Review
BibTex RIS Cite
Year 2024, Volume: 11 Issue: 4, 1581 - 1594, 03.12.2024
https://doi.org/10.18596/jotcsa.1436845

Abstract

References

  • 1. Velammal M. Nano Chemistry-Overview. Front Chem Biol Pharm Sci. 1:79.
  • 2. Jain KK. Drug delivery systems [Internet]. Jain KK, editor. New York, NY: Springer New York; 2020. (Methods in Molecular Biology; vol. 2059). Available from: <URL>.
  • 3. Sahu T, Ratre YK, Chauhan S, Bhaskar LVKS, Nair MP, Verma HK. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. J Drug Deliv Sci Technol [Internet]. 2021 Jun 1;63:102487. Available from: <URL>.
  • 4. Avramović N, Mandić B, Savić-Radojević A, Simić T. Polymeric nanocarriers of drug delivery systems in cancer therapy. Pharmaceutics [Internet]. 2020 Mar 25;12(4):298. Available from: <URL>.
  • 5. Din F ud, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine [Internet]. 2017 Oct 5;Volume 12:7291–309. Available from: <URL>.
  • 6. Nagavarma BVN, Hemant KSY, Ayaz A, Vasudha LS, Shivakumar HG. Different techniques for preparation of polymeric nanoparticles-a review. Asian J Pharm Clin Res. 2012;5(3):16–23.
  • 7. Ahlin Grabnar P, Kristl J. The manufacturing techniques of drug-loaded polymeric nanoparticles from preformed polymers. J Microencapsul [Internet]. 2011 Jun 17;28(4):323–35. Available from: <URL>.
  • 8. Aundhia CJ. Nanocapsules. In: Nanocarriers: Drug Delivery System [Internet]. Singapore: Springer Singapore; 2021. p. 125–38. Available from: <URL>.
  • 9. Ould-Ouali L, Noppe M, Langlois X, Willems B, Te Riele P, Timmerman P, et al. Self-assembling PEG-p(CL-co-TMC) copolymers for oral delivery of poorly water-soluble drugs: A case study with risperidone. J Control Release [Internet]. 2005 Feb 16;102(3):657–68. Available from: <URL>.
  • 10. Kipp J. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm [Internet]. 2004 Oct 13;284(1–2):109–22. Available from: <URL>.
  • 11. Vauthier C, Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res [Internet]. 2009 May 24;26(5):1025–58. Available from: <URL>.
  • 12. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surfaces B Biointerfaces [Internet]. 2010 Jan 1;75(1):1–18. Available from: <URL>.
  • 13. Ghosh S. Cisplatin: The first metal based anticancer drug. Bioorg Chem [Internet]. 2019 Jul 1;88:102925. Available from: <URL>.
  • 14. Wiseman LR, Spencer CM. Paclitaxel. Drugs Aging [Internet]. 1998 Aug 31;12(4):305–34. Available from: <URL>.
  • 15. Casalini T, Rossi F, Castrovinci A, Perale G. A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front Bioeng Biotechnol [Internet]. 2019 Oct 11;7:483145. Available from: <URL>.
  • 16. Liu X, Xu J, Zhou J, Shen Q. Oridonin and its derivatives for cancer treatment and overcoming therapeutic resistance. Genes Dis [Internet]. 2021 Jul 1;8(4):448–62. Available from: <URL>.
  • 17. Yasmin R, Shah M, Khan SA, Ali R. Gelatin nanoparticles: A potential candidate for medical applications. Nanotechnol Rev [Internet]. 2017 Apr 1;6(2):191–207. Available from: <URL>.
  • 18. Divya K, Jisha MS. Chitosan nanoparticles preparation and applications. Environ Chem Lett [Internet]. 2018 Mar 31;16(1):101–12. Available from: <URL>.
  • 19. Bakr AF, Shao P, Farag MA. Recent advances in glycyrrhizin metabolism, health benefits, clinical effects and drug delivery systems for efficacy improvement; a comprehensive review. Phytomedicine [Internet]. 2022 May 1;99:153999. Available from: <URL>.
  • 20. Woodruff MA, Hutmacher DW. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog Polym Sci [Internet]. 2010 Oct 1;35(10):1217–56. Available from: <URL>.
  • 21. Damgé C, Socha M, Ubrich N, Maincent P. Poly(ε-caprolactone)/eudragit nanoparticles for oral delivery of aspart-insulin in the treatment of diabetes. J Pharm Sci [Internet]. 2010 Feb 1;99(2):879–89. Available from: <URL>.
  • 22. Prakasam M, Locs J, Salma-Ancane K, Loca D, Largeteau A, Berzina-Cimdina L. Biodegradable materials and metallic implants—A review. J Funct Biomater [Internet]. 2017 Sep 26;8(4):44. Available from: <URL>.
  • 23. Gala-Garcia A, Teixeira KIR, Wykrota FHL, Sinisterra RD, Cortés ME. Bioceramic/Poly (glycolic)-poly (lactic acid) composite induces mineralized barrier after direct capping of rat tooth pulp tissue. Braz Oral Res [Internet]. 2010 Mar;24(1):08–14. Available from: <URL>.
  • 24. Ahuja A, Ali J, Rahman S. Biodegradable periodontal intrapocket device containing metronidazole and amoxycillin: Formulation and characterisation. Die Pharm - An Int J Pharm Sci [Internet]. 2006;6(1):25–9. Available from: <URL>.
  • 25. Virlan MJR, Miricescu D, Totan A, Greabu M, Tanase C, Sabliov CM, et al. Current uses of Poly(lactic-co-glycolic acid) in the dental field: A comprehensive review. J Chem [Internet]. 2015 Jan 1;2015(1):525832. Available from: <URL>.
  • 26. G Dehghan MH, Marzuka M. Lyophilized chitosan/xanthan polyelectrolyte complex based mucoadhesive inserts for nasal delivery of promethazine hydrochloride. Iran J Pharm Res IJPR [Internet]. 2014;13(3):769–84. Available from: <URL>.
  • 27. Zhang L, Wang J, Chi H, Wang S. Local anesthetic lidocaine delivery system: Chitosan and hyaluronic acid-modified layer-by-layer lipid nanoparticles. Drug Deliv [Internet]. 2016 Nov 21;23(9):3529–37. Available from: <URL>.
  • 28. Goodson JM, Offenbacher S, Farr DH, Hogan PE. Periodontal disease treatment by local drug delivery. J Periodontol [Internet]. 1985 May 1;56(5):265–72. Available from: <URL>.
  • 29. Arancibia R, Maturana C, Silva D, Tobar N, Tapia C, Salazar JC, et al. Effects of chitosan particles in periodontal pathogens and gingival fibroblasts. J Dent Res [Internet]. 2013 Aug 20;92(8):740–5. Available from: <URL>.
  • 30. Zupančič Š, Potrč T, Baumgartner S, Kocbek P, Kristl J. Formulation and evaluation of chitosan/polyethylene oxide nanofibers loaded with metronidazole for local infections. Eur J Pharm Sci [Internet]. 2016 Dec 1;95:152–60. Available from: <URL>.
  • 31. Pichayakorn W, Boonme P. Evaluation of cross-linked chitosan microparticles containing metronidazole for periodontitis treatment. Mater Sci Eng C [Internet]. 2013 Apr 1;33(3):1197–202. Available from: <URL>.
  • 32. Farhadian N, Godiny M, Moradi S, Hemati Azandaryani A, Shahlaei M. Chitosan/gelatin as a new nano-carrier system for calcium hydroxide delivery in endodontic applications: Development, characterization and process optimization. Mater Sci Eng C [Internet]. 2018 Nov 1;92:540–6. Available from: <URL>.
  • 33. del Carpio-Perochena A, Kishen A, Felitti R, Bhagirath AY, Medapati MR, Lai C, et al. Antibacterial properties of chitosan nanoparticles and propolis associated with calcium hydroxide against single- and multispecies biofilms: An in vitro and in situ Study. J Endod [Internet]. 2017 Aug 1;43(8):1332–6. Available from: <URL>.
  • 34. Belstrøm D, Constancias F, Liu Y, Yang L, Drautz-Moses DI, Schuster SC, et al. Metagenomic and metatranscriptomic analysis of saliva reveals disease-associated microbiota in patients with periodontitis and dental caries. npj Biofilms Microbiomes [Internet]. 2017 Oct 2;3(1):23. Available from: <URL>.
  • 35. Ganss C, Lussi A, Grunau O, Klimek J, Schlueter N. Conventional and anti-erosion fluoride toothpastes: Effect on enamel erosion and erosion-abrasion. Caries Res [Internet]. 2011 Dec 1;45(6):581–9. Available from: <URL>.
  • 36. Lee HL, Wang RS, Hsu YC, Chuang CC, Chan HR, Chiu HC, et al. Antifungal effect of tissue conditioners containing poly(acryloyloxyethyltrimethyl ammonium chloride)-grafted chitosan on Candida albicans growth in vitro. J Dent Sci [Internet]. 2018 Jun 1;13(2):160–6. Available from: <URL>.
  • 37. Silva-Dias A, Palmeira-de-Oliveira A, Miranda IM, Branco J, Cobrado L, Monteiro-Soares M, et al. Anti-biofilm activity of low-molecular weight chitosan hydrogel against Candida species. Med Microbiol Immunol [Internet]. 2014 Feb 8;203(1):25–33. Available from: <URL>.
  • 38. Atai Z, Atai M, Amini J, salehi N. In vivo study of antifungal effects of low-molecular-weight chitosan against Candida albicans. J Oral Sci [Internet]. 2017;59(3):425–30. Available from: <URL>.
  • 39. Mustafa MW, Ungphaiboon S, Phadoongsombut N, Pangsomboon K, Chelae S, Mahattanadul S. Effectiveness of an alcohol-free chitosan–curcuminoid mouthwash compared with chlorhexidine mouthwash in denture stomatitis treatment: A randomized trial. J Altern Complement Med [Internet]. 2019 May 9;25(5):552–8. Available from: <URL>.
  • 40. Fakhri E, Eslami H, Maroufi P, Pakdel F, Taghizadeh S, Ganbarov K, et al. Chitosan biomaterials application in dentistry. Int J Biol Macromol [Internet]. 2020 Nov 1;162:956–74. Available from: <URL>.
  • 41. Wang W, Meng Q, Li Q, Liu J, Zhou M, Jin Z, et al. Chitosan derivatives and their application in biomedicine. Int J Mol Sci [Internet]. 2020 Jan 12;21(2):487. Available from: <URL>.
  • 42. Bapat RA, Chaubal T V., Dharmadhikari S, Abdulla AM, Bapat P, Alexander A, et al. Recent advances of gold nanoparticles as biomaterial in dentistry. Int J Pharm [Internet]. 2020 Aug 30;586:119596. Available from: <URL>.

Nanocarriers for Controlled Drug Delivery A convergence of Polymer and Nanochemistry

Year 2024, Volume: 11 Issue: 4, 1581 - 1594, 03.12.2024
https://doi.org/10.18596/jotcsa.1436845

Abstract

Regarding improving the quality of health care strategies and other fields based on nanoscale technology, nanotechnology has been recognized as the most prevalent and commercially invented technology. In the near future, the pharmaceutical and biotechnology industries are likely to undergo significant changes due to the widespread adoption of nanoscale technology in drug delivery systems, that uses the polymeric nanoparticles that Polymeric nanoparticles have been extensively studied as particulate carriers in the pharmaceutical and medical fields, because they show promise as drug delivery systems as a result of their controlled- and sustained-release properties, subcellular size, and biocompatibility with tissue and cells. Several methods used for preparation of polymeric nanoparticles and after preparation of them they are most important particles that used in encapsulation of drugs such as PLGA, PLA, chitosan are used as encapsulation of anticancer drugs and antihormonal and antimalarial drugs and increase their release rates and also, they are used in field of dentistry and oral systems that are used in some diseases that cause infections, the use of polymeric nanoparticles with antibacterial drugs lead to decrease the infections . To achieve efficient drug delivery, it is important to understand the interactions of nanomaterials with the biological environment, targeting cell-surface receptors, drug release, multiple drug administration, stability of therapeutic agents and molecular mechanisms of cell signaling involved in pathobiology of the disease under consideration.

Ethical Statement

Ethical approval was not required, as the study conducted did not involve any ethical concerns or issues

References

  • 1. Velammal M. Nano Chemistry-Overview. Front Chem Biol Pharm Sci. 1:79.
  • 2. Jain KK. Drug delivery systems [Internet]. Jain KK, editor. New York, NY: Springer New York; 2020. (Methods in Molecular Biology; vol. 2059). Available from: <URL>.
  • 3. Sahu T, Ratre YK, Chauhan S, Bhaskar LVKS, Nair MP, Verma HK. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. J Drug Deliv Sci Technol [Internet]. 2021 Jun 1;63:102487. Available from: <URL>.
  • 4. Avramović N, Mandić B, Savić-Radojević A, Simić T. Polymeric nanocarriers of drug delivery systems in cancer therapy. Pharmaceutics [Internet]. 2020 Mar 25;12(4):298. Available from: <URL>.
  • 5. Din F ud, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine [Internet]. 2017 Oct 5;Volume 12:7291–309. Available from: <URL>.
  • 6. Nagavarma BVN, Hemant KSY, Ayaz A, Vasudha LS, Shivakumar HG. Different techniques for preparation of polymeric nanoparticles-a review. Asian J Pharm Clin Res. 2012;5(3):16–23.
  • 7. Ahlin Grabnar P, Kristl J. The manufacturing techniques of drug-loaded polymeric nanoparticles from preformed polymers. J Microencapsul [Internet]. 2011 Jun 17;28(4):323–35. Available from: <URL>.
  • 8. Aundhia CJ. Nanocapsules. In: Nanocarriers: Drug Delivery System [Internet]. Singapore: Springer Singapore; 2021. p. 125–38. Available from: <URL>.
  • 9. Ould-Ouali L, Noppe M, Langlois X, Willems B, Te Riele P, Timmerman P, et al. Self-assembling PEG-p(CL-co-TMC) copolymers for oral delivery of poorly water-soluble drugs: A case study with risperidone. J Control Release [Internet]. 2005 Feb 16;102(3):657–68. Available from: <URL>.
  • 10. Kipp J. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm [Internet]. 2004 Oct 13;284(1–2):109–22. Available from: <URL>.
  • 11. Vauthier C, Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res [Internet]. 2009 May 24;26(5):1025–58. Available from: <URL>.
  • 12. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surfaces B Biointerfaces [Internet]. 2010 Jan 1;75(1):1–18. Available from: <URL>.
  • 13. Ghosh S. Cisplatin: The first metal based anticancer drug. Bioorg Chem [Internet]. 2019 Jul 1;88:102925. Available from: <URL>.
  • 14. Wiseman LR, Spencer CM. Paclitaxel. Drugs Aging [Internet]. 1998 Aug 31;12(4):305–34. Available from: <URL>.
  • 15. Casalini T, Rossi F, Castrovinci A, Perale G. A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front Bioeng Biotechnol [Internet]. 2019 Oct 11;7:483145. Available from: <URL>.
  • 16. Liu X, Xu J, Zhou J, Shen Q. Oridonin and its derivatives for cancer treatment and overcoming therapeutic resistance. Genes Dis [Internet]. 2021 Jul 1;8(4):448–62. Available from: <URL>.
  • 17. Yasmin R, Shah M, Khan SA, Ali R. Gelatin nanoparticles: A potential candidate for medical applications. Nanotechnol Rev [Internet]. 2017 Apr 1;6(2):191–207. Available from: <URL>.
  • 18. Divya K, Jisha MS. Chitosan nanoparticles preparation and applications. Environ Chem Lett [Internet]. 2018 Mar 31;16(1):101–12. Available from: <URL>.
  • 19. Bakr AF, Shao P, Farag MA. Recent advances in glycyrrhizin metabolism, health benefits, clinical effects and drug delivery systems for efficacy improvement; a comprehensive review. Phytomedicine [Internet]. 2022 May 1;99:153999. Available from: <URL>.
  • 20. Woodruff MA, Hutmacher DW. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog Polym Sci [Internet]. 2010 Oct 1;35(10):1217–56. Available from: <URL>.
  • 21. Damgé C, Socha M, Ubrich N, Maincent P. Poly(ε-caprolactone)/eudragit nanoparticles for oral delivery of aspart-insulin in the treatment of diabetes. J Pharm Sci [Internet]. 2010 Feb 1;99(2):879–89. Available from: <URL>.
  • 22. Prakasam M, Locs J, Salma-Ancane K, Loca D, Largeteau A, Berzina-Cimdina L. Biodegradable materials and metallic implants—A review. J Funct Biomater [Internet]. 2017 Sep 26;8(4):44. Available from: <URL>.
  • 23. Gala-Garcia A, Teixeira KIR, Wykrota FHL, Sinisterra RD, Cortés ME. Bioceramic/Poly (glycolic)-poly (lactic acid) composite induces mineralized barrier after direct capping of rat tooth pulp tissue. Braz Oral Res [Internet]. 2010 Mar;24(1):08–14. Available from: <URL>.
  • 24. Ahuja A, Ali J, Rahman S. Biodegradable periodontal intrapocket device containing metronidazole and amoxycillin: Formulation and characterisation. Die Pharm - An Int J Pharm Sci [Internet]. 2006;6(1):25–9. Available from: <URL>.
  • 25. Virlan MJR, Miricescu D, Totan A, Greabu M, Tanase C, Sabliov CM, et al. Current uses of Poly(lactic-co-glycolic acid) in the dental field: A comprehensive review. J Chem [Internet]. 2015 Jan 1;2015(1):525832. Available from: <URL>.
  • 26. G Dehghan MH, Marzuka M. Lyophilized chitosan/xanthan polyelectrolyte complex based mucoadhesive inserts for nasal delivery of promethazine hydrochloride. Iran J Pharm Res IJPR [Internet]. 2014;13(3):769–84. Available from: <URL>.
  • 27. Zhang L, Wang J, Chi H, Wang S. Local anesthetic lidocaine delivery system: Chitosan and hyaluronic acid-modified layer-by-layer lipid nanoparticles. Drug Deliv [Internet]. 2016 Nov 21;23(9):3529–37. Available from: <URL>.
  • 28. Goodson JM, Offenbacher S, Farr DH, Hogan PE. Periodontal disease treatment by local drug delivery. J Periodontol [Internet]. 1985 May 1;56(5):265–72. Available from: <URL>.
  • 29. Arancibia R, Maturana C, Silva D, Tobar N, Tapia C, Salazar JC, et al. Effects of chitosan particles in periodontal pathogens and gingival fibroblasts. J Dent Res [Internet]. 2013 Aug 20;92(8):740–5. Available from: <URL>.
  • 30. Zupančič Š, Potrč T, Baumgartner S, Kocbek P, Kristl J. Formulation and evaluation of chitosan/polyethylene oxide nanofibers loaded with metronidazole for local infections. Eur J Pharm Sci [Internet]. 2016 Dec 1;95:152–60. Available from: <URL>.
  • 31. Pichayakorn W, Boonme P. Evaluation of cross-linked chitosan microparticles containing metronidazole for periodontitis treatment. Mater Sci Eng C [Internet]. 2013 Apr 1;33(3):1197–202. Available from: <URL>.
  • 32. Farhadian N, Godiny M, Moradi S, Hemati Azandaryani A, Shahlaei M. Chitosan/gelatin as a new nano-carrier system for calcium hydroxide delivery in endodontic applications: Development, characterization and process optimization. Mater Sci Eng C [Internet]. 2018 Nov 1;92:540–6. Available from: <URL>.
  • 33. del Carpio-Perochena A, Kishen A, Felitti R, Bhagirath AY, Medapati MR, Lai C, et al. Antibacterial properties of chitosan nanoparticles and propolis associated with calcium hydroxide against single- and multispecies biofilms: An in vitro and in situ Study. J Endod [Internet]. 2017 Aug 1;43(8):1332–6. Available from: <URL>.
  • 34. Belstrøm D, Constancias F, Liu Y, Yang L, Drautz-Moses DI, Schuster SC, et al. Metagenomic and metatranscriptomic analysis of saliva reveals disease-associated microbiota in patients with periodontitis and dental caries. npj Biofilms Microbiomes [Internet]. 2017 Oct 2;3(1):23. Available from: <URL>.
  • 35. Ganss C, Lussi A, Grunau O, Klimek J, Schlueter N. Conventional and anti-erosion fluoride toothpastes: Effect on enamel erosion and erosion-abrasion. Caries Res [Internet]. 2011 Dec 1;45(6):581–9. Available from: <URL>.
  • 36. Lee HL, Wang RS, Hsu YC, Chuang CC, Chan HR, Chiu HC, et al. Antifungal effect of tissue conditioners containing poly(acryloyloxyethyltrimethyl ammonium chloride)-grafted chitosan on Candida albicans growth in vitro. J Dent Sci [Internet]. 2018 Jun 1;13(2):160–6. Available from: <URL>.
  • 37. Silva-Dias A, Palmeira-de-Oliveira A, Miranda IM, Branco J, Cobrado L, Monteiro-Soares M, et al. Anti-biofilm activity of low-molecular weight chitosan hydrogel against Candida species. Med Microbiol Immunol [Internet]. 2014 Feb 8;203(1):25–33. Available from: <URL>.
  • 38. Atai Z, Atai M, Amini J, salehi N. In vivo study of antifungal effects of low-molecular-weight chitosan against Candida albicans. J Oral Sci [Internet]. 2017;59(3):425–30. Available from: <URL>.
  • 39. Mustafa MW, Ungphaiboon S, Phadoongsombut N, Pangsomboon K, Chelae S, Mahattanadul S. Effectiveness of an alcohol-free chitosan–curcuminoid mouthwash compared with chlorhexidine mouthwash in denture stomatitis treatment: A randomized trial. J Altern Complement Med [Internet]. 2019 May 9;25(5):552–8. Available from: <URL>.
  • 40. Fakhri E, Eslami H, Maroufi P, Pakdel F, Taghizadeh S, Ganbarov K, et al. Chitosan biomaterials application in dentistry. Int J Biol Macromol [Internet]. 2020 Nov 1;162:956–74. Available from: <URL>.
  • 41. Wang W, Meng Q, Li Q, Liu J, Zhou M, Jin Z, et al. Chitosan derivatives and their application in biomedicine. Int J Mol Sci [Internet]. 2020 Jan 12;21(2):487. Available from: <URL>.
  • 42. Bapat RA, Chaubal T V., Dharmadhikari S, Abdulla AM, Bapat P, Alexander A, et al. Recent advances of gold nanoparticles as biomaterial in dentistry. Int J Pharm [Internet]. 2020 Aug 30;586:119596. Available from: <URL>.
There are 42 citations in total.

Details

Primary Language English
Subjects Organic Chemistry (Other)
Journal Section REVIEW ARTICLES
Authors

Asia Asos Hama

Dara Aziz

Ibrahim Nazem Qader

Bnar Mahmoud Ibrahim

Bashdar Ismael Meena

Publication Date December 3, 2024
Submission Date February 16, 2024
Acceptance Date October 8, 2024
Published in Issue Year 2024 Volume: 11 Issue: 4

Cite

Vancouver Hama AA, Aziz D, Qader IN, Ibrahim BM, Meena BI. Nanocarriers for Controlled Drug Delivery A convergence of Polymer and Nanochemistry. JOTCSA. 2024;11(4):1581-94.