Research Article
BibTex RIS Cite

Synthesis and Characterization of Binary Azides (e.g. RbN3) via Ion-Exchange Method

Year 2024, Volume: 11 Issue: 4, 1527 - 1534, 03.12.2024
https://doi.org/10.18596/jotcsa.1482884

Abstract

Azides have garnered significant interest in chemical research for their diverse properties and applications, ranging from their use in airbags and detonators to their roles in photochemistry. Despite this attention, there remains a dearth of detailed studies focusing on the synthesis and characterization of binary azides. In this study, a robust and safe method for the synthesis of RbN3 via ion exchange is presented, addressing the inherent challenges associated with handling highly explosive alkali metal azides. The experimental procedure, conducted under stringent safety measures, resulted in the successful production of high-purity RbN3, as confirmed by X-ray powder diffraction (XRPD), Fourier-transform infrared spectroscopy (FTIR), and Raman spectroscopy analyses. XRPD data with the reference intensity ratio method (RIR) confirmed phase purity above 99 %, which is in good agreement with the elemental ratio found by SEM-EDX analysis. The synthesized RbN3 exhibited crystalline white powder morphology, free from impurities, thus demonstrating the efficacy of the ion exchange approach. X-ray powder diffraction (XRPD) and Vibrational spectroscopy analyses provided additional insights into the structure and purity of RbN3 in accordance with theoretical expectations; the characteristic vibrational modes for N3- could be well found at the expected theoretical and experimental ranges. These findings show an easy, safe, and reliable method for synthesizing binary azides and contribute to a deeper understanding of azide chemistry, with implications for various scientific disciplines.

References

  • 1. Guven G, Topcu A, Somer M, Afyon S, Yilmaz A, Bolukbasi O. Vibrational spectra, force constants and quantum chemical calculations of μ-1,3-azide bridged triphenylphosphine complexes of copper(I) and silver(I). Vib Spectrosc [Internet]. 2022 Mar;119:103354. Available from: <URL>.
  • 2. Wiberg E, Michaud H. Notizen: Zur kenntnis eines aluminiumtriazids Al(N3)3. Zeitschrift für Naturforsch B [Internet]. 1954 Jul 1;9(7):495–6. Available from: <URL>.
  • 3. Wiberg E, Michaud H. Notizen: Zur kenntnis eines bortriazids B(N3)3. Zeitschrift für Naturforsch B [Internet]. 1954 Jul 1;9(7):497–9. Available from: <URL>.
  • 4. Wiberg E, Michaud H. Notizen: Zur kenntnis eines magnesiumazids Mg(N3)2. Zeitschrift für Naturforsch B [Internet]. 1954 Jul 1;9(7):501–2. Available from: <URL>.
  • 5. Fehlhammer WP, Beck W. Azide chemistry – An inorganic perspective, part I metal ­azides: Overview, general trends and recent developments. Zeitschrift für Anorg und Allg Chemie [Internet]. 2013 Jun 4;639(7):1053–82. Available from: <URL>.
  • 6. Subaşı Y, Tekin ES, Prots Y, Jach F, Somer M, Afyon S, et al. The first alkaline‐earth azidoaurate(III), Ba[Au(N3)4]2⋅4H2O. Chem – A Eur J [Internet]. 2023 Feb 21;29(11). Available from: <URL>.
  • 7. Pettinari C. Copper(I) and silver(I) azide complexes containing N-donor ligands. Polyhedron [Internet]. 2001 Sep;20(21):2755–63. Available from: <URL>.
  • 8. Beck W, Fehlhammer WP, Pöllmann P, Schuierer E, Feldl K. Darstellung, IR‐ und elektronenspektren von azido‐metall‐komplexen. Chem Ber [Internet]. 1967 Jul 21;100(7):2335–61. Available from: <URL>.
  • 9. Kreutzer PH, Schorpp KT, Beck W. Darstellung und spektroskopische eigenschaften von planaren dipseudohalogeno-bis(phosphin)-platin(II)-komplexen/preparation and spectroscopic properties of planar dipseudohalogeno-bis(phosphine)-platinum(II) complexes. Zeitschrift für Naturforsch B [Internet]. 1975 Aug 1;30(7–8):544–9. Available from: <URL>.
  • 10. Khalaji AD, Amirnasr M, Falvello LR, Soler T. Crystal structure of bis(.MU.2-azido)-tetrakis(triphenylphosphine)-di-silver(I). Anal Sci X-ray Struct Anal Online [Internet]. 2006;22:X47–8. Available from: <URL>.
  • 11. Ziolo RF, Dori Z. Photochemical synthesis of thiocyanatobis(triphenylphosphine)copper(I). J Am Chem Soc [Internet]. 1968 Nov 1;90(23):6560–1. Available from: <URL>.
  • 12. Haiges R. Recent developments in the chemistry of metal oxopolyazides. Dalt Trans [Internet]. 2019;48(3):806–13. Available from: <URL>.
  • 13. Haiges R, Boatz JA, Schneider S, Schroer T, Yousufuddin M, Christe KO. The binary group 4 azides [Ti(N3)4], [P(C6H5)4][Ti(N3)5], and [P(C6H5)4]2[Ti(N3)6] and on Linear Ti-N-NN Coordination. Angew Chemie Int Ed [Internet]. 2004 Jun 14;43(24):3148–52. Available from: <URL>.
  • 14. Deokar P, Vasiliu M, Dixon DA, Christe KO, Haiges R. The binary group 4 azides [PPh4]2[Zr(N3)6] and [PPh4]2[Hf(N3)6]. Angew Chemie Int Ed [Internet]. 2016 Nov 7;55(46):14350–4. Available from: <URL>.
  • 15. Saal T, Deokar P, Christe KO, Haiges R. The binary group 4 azide adducts [(bpy)Ti(N3)4], [(phen)Ti(N3)4], [(bpy)2Zr(N3)4]2bpy, and [(bpy)2Hf(N3)4]2·bpy. Eur J Inorg Chem [Internet]. 2019 May 15;2019(18):2388–91. Available from: <URL>.
  • 16. Reckeweg O, Simon A. Azide und cyanamide – ähnlich und doch anders/azides and cyanamides – Similar and yet different. Zeitschrift für Naturforsch B [Internet]. 2003 Nov 1;58(11):1097–104. Available from: <URL>.
  • 17. Klapötke TM, Krumm B, Scherr M. The binary silver nitrogen anion [Ag(N3)2]−. J Am Chem Soc [Internet]. 2009 Jan 14;131(1):72–4. Available from: <URL>.
  • 18. Hakimi M. Binuclear copper(I) complex constructed by two end-to-end, µ-1,3-azide bridges, [Cu2(PPh3)4(µ-N3)2]. Orient J Chem [Internet]. 2013;29(1):103–8. Available from: <URL>.
  • 19. Reitzner B, Manno RP. A new synthesis of lead azide. Nature [Internet]. 1963 Jun;198(4884):991–991. Available from: <URL>.
  • 20. Hagenbuch JP. Opportunities and limits of the use of azides in industrial production. Implementation of safety measures. Chimia (Aarau) [Internet]. 2003 Dec 1;57(12):773. Available from: <URL>.
  • 21. Hubbard CR, Evans EH, Smith DK. The reference intensity ratio, I/Ic, for computer simulated powder patterns. J Appl Crystallogr [Internet]. 1976 Apr 1;9(2):169–74. Available from: <URL>.
  • 22. Hathaway CE, Temple PA. Raman spectra of the alkali azides: KN3, RbN3, CsN3. Phys Rev B [Internet]. 1971 May 15;3(10):3497–503. Available from: <URL>.
Year 2024, Volume: 11 Issue: 4, 1527 - 1534, 03.12.2024
https://doi.org/10.18596/jotcsa.1482884

Abstract

References

  • 1. Guven G, Topcu A, Somer M, Afyon S, Yilmaz A, Bolukbasi O. Vibrational spectra, force constants and quantum chemical calculations of μ-1,3-azide bridged triphenylphosphine complexes of copper(I) and silver(I). Vib Spectrosc [Internet]. 2022 Mar;119:103354. Available from: <URL>.
  • 2. Wiberg E, Michaud H. Notizen: Zur kenntnis eines aluminiumtriazids Al(N3)3. Zeitschrift für Naturforsch B [Internet]. 1954 Jul 1;9(7):495–6. Available from: <URL>.
  • 3. Wiberg E, Michaud H. Notizen: Zur kenntnis eines bortriazids B(N3)3. Zeitschrift für Naturforsch B [Internet]. 1954 Jul 1;9(7):497–9. Available from: <URL>.
  • 4. Wiberg E, Michaud H. Notizen: Zur kenntnis eines magnesiumazids Mg(N3)2. Zeitschrift für Naturforsch B [Internet]. 1954 Jul 1;9(7):501–2. Available from: <URL>.
  • 5. Fehlhammer WP, Beck W. Azide chemistry – An inorganic perspective, part I metal ­azides: Overview, general trends and recent developments. Zeitschrift für Anorg und Allg Chemie [Internet]. 2013 Jun 4;639(7):1053–82. Available from: <URL>.
  • 6. Subaşı Y, Tekin ES, Prots Y, Jach F, Somer M, Afyon S, et al. The first alkaline‐earth azidoaurate(III), Ba[Au(N3)4]2⋅4H2O. Chem – A Eur J [Internet]. 2023 Feb 21;29(11). Available from: <URL>.
  • 7. Pettinari C. Copper(I) and silver(I) azide complexes containing N-donor ligands. Polyhedron [Internet]. 2001 Sep;20(21):2755–63. Available from: <URL>.
  • 8. Beck W, Fehlhammer WP, Pöllmann P, Schuierer E, Feldl K. Darstellung, IR‐ und elektronenspektren von azido‐metall‐komplexen. Chem Ber [Internet]. 1967 Jul 21;100(7):2335–61. Available from: <URL>.
  • 9. Kreutzer PH, Schorpp KT, Beck W. Darstellung und spektroskopische eigenschaften von planaren dipseudohalogeno-bis(phosphin)-platin(II)-komplexen/preparation and spectroscopic properties of planar dipseudohalogeno-bis(phosphine)-platinum(II) complexes. Zeitschrift für Naturforsch B [Internet]. 1975 Aug 1;30(7–8):544–9. Available from: <URL>.
  • 10. Khalaji AD, Amirnasr M, Falvello LR, Soler T. Crystal structure of bis(.MU.2-azido)-tetrakis(triphenylphosphine)-di-silver(I). Anal Sci X-ray Struct Anal Online [Internet]. 2006;22:X47–8. Available from: <URL>.
  • 11. Ziolo RF, Dori Z. Photochemical synthesis of thiocyanatobis(triphenylphosphine)copper(I). J Am Chem Soc [Internet]. 1968 Nov 1;90(23):6560–1. Available from: <URL>.
  • 12. Haiges R. Recent developments in the chemistry of metal oxopolyazides. Dalt Trans [Internet]. 2019;48(3):806–13. Available from: <URL>.
  • 13. Haiges R, Boatz JA, Schneider S, Schroer T, Yousufuddin M, Christe KO. The binary group 4 azides [Ti(N3)4], [P(C6H5)4][Ti(N3)5], and [P(C6H5)4]2[Ti(N3)6] and on Linear Ti-N-NN Coordination. Angew Chemie Int Ed [Internet]. 2004 Jun 14;43(24):3148–52. Available from: <URL>.
  • 14. Deokar P, Vasiliu M, Dixon DA, Christe KO, Haiges R. The binary group 4 azides [PPh4]2[Zr(N3)6] and [PPh4]2[Hf(N3)6]. Angew Chemie Int Ed [Internet]. 2016 Nov 7;55(46):14350–4. Available from: <URL>.
  • 15. Saal T, Deokar P, Christe KO, Haiges R. The binary group 4 azide adducts [(bpy)Ti(N3)4], [(phen)Ti(N3)4], [(bpy)2Zr(N3)4]2bpy, and [(bpy)2Hf(N3)4]2·bpy. Eur J Inorg Chem [Internet]. 2019 May 15;2019(18):2388–91. Available from: <URL>.
  • 16. Reckeweg O, Simon A. Azide und cyanamide – ähnlich und doch anders/azides and cyanamides – Similar and yet different. Zeitschrift für Naturforsch B [Internet]. 2003 Nov 1;58(11):1097–104. Available from: <URL>.
  • 17. Klapötke TM, Krumm B, Scherr M. The binary silver nitrogen anion [Ag(N3)2]−. J Am Chem Soc [Internet]. 2009 Jan 14;131(1):72–4. Available from: <URL>.
  • 18. Hakimi M. Binuclear copper(I) complex constructed by two end-to-end, µ-1,3-azide bridges, [Cu2(PPh3)4(µ-N3)2]. Orient J Chem [Internet]. 2013;29(1):103–8. Available from: <URL>.
  • 19. Reitzner B, Manno RP. A new synthesis of lead azide. Nature [Internet]. 1963 Jun;198(4884):991–991. Available from: <URL>.
  • 20. Hagenbuch JP. Opportunities and limits of the use of azides in industrial production. Implementation of safety measures. Chimia (Aarau) [Internet]. 2003 Dec 1;57(12):773. Available from: <URL>.
  • 21. Hubbard CR, Evans EH, Smith DK. The reference intensity ratio, I/Ic, for computer simulated powder patterns. J Appl Crystallogr [Internet]. 1976 Apr 1;9(2):169–74. Available from: <URL>.
  • 22. Hathaway CE, Temple PA. Raman spectra of the alkali azides: KN3, RbN3, CsN3. Phys Rev B [Internet]. 1971 May 15;3(10):3497–503. Available from: <URL>.
There are 22 citations in total.

Details

Primary Language English
Subjects Solid State Chemistry
Journal Section RESEARCH ARTICLES
Authors

Semih Afyon 0000-0002-0153-7446

Publication Date December 3, 2024
Submission Date May 12, 2024
Acceptance Date September 16, 2024
Published in Issue Year 2024 Volume: 11 Issue: 4

Cite

Vancouver Afyon S. Synthesis and Characterization of Binary Azides (e.g. RbN3) via Ion-Exchange Method. JOTCSA. 2024;11(4):1527-34.