Chem [Internet]. 1901 Jan 24;314(3):339–69. Available from: <URL>.
  • 63. Mihina JS, Herbst RM. The reaction of nitriles with hydrazoic acid: Synthesis of monosubstituted tetrazoles. J Org Chem [Internet]. 1950 Sep 1;15(5):1082–92. Available from: <URL>.
  • 64. Herbst RM, Wilson KR. Apparent acidic dissociation of some 5-aryltetrazoles 1. J Org Chem [Internet]. 1957 Oct 1;22(10):1142–5. Available from: <URL>.
  • 65. Finnegan WG, Henry RA, Lofquist R. An improved synthesis of 5-substituted tetrazoles. J Am Chem Soc [Internet]. 1958 Aug 1;80(15):3908–11. Available from: <URL>.
  • 66. Kumar A, Narayanan R, Shechter H. Rearrangement reactions of (hydroxyphenyl) carbenes. J Org Chem [Internet]. 1996 Jan 1;61(13):4462–5. Available from: <URL>.
  • 67. Demko ZP, Sharpless KB. Preparation of 5-substituted 1H-tetrazoles from nitriles in water. J Org Chem [Internet]. 2001 Nov 1;66(24):7945–50. Available from: <URL>.
  • 68. Lakshmi Kantam M, Kumar KBS, Sridhar C. Nanocrystalline ZnO as an efficient heterogeneous catalyst for the synthesis of 5‐substituted 1H‐tetrazoles. Adv Synth Catal [Internet]. 2005 Jul 19;347(9):1212–4. Available from: <URL>.
  • 69. Kumar A, Ramani T, Sreedhar B. Magnetically separable CuFe2O4 nanoparticles in PEG: A recyclable catalytic system for the amination of aryl iodides. Synlett. 2013;24(8):938–42.
  • 70. Rama V, Kanagaraj K, Pitchumani K. Syntheses of 5-substituted 1H-tetrazoles catalyzed by reusable CoY zeolite. J Org Chem [Internet]. 2011 Nov 4;76(21):9090–5. Available from: <URL>.
  • 71. Dehghani F, Sardarian AR, Esmaeilpour M. Salen complex of Cu(II) supported on superparamagnetic Fe3O4@SiO2 nanoparticles: An efficient and recyclable catalyst for synthesis of 1- and 5-substituted 1H-tetrazoles. J Organomet Chem [Internet]. 2013 Oct 15;743:87–96. Available from: <URL>.
  • 72. Mani P, Sharma C, Kumar S, Awasthi SK. Efficient heterogeneous silver nanoparticles catalyzed one-pot synthesis of 5-substituted 1H-tetrazoles. J Mol Catal A Chem [Internet]. 2014 Oct 1;392:150–6. Available from: <URL>.
  • 73. Dallinger D, Kappe CO. Microwave-assisted synthesis in water as solvent. Chem Rev [Internet]. 2007 Jun 1;107(6):2563–91. Available from: <URL>.
  • 74. de la Hoz A, Loupy A. Microwaves in organic synthesis [Internet]. John Wiley & Sons; 2013. Available from: <URL>.
  • 75. Roberts BA, Strauss CR. Toward rapid, “green”, predictable microwave-assisted synthesis. Acc Chem Res [Internet]. 2005 Aug 1;38(8):653–61. Available from: <URL>.
  • 76. Yoneyama H, Usami Y, Komeda S, Harusawa S. Efficient transformation of inactive nitriles into 5-substituted 1H-tetrazoles using microwave irradiation and their applications. Synthesis [Internet]. 2013;45(8):1051–9. Available from: <URL>.
  • 77. Shelkar R, Singh A, Nagarkar J. Amberlyst-15 catalyzed synthesis of 5-substituted 1-H-tetrazole via [3+2] cycloaddition of nitriles and sodium azide. Tetrahedron Lett [Internet]. 2013 Jan 2;54(1):106–9. Available from: <URL>.
  • 78. Sridhar M, Mallu KKR, Jillella R, Godala KR, Beeram CR, Chinthala N. One-step synthesis of 5-substituted 1H-tetrazoles from an aldehyde by reaction with acetohydroxamic acid and sodium azide under Bi (OTf) 3 catalysis. Synthesis [Internet]. 2013;45(4):507–10. Available from: <URL>.
  • 79. Fazeli A, Oskooie HA, Beheshtiha YS, Heravi MM, Valizadeh H, Bamoharram FF. Heteropolyacid catalyzed click synthesis of 5-substituted 1H-tetrazoles from [bmim]N3 and nitriles under solvent-free conditions. Monatshefte für Chemie - Chem Mon [Internet]. 2013 Sep 12;144(9):1407–10. Available from: <URL>.
  • 80. Rekunge DS, Indalkar KS, Chaturbhuj GU. Activated Fuller’s earth as an inexpensive, eco-friendly, efficient catalyst for the synthesis of 5-aryl 1-H-tetrazole via [3+2] cycloaddition of nitriles and sodium azide. Tetrahedron Lett [Internet]. 2016 Dec 21;57(51):5815–9. Available from: <URL>.
  • 81. Kolo K, Sajadi SM. An efficient synthesis of 5-alkylthio and 5-arylthiotetrazoles using Fe3O4 nanoparticles as a magnetically recoverable and reusable catalyst. Lett Org Chem [Internet]. 2013;10:688–92. Available from: <URL>.
  • 82. Sharghi H, Ebrahimpourmoghaddam S, Doroodmand MM. Facile synthesis of 5-substituted-1H-tetrazoles and 1-substituted-1H-tetrazoles catalyzed by recyclable 4′-phenyl-2,2′:6′,2″-terpyridine copper(II) complex immobilized onto activated multi-walled carbon nanotubes. J Organomet Chem [Internet]. 2013 Aug 15;738:41–8. Available from: <URL>.
  • 83. Esmaeilpour M, Sardarian AR, Firouzabadi H. N-heterocyclic carbene-Pd(II) complex based on theophylline supported on Fe3O4@SiO2 nanoparticles: Highly active, durable and magnetically separable catalyst for green Suzuki-Miyaura and Sonogashira-Hagihara coupling reactions. J Organomet Chem [Internet]. 2018 Oct 15;873:22–34. Available from: <URL>.
  • 84. Kumar S, Kumar A, Agarwal A, Awasthi SK. Synthetic application of gold nanoparticles and auric chloride for the synthesis of 5-substituted 1H-tetrazoles. RSC Adv [Internet]. 2015 Feb 24;5(28):21651–8. Available from: <URL>.
  • 85. Abrishami F, Ebrahimikia M, Rafiee F. Facile synthesis of 5-substituted-1H-tetrazoles catalyzed by reusable nickel zirconium phosphate nanocatalyst. Iran J Catal [Internet]. 2024 Feb 3;6(3):245–51. Available from: <URL>.
  • 86. Erken E, Esirden İ, Kaya M, Sen F. A rapid and novel method for the synthesis of 5-substituted 1H-tetrazole catalyzed by exceptional reusable monodisperse Pt NPs@AC under the microwave irradiation. RSC Adv [Internet]. 2015 Aug 11;5(84):68558–64. Available from: <URL>.
  • 87. Safaei-Ghomi J, Paymard-Samani S. Facile and rapid synthesis of 5-substituted 1H-tetrazoles VIA a multicomponent domino reaction using nickel(II) oxide nanoparticles as catalyst. Chem Heterocycl Compd [Internet]. 2015 Feb 6;50(11):1567–74. Available from: <URL>.
  • 88. Esmaeilpour M, Javidi J, Nowroozi Dodeji F, Mokhtari Abarghoui M. Facile synthesis of 1- and 5-substituted 1H-tetrazoles catalyzed by recyclable ligand complex of copper(II) supported on superparamagnetic Fe3O4@SiO2 nanoparticles. J Mol Catal A Chem [Internet]. 2014 Nov 1;393:18–29. Available from: <URL>.
  • 89. Kumar Akula R, S. Adimulam C, Gangaram S, Kengiri R, Banda N, R. Pamulaparthy S. CuFe2O4 Nanoparticle mediated method for the synthesis of 5-substituted 1H-tetrazoles from (E)-aldoximes. Lett Org Chem [Internet]. 2014 Apr;11(6):440–5. Available from: <URL>.
  • 90. Zamani L, Mirjalili BBF, Zomorodian K, Zomorodian S. Synthesis and characterization of 5-substituted 1H-tetrazoles in the presence of nano-TiCl4.SiO2. South African J Chem [Internet]. 2015;68:133–7. Available from: <URL>.
  • 91. Zarghani M, Akhlaghinia B. Magnetically separable Fe3O4@chitin as an eco-friendly nanocatalyst with high efficiency for green synthesis of 5-substituted-1H-tetrazoles under solvent-free conditions. RSC Adv [Internet]. 2016 Mar 29;6(38):31850–60. Available from: <URL>.
  • 92. Ghorbani-Choghamarani A, Shiri L, Azadi G. The first report on the eco-friendly synthesis of 5-substituted 1H-tetrazoles in PEG catalyzed by Cu(ii) immobilized on Fe3O4@SiO2@ l-arginine as a novel, recyclable and non-corrosive catalyst. RSC Adv [Internet]. 2016 Apr 4;6(39):32653–60. Available from: <URL>.
  • 93. Soltani Rad MN, Behrouz S, Sadeghi Dehchenari V, Hoseini SJ. Cu/Graphene/Clay nanohybrid: A highly efficient heterogeneous nanocatalyst for synthesis of new 5‐substituted‐1H‐tetrazole derivatives tethered to bioactive N ‐heterocyclic cores. J Heterocycl Chem [Internet]. 2017 Jan 18;54(1):355–65. Available from: <URL>.
  • 94. Nikoorazm M, Ghorbani-Choghamaranai A, Khanmoradi M, Moradi P. Synthesis and characterization of Cu(II)-Adenine-MCM-41 as stable and efficient mesoporous catalyst for the synthesis of 5-substituted 1H-tetrazoles and 1H-indazolo [1,2-b]phthalazine-triones. J Porous Mater [Internet]. 2018 Dec 1;25(6):1831–42. Available from: <URL>.
  • 95. Sardarian AR, Eslahi H, Esmaeilpour M. Copper(II) Complex supported on Fe3O4@SiO2 coated by polyvinyl alcohol as reusable nanocatalyst in N ‐arylation of amines and N(H) ‐ heterocycles and green synthesis of 1H‐tetrazoles. ChemistrySelect [Internet]. 2018 Feb 7;3(5):1499–511. Available from: <URL>.
  • 96. Moradi P, Ghorbani‐Choghamarani A. Efficient synthesis of 5‐substituted tetrazoles catalysed by palladium– S ‐methylisothiourea complex supported on boehmite nanoparticles. Appl Organomet Chem [Internet]. 2017 May 4;31(5):e3602. Available from: <URL>.
  • 97. Ram VJ, Sethi A, Nath M, Pratap R. The chemistry of heterocycles: Nomenclature and chemistry of three-to-five membered heterocycles [Internet]. The Chemistry of Heterocycles: Nomenclature and Chemistry of Three to Five Membered Heterocycles. Elsevier; 2019. 1–489 p. Available from: <URL>.
  • 98. Schocken MJ, Creekmore RW, Theodoridis G, Nystrom GJ, Robinson RA. Microbial transformation of the tetrazolinone herbicide F5231. Appl Environ Microbiol [Internet]. 1989 May;55(5):1220–2. Available from: <URL>.
  • 99. Ariza-Roldán A, López-Cardoso M, Tlahuext H, Vargas-Pineda G, Román-Bravo P, Acevedo-Quiroz M, et al. Synthesis, characterization, and biological evaluation of eight new organotin(IV) complexes derived from (1R, 2S) ephedrinedithiocarbamate ligand. Inorganica Chim Acta [Internet]. 2022 May 1;534:120810. Available from: <URL>.
  • 100. Malik MA, Al-Thabaiti SA, Malik MA. Synthesis, structure optimization and antifungal screening of novel tetrazole ring bearing acyl-hydrazones. Int J Mol Sci [Internet]. 2012 Aug 30;13(9):10880–98. Available from: <URL>.
  • 101. Muralikrishna S, Raveendrareddy P, Ravindranath L, Harikrishna S, Jagadeeswara P. Synthesis characterization and antitumor activity of thiazole derivatives containing indole moiety bearing-tetrazole. Der Pharma Chem [Internet]. 2013;5(6):87–93. Available from: <URL>.
  • 102. Bachar SC, Lahiri SC. Synthesis of chloro and bromo substituted 5-(indan-1’-yl)tetrazoles and 5-(indan-1’-yl)methyltetrazoles as possible analgesic agents. Die Pharm - An Int J Pharm Sci [Internet]. 2004;59(6):435–8. Available from: <URL>.
  • 103. Ostrovskii VA, Koren AO. Alkylation and related electrophilic reactions at endocyclic nitrogen atoms in the chemistry of tetrazoles. Heterocycles [Internet]. 2000 Jun 1;53(6):1421–48. Available from: <URL>.
  • 104. Mohite P B, Bhaskar VH. Potential pharmacological activities of tetrazoles in the new millennium. Int J PharmTech Res CODEN [Internet]. 3(3):1557–66. Available from: <URL>.
  • 105. Adamec J, Waisser K, Kuneš J, Kaustová J. A note on the antitubercular activities of 1‐Aryl‐5‐benzylsulfanyltetrazoles. Arch Pharm (Weinheim) [Internet]. 2005 Aug 1;338(8):385–9. Available from: <URL>.
  • 106. Katritzky AR, Jaina R, Petrukhin R, Denisenko S, Schelenz T. QSAR correlations of the algistatic Activity of 5-Amino-1-Aryl-1H-Tetrazoles. SAR QSAR Environ Res [Internet]. 2001 Jun 1;12(3):259–66. Available from: <URL>.
  • 107. Li Y, Li PK, Roberts MJ, Arend RC, Samant RS, Buchsbaum DJ. Multi-targeted therapy of cancer by niclosamide: A new application for an old drug. Cancer Lett [Internet]. 2014 Jul 10;349(1):8–14. Available from: <URL>.
  • 108. Berquin IM, Edwards IJ, Chen YQ. Multi-targeted therapy of cancer by omega-3 fatty acids. Cancer Lett [Internet]. 2008 Oct 8;269(2):363–77. Available from: <URL>.
  • 109. Block KI, Gyllenhaal C, Lowe L, Amedei A, Amin ARMR, Amin A, et al. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin Cancer Biol [Internet]. 2015 Dec 1;35:S276–304. Available from: <URL>.
  • 110. Shamsuzzaman, Asif M, Ali A, Mashrai A, Khanam H, Sherwani A, et al. Synthesis and biological evaluation of steroidal tetrazoles as antiproliferative and antioxidant agents. Chem Bull [Internet]. 2014;3(11):1075–80. Available from: <URL>.
  • 111. Arshad M, Bhat AR, Pokharel S, Kim JE, Lee EJ, Athar F, et al. Synthesis, characterization and anticancer screening of some novel piperonyl–tetrazole derivatives. Eur J Med Chem [Internet]. 2014 Jan 7;71:229–36. Available from: <URL>.
  • 112. Bhaskar VH, Mohite PB. Synthesis, characterization and evaluation of anticancer activity of some tetrazole derivatives. J Optoelectron Biomed Mater [Internet]. 2(4):249–59. Available from: <URL>.
  • 113. Upadhayaya RS, Sinha N, Jain S, Kishore N, Chandra R, Arora SK. Optically active antifungal azoles: Synthesis and antifungal activity of (2R,3S)-2-(2,4-difluorophenyl)-3-(5-{2-[4-aryl-piperazin-1-yl]-ethyl}-tetrazol-2-yl/1-yl)-1-[1,2,4]-triazol-1-yl-butan-2-ol. Bioorg Med Chem [Internet]. 2004 May 1;12(9):2225–38. Available from: <URL>.
  • 114. Collin X, Sauleau A, Coulon J. 1,2,4-Triazolo mercapto and aminonitriles as potent antifungal agents. Bioorg Med Chem Lett [Internet]. 2003 Aug 4;13(15):2601–5. Available from: <URL>.
  • 115. Mohareb RM, Ahmed HH, Elmegeed GA, Abd-Elhalim MM, Shafic RW. Development of new indole-derived neuroprotective agents. Bioorg Med Chem [Internet]. 2011 May 1;19(9):2966–74. Available from: <URL>.
  • 116. Adibi H, Rashidi A, Khodaei MM, Alizadeh A, Majnooni MB, Pakravan N, et al. Catecholthioether derivatives: preliminary study of in-vitro antimicrobial and antioxidant activities. Chem Pharm Bull [Internet]. 2011 Sep 1;59(9):1149–52. Available from: <URL>.
  • 117. Gao YL, Zhao GL, Liu W, Shao H, Wang YL, Xu WR, et al. Design, synthesis and in vivo hypoglycemic activity of tetrazole-bearing N-glycosides as SGLT2 inhibitors. Ind J Chem 2010; 49B;1499-1508.
  • 118. Muraglia E, Kinzel OD, Laufer R, Miller MD, Moyer G, Munshi V, et al. Tetrazole thioacetanilides: Potent non-nucleoside inhibitors of WT HIV reverse transcriptase and its K103N mutant. Bioorg Med Chem Lett [Internet]. 2006 May 15;16(10):2748–52. Available from: <URL>.
  • 119. Hutchinson DW, Naylor M. The antiviral activity of tetrazole phosphonic acids and their analogues. Nucleic Acids Res [Internet]. 1985 Dec 9;13(23):8519–30. Available from: <URL>.
  • 120. Alam M, Nami SAA, Husain A, Lee DU, Park S. Synthesis, characterization, X-ray diffraction, antimicrobial and in vitro cytotoxicity studies of 7a-Aza-B-homostigmast-5-eno [7a,7-d] tetrazole. Comptes Rendus Chim [Internet]. 2013 Jan 18;16(3):201–6. Available from: <URL>.
  • 121. Sun XY, Wei CX, Deng XQ, Sun ZG, Quan ZS. Synthesis and primary anticonvulsant activity evaluation of 6-alkyoxyl-tetrazolo[5,1-a]phthalazine derivatives. Arzneimittelforschung [Internet]. 2011 Dec 2;60(06):289–92. Available from: <URL>.
There are 121 citations in total.

Details

Primary Language English
Subjects Organic Chemical Synthesis, Organic Green Chemistry
Journal Section REVIEW ARTICLES
Authors

Jwankar Abdulla Shekh Khdir 0009-0001-1892-6173

Dara Aziz 0000-0003-3362-6301

Ibrahim Qader 0000-0003-1167-3799

Bashdar Ismael Meena Meena 0000-0002-5985-8437

Bnar Mahmoud İbrahim 0000-0002-9164-5212

Publication Date December 3, 2024
Submission Date February 16, 2024
Acceptance Date September 8, 2024
Published in Issue Year 2024 Volume: 11 Issue: 4

Cite

Vancouver Shekh Khdir JA, Aziz D, Qader I, Meena BIM, İbrahim BM. Nano-Catalytic Synthesis of 5-Substituted 1H Tetrazole Derivatives and Biological Applications. JOTCSA. 2024;11(4):1495-514.