Review
BibTex RIS Cite
Year 2025, Volume: 12 Issue: 1, 35 - 46, 03.03.2025
https://doi.org/10.18596/jotcsa.1467947

Abstract

References

  • 1. Joy C. A review-The potential of natural dyes for dye sensitized solar cells. Int J Innov Sci Res Technol [Internet]. 2017;2(10):579–84. Available from: <URL>.
  • 2. Dhilipan J, Vijayalakshmi N, Shanmugam DB, Jai Ganesh R, Kodeeswaran S, Muralidharan S. Performance and efficiency of different types of solar cell material – A review. Mater Today Proc [Internet]. 2022 Jan 1;66:1295–302. Available from: <URL>.
  • 3. Ameri T, Li N, Brabec CJ. Highly efficient organic tandem solar cells: A follow up review. Energy Environ Sci [Internet]. 2013 Jul 17;6(8):2390–413. Available from: <URL>.
  • 4. Shahzad U, Asgarpoor S. A comprehensive review of protection schemes for distributed generation. Energy Power Eng [Internet]. 2017 Aug 7;9(8):430–63. Available from: <URL>.
  • 5. Shahzad U. The importance of renewable energy sources in Pakistan. Durreesamin J [Internet]. 2015;1(3):1–5. Available from: <URL>.
  • 6. Pablo CCV, Enrique RR, José ARG, Enrique MP, Juan LH, Eddie NAM. Construction of dye-sensitized solar cells (DSSC) with natural pigments. Mater Today Proc [Internet]. 2016 Jan 1;3(2):194–200. Available from: <URL>.
  • 7. Jabeen M, Tarıq K, Hussain SU. Bioplastic an alternative to plastic in modern world: A systemized review. Environ Res Technol [Internet]. 2024 Dec 31;7(4):614–25. Available from: <URL>.
  • 8. Tripathi L, Mishra AK, Dubey AK, Tripathi CB, Baredar P. Renewable energy: An overview on its contribution in current energy scenario of India. Renew Sustain Energy Rev [Internet]. 2016 Jul 1;60:226–33. Available from: <URL>.
  • 9. Hanif I, Aziz B, Chaudhry IS. Carbon emissions across the spectrum of renewable and nonrenewable energy use in developing economies of Asia. Renew Energy [Internet]. 2019 Dec 1;143:586–95. Available from: <URL>.
  • 10. Shahzad U. The need for renewable energy sources. Int J Inf Technol Electr Eng [Internet]. 2015;4(4):16–8. Available from: <URL>.
  • 11. Salim RA, Shafiei S. Urbanization and renewable and non-renewable energy consumption in OECD countries: An empirical analysis. Econ Model [Internet]. 2014 Feb 1;38:581–91. Available from: <URL>.
  • 12. Kannan N, Vakeesan D. Solar energy for future world: - A review. Renew Sustain Energy Rev [Internet]. 2016 Sep 1;62:1092–105. Available from: <URL>.
  • 13. Dinçer F. The analysis on photovoltaic electricity generation status, potential and policies of the leading countries in solar energy. Renew Sustain Energy Rev [Internet]. 2011 Jan 1;15(1):713–20. Available from: <URL>.
  • 14. Schmidt T, Mangold D, Müller-Steinhagen H. Central solar heating plants with seasonal storage in Germany. Sol Energy [Internet]. 2004 Jan 1;76(1–3):165–74. Available from: <URL>.
  • 15. Soile I. The economic and environmental challenges of energy supply disruptions in China. Eur J Econ Financ Adm Sci [Internet]. 2011;34:87–98. Available from: <URL>.
  • 16. Deandra PP, Santoso H, Witono JRB. Carbon based sulfonated catalyst as an environment friendly material: A review. In: AIP Conference Proceedings [Internet]. American Institute of Physics Inc.; 2022. p. 040006. Available from: <URL>.
  • 17. Jacobson MZ, Delucchi MA. A path to sustainable energy by 2030. Sci Am [Internet]. 2009;301(5):58–65. Available from: <URL>.
  • 18. Sharma S, Jain KK, Sharma A. Solar Cells: In research and applications—A review. Mater Sci Appl [Internet]. 2015 Dec 1;06(12):1145–55. Available from: <URL>.
  • 19. Al-Ezzi AS, Ansari MNM. Photovoltaic solar cells: A review. Appl Syst Innov [Internet]. 2022 Jul 8;5(4):67. Available from: <URL>.
  • 20. Snaith HJ. The perils of solar cell efficiency measurements. Nat Photonics [Internet]. 2012 Jun 29;6(6):337–40. Available from: <URL>.
  • 21. Sharma M, Gupta S, Prasad S, Bharatiya PK, Mishra D. First principles study of the influence of metallic-doping on crystalline ZnS: From efficiency aspects for use in a ZnS based dye sensitized solar cell (DSSC). Integr Ferroelectr [Internet]. 2018 Nov 22;194(1):96–103. Available from: <URL>.
  • 22. El Chaar L, lamont LA, El Zein N. Review of photovoltaic technologies. Renew Sustain Energy Rev [Internet]. 2011 Jun 1;15(5):2165–75. Available from: <URL>.
  • 23. Kenu E. Sarah. A review of solar photovoltaic technologies. Int J Eng Res [Internet]. 2020 Jul 18;9(7):741–9. Available from: <URL>.
  • 24. Ouedraogo S, Sam R, Ouedraogo F, Kebre MB, Zougmore F, Ndjaka JM, et al. Optimization of copper indium gallium di-selenide (CIGS) based solar cells by back grading. In: 2013 Africon [Internet]. IEEE; 2013. p. 1–6. Available from: <URL>.
  • 25. Fairbrother A, Saucedo E, Fontane X, Izquierdo-Roca V, Sylla D, Espindola-Rodriguez M, et al. Preparation of 4.8% efficiency Cu2ZnSnSe4 based solar cell by a two step process. In: 2012 38th IEEE Photovoltaic Specialists Conference [Internet]. IEEE; 2012. p. 002679–84. Available from: <URL>.
  • 26. Fairbrother A, Fontané X, Izquierdo-Roca V, Espíndola-Rodríguez M, López-Marino S, Placidi M, et al. On the formation mechanisms of Zn-rich Cu2ZnSnS4 films prepared by sulfurization of metallic stacks. Sol Energy Mater Sol Cells [Internet]. 2013 May 1;112:97–105. Available from: <URL>.
  • 27. Imamzai M, Aghaei M, Thayoob YHM, Forouzanfar M. A review on comparison between traditional silicon solar cells and thin- film CdTe solar cells. In: Proceedings National Graduate Conference [Internet]. 2012. Available from: <URL>.
  • 28. Green MA, Dunlop ED, Yoshita M, Kopidakis N, Bothe K, Siefer G, et al. Solar cell efficiency tables (Version 64). Prog Photovoltaics Res Appl [Internet]. 2024 Jul 2;32(7):425–41. Available from: <URL>.
  • 29. Masafumi Y. High-efficiency GaAs-based solar cells. In: Muzibur Rahman M, Mohammed Asiri A, Khan A, Inamuddin, Tabbakh T, editors. Post-Transition Metals [Internet]. IntechOpen; 2021. Available from: <URL>.
  • 30. Vigil-Galán O, Courel M, Andrade-Arvizu JA, Sánchez Y, Espíndola-Rodríguez M, Saucedo E, et al. Route towards low cost-high efficiency second generation solar cells: Current status and perspectives. J Mater Sci Mater Electron [Internet]. 2015 Aug 30;26(8):5562–73. Available from: <URL>.
  • 31. Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, et al. Lead Iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep [Internet]. 2012 Aug 21;2(1):591. Available from: <URL>.
  • 32. Bermel P, Ghebrebrhan M, Chan W, Yeng YX, Araghchini M, Hamam R, et al. Design and global optimization of high-efficiency thermophotovoltaic systems. Opt Express [Internet]. 2010 Sep 13;18(S3):A314. Available from: <URL>.
  • 33. O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature [Internet]. 1991 Oct 24;353(6346):737–40. Available from: <URL>.
  • 34. Yin Z, Zhu J, He Q, Cao X, Tan C, Chen H, et al. Graphene‐based materials for solar cell applications. Adv Energy Mater [Internet]. 2014 Jan 23;4(1):1300574. Available from: <URL>.
  • 35. Ning Z, Gong X, Comin R, Walters G, Fan F, Voznyy O, et al. Quantum-dot-in-perovskite solids. Nature [Internet]. 2015 Jul 16;523(7560):324–8. Available from: <URL>.
  • 36. Yan J, Saunders BR. Third-generation solar cells: a review and comparison of polymer:fullerene, hybrid polymer and perovskite solar cells. RSC Adv [Internet]. 2014 Sep 12;4(82):43286–314. Available from: <URL>.
  • 37. Piliego C, Protesescu L, Bisri SZ, Kovalenko M V., Loi MA. 5.2% efficient PbS nanocrystal schottky solar cells. Energy Environ Sci [Internet]. 2013 Sep 20;6(10):3054–9. Available from: <URL>.
  • 38. Ge Z, Qiao J, Li Y, Song J, Zhang C, Fu Z, et al. Over 18% efficiency of all‐polymer solar cells with long‐term stability enabled by Y6 as a solid additive. Adv Mater [Internet]. 2023 Jul 24;35(28):2301906. Available from: <URL>.
  • 39. LaPotin A, Schulte KL, Steiner MA, Buznitsky K, Kelsall CC, Friedman DJ, et al. Thermophotovoltaic efficiency of 40%. Nature [Internet]. 2022 Apr 14;604(7905):287–91. Available from: <URL>.
  • 40. Shah N, Shah AA, Leung PK, Khan S, Sun K, Zhu X, et al. A review of third generation solar cells. Processes [Internet]. 2023 Jun 20;11(6):1852. Available from: <URL>.
  • 41. Suhail A, Pan G, Jenkins D, Islam K. Improved efficiency of graphene/Si Schottky junction solar cell based on back contact structure and DUV treatment. Carbon N Y [Internet]. 2018 Apr 1;129:520–6. Available from: <URL>.
  • 42. Kim T, Jin X, Song JH, Jeong S, Park T. Efficiency limit of colloidal quantum dot solar cells: Effect of optical interference on active layer absorption. ACS Energy Lett [Internet]. 2020 Jan 10;5(1):248–51. Available from: <URL>.
  • 43. Zhou Y, Chen Y, Zhang Q, Zhou Y, Tai M, Koumoto K, et al. A highly-efficient concentrated perovskite solar cell-thermoelectric generator tandem system. J Energy Chem [Internet]. 2021 Aug 1;59:730–5. Available from: <URL>.
  • 44. Mayer AC, Scully SR, Hardin BE, Rowell MW, McGehee MD. Polymer-based solar cells. Mater Today [Internet]. 2007 Nov 1;10(11):28–33. Available from: <URL>.
  • 45. Sharma K, Sharma V, Sharma SS. Dye-sensitized solar cells: Fundamentals and current status. Nanoscale Res Lett [Internet]. 2018 Dec 28;13(1):381. Available from: <URL>.
  • 46. Wei D. Dye sensitized solar cells. Int J Mol Sci [Internet]. 2010 Mar 16;11(3):1103–13. Available from: <URL>.
  • 47. Baby R, Nixon PD, Kumar NM, Subathra MSP, Ananthi N. A comprehensive review of dye-sensitized solar cell optimal fabrication conditions, natural dye selection, and application-based future perspectives. Environ Sci Pollut Res [Internet]. 2022 Jan 21;29(1):371–404. Available from: <URL>.
  • 48. Fitra M, Daut I, Gomesh N, Irwanto M, Irwan YM. Dye solar cell using syzigium oleina organic dye. Energy Procedia [Internet]. 2013 Jan 1;36:341–8. Available from: <URL>.
  • 49. Srinivasu P, Singh SP, Islam A, Han L. Solar energy conversion by dye-sensitized photovoltaic cells using high surface area mesoporous carbon counter electrode. Adv Optoelectron [Internet]. 2011 Oct 10;2011(1):1–4. Available from: <URL>.
  • 50. Ito S, Ha NLC, Rothenberger G, Liska P, Comte P, Zakeeruddin SM, et al. High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. Chem Commun [Internet]. 2006 Sep 26;2006(38):4004–6. Available from: <URL>.
  • 51. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Dye-sensitized solar cells. Chem Rev [Internet]. 2010 Nov 10;110(11):6595–663. Available from: <URL>.
  • 52. Kharul A, Yusuf NM, Mustafar S, Borines ML, Kusumawati EN, Hashim N. Versatility of photosensitizers in dye-sensitized solar cells (DSSCs). Biointerface Res Appl Chem [Internet]. 2021 Dec 13;12(6):8543–60. Available from: <URL>.
  • 53. Michaels H, Rinderle M, Freitag R, Benesperi I, Edvinsson T, Socher R, et al. Dye-sensitized solar cells under ambient light powering machine learning: Towards autonomous smart sensors for the internet of things. Chem Sci [Internet]. 2020 Mar 18;11(11):2895–906. Available from: <URL>.
  • 54. Sekaran PD, Marimuthu R. An extensive analysis of dye-sensitized solar cell (DSSC). Brazilian J Phys [Internet]. 2024 Feb 8;54(1):28. Available from: <URL>.
  • 55. Mohiuddin O, Obaidullah M, Sabah C. Improvement in dye sensitized solar cells from past to present. Opt Quantum Electron [Internet]. 2018 Oct 5;50(10):377. Available from: <URL>.
  • 56. Freitag M, Teuscher J, Saygili Y, Zhang X, Giordano F, Liska P, et al. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat Photonics [Internet]. 2017 Jun 1;11(6):372–8. Available from: <URL>.
  • 57. Sheehan S, Surolia PK, Byrne O, Garner S, Cimo P, Li X, et al. Flexible glass substrate based dye sensitized solar cells. Sol Energy Mater Sol Cells [Internet]. 2015 Jan 1;132:237–44. Available from: <URL>.
  • 58. Patni N, Sharma P, Parikh M, Joshi P, Pillai SG. Cost effective approach of using substrates for electrodes of enhanced efficient dye sensitized solar cell. Mater Res Express [Internet]. 2018 Aug 17;5(9):095509. Available from: <URL>.
  • 59. Marques A dos S, da Silva VAS, Ribeiro ES, Malta LFB. Dye-sensitized solar cells: components screening for glass substrate, counter-electrode, photoanode and electrolyte. Mater Res [Internet]. 2020 Nov 23;23(5):e20200168. Available from: <URL>.
  • 60. Yeoh ME, Chan KY. Recent advances in photo-anode for dye-sensitized solar cells: A review. Int J Energy Res [Internet]. 2017 Dec 1;41(15):2446–67. Available from: <URL>.
  • 61. Ye M, Wen X, Wang M, Iocozzia J, Zhang N, Lin C, et al. Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater Today [Internet]. 2015 Apr 1;18(3):155–62. Available from: <URL>.
  • 62. Bagheri O, Dehghani H, Afrooz M. Pyridine derivatives; new efficient additives in bromide/tribromide electrolyte for dye sensitized solar cells. RSC Adv [Internet]. 2015 Oct 12;5(105):86191–8. Available from: <URL>.
  • 63. Zhao M, Zhang L, Liu M, Dong Y, Zou C, Hu Y, et al. Growth of atomically thin MoS2 flakes on high-κ substrates by chemical vapor deposition. J Mater Sci [Internet]. 2018 Mar 20;53(6):4262–73. Available from: <URL>.
  • 64. Chen W, Qiu Y, Zhong Y, Wong KS, Yang S. High-efficiency dye-sensitized solar cells based on the composite photoanodes of SnO2 nanoparticles/ZnO nanotetrapods. J Phys Chem A [Internet]. 2010 Mar 11;114(9):3127–38. Available from: <URL>.
  • 65. Chiang TL, Chou CS, Wu DH, Hsiung CM. Applications of P-type NiO in dye-sensitized solar cells. Adv Mater Res [Internet]. 2011 May 12;239–242:1747–50. Available from: <URL>.
  • 66. Alami AH, Rajab B, Abed J, Faraj M, Hawili AA, Alawadhi H. Investigating various copper oxides-based counter electrodes for dye sensitized solar cell applications. Energy [Internet]. 2019 May 1;174:526–33. Available from: <URL>.
  • 67. Hosseinnezhad M, Gharanjig K, Yazdi MK, Zarrintaj P, Moradian S, Saeb MR, et al. Dye-sensitized solar cells based on natural photosensitizers: A green view from Iran. J Alloys Compd [Internet]. 2020 Jul 5;828:154329. Available from: <URL>.
  • 68. Arof AK, Ping TL. Chlorophyll as photosensitizer in dye-sensitized solar cells. In: Jacob-Lopes E, Zepka LQ, Queiroz MI, editors. Chlorophyll [Internet]. Rijeka, Croatia: InTech; 2017. Available from: <URL>.
  • 69. Bartkowiak A, Korolevych O, Chiarello GL, Makowska-Janusik M, Zalas M. Experimental and theoretical insight into DSSCs mechanism influenced by different doping metal ions. Appl Surf Sci [Internet]. 2022 Sep 30;597:153607. Available from: <URL>.
  • 70. Lee CP, Li CT, Ho KC. Use of organic materials in dye-sensitized solar cells. Mater Today [Internet]. 2017 Jun 1;20(5):267–83. Available from: <URL>.
  • 71. Grätzel M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem [Internet]. 2005 Oct 1;44(20):6841–51. Available from: <URL>.
  • 72. Jilakian M, Ghaddar TH. Eco-friendly aqueous dye-sensitized solar cell with a copper(I/II) electrolyte system: Efficient performance under ambient light conditions. ACS Appl Energy Mater [Internet]. 2022 Jan 24;5(1):257–65. Available from: <URL>.
  • 73. Yella A, Lee HW, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, et al. Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science [Internet]. 2011 Nov 4;334(6056):629–34. Available from: <URL>.
  • 74. Feldt SM, Gibson EA, Gabrielsson E, Sun L, Boschloo G, Hagfeldt A. Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells. J Am Chem Soc [Internet]. 2010 Nov 24;132(46):16714–24. Available from: <URL>.
  • 75. Lee CP, Chu TC, Chang LY, Lin JJ, Ho KC. Solid-state Ionic liquid based electrolytes for dye-sensitized solar cells. In: Jacob-Lopes E, Zepka LQ, Queiroz MI, editors. Chlorophyll [Internet]. Rijeka, Croatia: InTech; 2017. Available from: <URL>.
  • 76. Gnanasekar S, Kollu P, Jeong SK, Grace AN. Pt-free, low-cost and efficient counter electrode with carbon wrapped VO2(M) nanofiber for dye-sensitized solar cells. Sci Rep [Internet]. 2019 Mar 26;9(1):5177. Available from: <URL>.
  • 77. Wu J, Lan Z, Lin J, Huang M, Huang Y, Fan L, et al. Counter electrodes in dye-sensitized solar cells. Chem Soc Rev [Internet]. 2017 Oct 2;46(19):5975–6023. Available from: <URL>.
  • 78. Ahmed U, Alizadeh M, Rahim NA, Shahabuddin S, Ahmed MS, Pandey AK. A comprehensive review on counter electrodes for dye sensitized solar cells: A special focus on Pt-TCO free counter electrodes. Sol Energy [Internet]. 2018 Nov 1;174:1097–125. Available from: <URL>.
  • 79. Thomas S, Deepak TG, Anjusree GS, Arun TA, Nair S V., Nair AS. A review on counter electrode materials in dye-sensitized solar cells. J Mater Chem A [Internet]. 2014 Mar 4;2(13):4474–90. Available from: <URL>.
  • 80. Wu CS, Chang TW, Teng H, Lee YL. High performance carbon black counter electrodes for dye-sensitized solar cells. Energy [Internet]. 2016 Nov 15;115:513–8. Available from: <URL>.
  • 81. Wang H, Hu YH. Graphene as a counter electrode material for dye-sensitized solar cells. Energy Environ Sci [Internet]. 2012 Jul 18;5(8):8182–8. Available from: <URL>.
  • 82. Chou CS, Hsiung CM, Wang CP, Yang RY, Guo MG. Preparation of a counter electrode with P-type NiO and its applications in dye-sensitized solar cell. Int J Photoenergy [Internet]. 2010 Jan 1;2010(1):902385. Available from: <URL>.
  • 83. Richhariya G, Kumar A, Shukla AK, Shukla KN, Meikap BC. Effect of different counter electrodes on power conversion efficiency of DSSCs. J Electron Mater [Internet]. 2023 Jan 20;52(1):60–71. Available from: <URL>.
  • 84. Jamalullail N, Mohamad IS, Norizan MN, Baharum NA, Mahmed N. Short review: Natural pigments photosensitizer for dye-sensitized solar cell (DSSC). In: 2017 IEEE 15th Student Conference on Research and Development (SCOReD) [Internet]. IEEE; 2017. p. 344–9. Available from: <URL>.
  • 85. Ghernaout D, Boudjemline A, Elboughdiri N. Electrochemical engineering in the core of the dye-sensitized solar cells (DSSCs). OALib [Internet]. 2020 Mar 5;07(03):1–12. Available from: <URL>.
  • 86. Francis OI, Ikenna A. Review of dye-sensitized solar cell (DSSCs) development. Nat Sci [Internet]. 2021 Dec 7;13(12):496–509. Available from: <URL>.
  • 87. Bera S, Sengupta D, Roy S, Mukherjee K. Research into dye-sensitized solar cells: A review highlighting progress in India. J Phys Energy [Internet]. 2021 Jul 1;3(3):032013. Available from: <URL>.
  • 88. Bej S, Ghosh P, Majumdar G, Murmu NC, Banerjee P. Design and synthesis of new ruthenium coordination complex as efficient dye in DSSC Like alternative energy resources with a bird’s eye view on strategies towards GHGs mitigation. In: Encyclopedia of Renewable and Sustainable Materials [Internet]. Elsevier; 2020. p. 395–410. Available from: <URL>.
  • 89. Zhang L, Cole JM. Anchoring groups for dye-sensitized solar cells. ACS Appl Mater Interfaces [Internet]. 2015 Feb 18;7(6):3427–55. Available from: <URL>.
  • 90. Ladomenou K, Kitsopoulos TN, Sharma GD, Coutsolelos AG. The importance of various anchoring groups attached on porphyrins as potential dyes for DSSC applications. RSC Adv [Internet]. 2014 May 14;4(41):21379–404. Available from: <URL>.
  • 91. Rafique S, Rashid I, Sharif R. Cost effective dye sensitized solar cell based on novel Cu polypyrrole multiwall carbon nanotubes nanocomposites counter electrode. Sci Rep [Internet]. 2021 Jul21;11(1):14830. Available from: <URL>.
  • 92. Younas M, Gondal MA, Dastageer MA, Harrabi K. Efficient and cost-effective dye-sensitized solar cells using MWCNT-TiO2 nanocomposite as photoanode and MWCNT as Pt-free counter electrode. Sol Energy [Internet]. 2019 Aug 1;188:1178–88. Available from: <URL>.
  • 93. Sen A, Putra MH, Biswas AK, Behera AK, Groβ A. Insight on the choice of sensitizers/dyes for dye sensitized solar cells: A review. Dye Pigment [Internet]. 2023 May 1;213:111087. Available from: <URL>.
  • 94. Agarwal R, Vyas Y, Chundawat P, Dharmendra, Ameta C. Outdoor performance and stability assessment of dye-sensitized solar cells (DSSCs). In: Aghaei M, editor. Solar Radiation - Measurement, Modeling and Forecasting Techniques for Photovoltaic Solar Energy Applications [Internet]. IntechOpen; 2021. Available from: <URL>.
  • 95. Shukor NIA, Chan KY, Thien GSH, Yeoh ME, Low PL, Devaraj NK, et al. A green approach to natural dyes in dye-sensitized solar cells. Sensors [Internet]. 2023 Oct 12;23(20):8412. Available from: <URL>.
  • 96. Parasuraman D, Ramakrishnan M. A review on dye-sensitized solar cells (DSSCs), materials and applications. Iran J Mater Sci Eng [Internet]. 2023 Mar;20(1):1–23. Available from: <URL>.
  • 97. Calogero G, Bartolotta A, Di Marco G, Di Carlo A, Bonaccorso F. Vegetable-based dye-sensitized solar cells. Chem Soc Rev [Internet]. 2015 May 12;44(10):3244–94. Available from: <URL>.
  • 98. Mekapogu M, Vasamsetti BMK, Kwon OK, Ahn MS, Lim SH, Jung JA. Anthocyanins in floral colors: biosynthesis and regulation in chrysanthemum flowers. Int J Mol Sci [Internet]. 2020 Sep 7;21(18):6537. Available from: <URL>.
  • 99. Derince B, Gorgun K, Caglar Y, Caglar M. Architectural design of new conjugated systems carrying donor-π-acceptor groups (carbazole-CF3): Characterizations, optical, photophysical properties and DSSC’s applications. J Mol Struct [Internet]. 2022 Feb 15;1250:131689. Available from: <URL>.
  • 100. Saad Ebied M, Dongol M, Ibrahim M, Nassary M, Elnobi S, Abuelwafa AA. Effect of carboxylic acid and cyanoacrylic acid as anchoring groups on Coumarin 6 dye for dye-sensitized solar cells: DFT and TD-DFT study. Struct Chem [Internet]. 2022 Dec 16;33(6):1921–33. Available from: <URL>.
  • 101. Nitha PR, Soman S, John J. Indole fused heterocycles as sensitizers in dye-sensitized solar cells: An overview. Mater Adv [Internet]. 2021 Oct 4;2(19):6136–68. Available from: <URL>.
  • 102. Jabeen M. A comprehensive review on analytical applications of hydrazone derivatives. J Turkish Chem Soc Sect A Chem [Internet]. 2022 Aug 31;9(3):663–98. Available from: <URL>.
  • 103. Zou J, Yan Q, Li C, Lu Y, Tong Z, Xie Y. Light-absorbing pyridine derivative as a new electrolyte additive for developing efficient porphyrin dye-sensitized solar cells. ACS Appl Mater Interfaces [Internet]. 2020 Dec 23;12(51):57017–24. Available from: <URL>.
  • 104. Higashino T, Imahori H. Porphyrins as excellent dyes for dye-sensitized solar cells: Recent developments and insights. Dalt Trans [Internet]. 2015 Dec 9;44(2):448–63. Available from: <URL>.
  • 105. Mahadevi P, Sumathi S. Mini review on the performance of schiff base and their metal complexes as photosensitizers in dye-sensitized solar cells. Synth Commun [Internet]. 2020 Aug 2;50(15):2237–49. Available from: <URL>.
  • 106. Meyer TJ, Meyer GJ, Pfennig BW, Schoonover JR, Timpson CJ, Wall JF, et al. Molecular-level electron transfer and excited state assemblies on surfaces of metal oxides and glass. Inorg Chem [Internet]. 1994 Aug 1;33(18):3952–64. Available from: <URL>.
  • 107. El-Agez TM, Taya SA, Elrefi KS, Abdel-Latif MS. Dye-sensitized solar cells using some organic dyes as photosensitizers. Opt Appl [Internet]. 2014;44(2):345–51. Available from: <URL>.
  • 108. Arjmand F, Rashidi Ranjbar Z, Fatemi E. G H. Effect of dye complex structure on performance in DSSCs; An experimental and theoretical study. Heliyon [Internet]. 2022 Nov 1;8(11):e11692. Available from: <URL>.
  • 109. Bashir R, Makhdoom AR, Bilal MK, Ahmad Badar M. Comparative study of the photovoltaic behavior of ruthenium and the other organic and inorganic dye-sensitized solar cells (DSSC). Optik (Stuttg) [Internet]. 2018 Mar 1;157:11–5. Available from: <URL>.
  • 110. Pawlus K, Jarosz T. Transition metal coordination compounds as novel materials for dye-sensitized solar cells. Appl Sci [Internet]. 2022 Mar 28;12(7):3442. Available from: <URL>.
  • 111. Linfoot CL, Richardson P, McCall KL, Durrant JR, Morandeira A, Robertson N. A nickel-complex sensitiser for dye-sensitised solar cells. Sol Energy [Internet]. 2011 Jun 1;85(6):1195–203. Available from: <URL>.
  • 112. Mauri L, Colombo A, Dragonetti C, Fagnani F. A fascinating trip into iron and copper dyes for DSSCs. Inorganics [Internet]. 2022 Sep 10;10(9):137. Available from: <URL>.
  • 113. Muddassir M, Alarifi A, Abduh NAY, Afzal M. New isomeric pyridyl imine zinc(II) complexes as potential co-sensitizers for state of the Art N719 dye in DSSC. J Mol Struct [Internet]. 2021 Dec 15;1246:131191. Available from: <URL>.

DSSC sensitizers: A Panoramic comparison

Year 2025, Volume: 12 Issue: 1, 35 - 46, 03.03.2025
https://doi.org/10.18596/jotcsa.1467947

Abstract

Currently, energy and greenhouse gas emissions are the biggest problems. As a result of overpopulation and high energy consumption, non-renewable energy sources are continuously depleting. Greenhouse gases are also being emitted at a very high rate. The modern world must use renewable energy sources, among which solar energy is safe and available everywhere. Solar energy is efficiently transformed into electrical energy by photovoltaics (solar cells). During the past decades, DSSC the type of thin-film photovoltaics, gained importance due to cost-effectiveness, durability, ease fabrication, and low toxicity. These cells convert sunlight into electricity with power conversion efficiency approximately 20%. Glass substrate, photo-anode, sensitizer, electrolyte and counter electrode are the key components of DSSCs. Among these, sensitizers are the most important part of these cells that absorb photons, generate electrons, create electron-hole-pair and produce electricity. In the beginning, only ruthenium metal complexes were used as dyes, but now a large number of organic, inorganic and natural compounds are widely used to enhance the overall performance of these cells. This is in-depth review on solar cells but mainly focus on construction, operating principle, and performance of DSSCs. In this review, we not only presented a library of sensitizers used in DSSCs but also give a brief comparison between these sensitizers to help future research.

References

  • 1. Joy C. A review-The potential of natural dyes for dye sensitized solar cells. Int J Innov Sci Res Technol [Internet]. 2017;2(10):579–84. Available from: <URL>.
  • 2. Dhilipan J, Vijayalakshmi N, Shanmugam DB, Jai Ganesh R, Kodeeswaran S, Muralidharan S. Performance and efficiency of different types of solar cell material – A review. Mater Today Proc [Internet]. 2022 Jan 1;66:1295–302. Available from: <URL>.
  • 3. Ameri T, Li N, Brabec CJ. Highly efficient organic tandem solar cells: A follow up review. Energy Environ Sci [Internet]. 2013 Jul 17;6(8):2390–413. Available from: <URL>.
  • 4. Shahzad U, Asgarpoor S. A comprehensive review of protection schemes for distributed generation. Energy Power Eng [Internet]. 2017 Aug 7;9(8):430–63. Available from: <URL>.
  • 5. Shahzad U. The importance of renewable energy sources in Pakistan. Durreesamin J [Internet]. 2015;1(3):1–5. Available from: <URL>.
  • 6. Pablo CCV, Enrique RR, José ARG, Enrique MP, Juan LH, Eddie NAM. Construction of dye-sensitized solar cells (DSSC) with natural pigments. Mater Today Proc [Internet]. 2016 Jan 1;3(2):194–200. Available from: <URL>.
  • 7. Jabeen M, Tarıq K, Hussain SU. Bioplastic an alternative to plastic in modern world: A systemized review. Environ Res Technol [Internet]. 2024 Dec 31;7(4):614–25. Available from: <URL>.
  • 8. Tripathi L, Mishra AK, Dubey AK, Tripathi CB, Baredar P. Renewable energy: An overview on its contribution in current energy scenario of India. Renew Sustain Energy Rev [Internet]. 2016 Jul 1;60:226–33. Available from: <URL>.
  • 9. Hanif I, Aziz B, Chaudhry IS. Carbon emissions across the spectrum of renewable and nonrenewable energy use in developing economies of Asia. Renew Energy [Internet]. 2019 Dec 1;143:586–95. Available from: <URL>.
  • 10. Shahzad U. The need for renewable energy sources. Int J Inf Technol Electr Eng [Internet]. 2015;4(4):16–8. Available from: <URL>.
  • 11. Salim RA, Shafiei S. Urbanization and renewable and non-renewable energy consumption in OECD countries: An empirical analysis. Econ Model [Internet]. 2014 Feb 1;38:581–91. Available from: <URL>.
  • 12. Kannan N, Vakeesan D. Solar energy for future world: - A review. Renew Sustain Energy Rev [Internet]. 2016 Sep 1;62:1092–105. Available from: <URL>.
  • 13. Dinçer F. The analysis on photovoltaic electricity generation status, potential and policies of the leading countries in solar energy. Renew Sustain Energy Rev [Internet]. 2011 Jan 1;15(1):713–20. Available from: <URL>.
  • 14. Schmidt T, Mangold D, Müller-Steinhagen H. Central solar heating plants with seasonal storage in Germany. Sol Energy [Internet]. 2004 Jan 1;76(1–3):165–74. Available from: <URL>.
  • 15. Soile I. The economic and environmental challenges of energy supply disruptions in China. Eur J Econ Financ Adm Sci [Internet]. 2011;34:87–98. Available from: <URL>.
  • 16. Deandra PP, Santoso H, Witono JRB. Carbon based sulfonated catalyst as an environment friendly material: A review. In: AIP Conference Proceedings [Internet]. American Institute of Physics Inc.; 2022. p. 040006. Available from: <URL>.
  • 17. Jacobson MZ, Delucchi MA. A path to sustainable energy by 2030. Sci Am [Internet]. 2009;301(5):58–65. Available from: <URL>.
  • 18. Sharma S, Jain KK, Sharma A. Solar Cells: In research and applications—A review. Mater Sci Appl [Internet]. 2015 Dec 1;06(12):1145–55. Available from: <URL>.
  • 19. Al-Ezzi AS, Ansari MNM. Photovoltaic solar cells: A review. Appl Syst Innov [Internet]. 2022 Jul 8;5(4):67. Available from: <URL>.
  • 20. Snaith HJ. The perils of solar cell efficiency measurements. Nat Photonics [Internet]. 2012 Jun 29;6(6):337–40. Available from: <URL>.
  • 21. Sharma M, Gupta S, Prasad S, Bharatiya PK, Mishra D. First principles study of the influence of metallic-doping on crystalline ZnS: From efficiency aspects for use in a ZnS based dye sensitized solar cell (DSSC). Integr Ferroelectr [Internet]. 2018 Nov 22;194(1):96–103. Available from: <URL>.
  • 22. El Chaar L, lamont LA, El Zein N. Review of photovoltaic technologies. Renew Sustain Energy Rev [Internet]. 2011 Jun 1;15(5):2165–75. Available from: <URL>.
  • 23. Kenu E. Sarah. A review of solar photovoltaic technologies. Int J Eng Res [Internet]. 2020 Jul 18;9(7):741–9. Available from: <URL>.
  • 24. Ouedraogo S, Sam R, Ouedraogo F, Kebre MB, Zougmore F, Ndjaka JM, et al. Optimization of copper indium gallium di-selenide (CIGS) based solar cells by back grading. In: 2013 Africon [Internet]. IEEE; 2013. p. 1–6. Available from: <URL>.
  • 25. Fairbrother A, Saucedo E, Fontane X, Izquierdo-Roca V, Sylla D, Espindola-Rodriguez M, et al. Preparation of 4.8% efficiency Cu2ZnSnSe4 based solar cell by a two step process. In: 2012 38th IEEE Photovoltaic Specialists Conference [Internet]. IEEE; 2012. p. 002679–84. Available from: <URL>.
  • 26. Fairbrother A, Fontané X, Izquierdo-Roca V, Espíndola-Rodríguez M, López-Marino S, Placidi M, et al. On the formation mechanisms of Zn-rich Cu2ZnSnS4 films prepared by sulfurization of metallic stacks. Sol Energy Mater Sol Cells [Internet]. 2013 May 1;112:97–105. Available from: <URL>.
  • 27. Imamzai M, Aghaei M, Thayoob YHM, Forouzanfar M. A review on comparison between traditional silicon solar cells and thin- film CdTe solar cells. In: Proceedings National Graduate Conference [Internet]. 2012. Available from: <URL>.
  • 28. Green MA, Dunlop ED, Yoshita M, Kopidakis N, Bothe K, Siefer G, et al. Solar cell efficiency tables (Version 64). Prog Photovoltaics Res Appl [Internet]. 2024 Jul 2;32(7):425–41. Available from: <URL>.
  • 29. Masafumi Y. High-efficiency GaAs-based solar cells. In: Muzibur Rahman M, Mohammed Asiri A, Khan A, Inamuddin, Tabbakh T, editors. Post-Transition Metals [Internet]. IntechOpen; 2021. Available from: <URL>.
  • 30. Vigil-Galán O, Courel M, Andrade-Arvizu JA, Sánchez Y, Espíndola-Rodríguez M, Saucedo E, et al. Route towards low cost-high efficiency second generation solar cells: Current status and perspectives. J Mater Sci Mater Electron [Internet]. 2015 Aug 30;26(8):5562–73. Available from: <URL>.
  • 31. Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, et al. Lead Iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep [Internet]. 2012 Aug 21;2(1):591. Available from: <URL>.
  • 32. Bermel P, Ghebrebrhan M, Chan W, Yeng YX, Araghchini M, Hamam R, et al. Design and global optimization of high-efficiency thermophotovoltaic systems. Opt Express [Internet]. 2010 Sep 13;18(S3):A314. Available from: <URL>.
  • 33. O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature [Internet]. 1991 Oct 24;353(6346):737–40. Available from: <URL>.
  • 34. Yin Z, Zhu J, He Q, Cao X, Tan C, Chen H, et al. Graphene‐based materials for solar cell applications. Adv Energy Mater [Internet]. 2014 Jan 23;4(1):1300574. Available from: <URL>.
  • 35. Ning Z, Gong X, Comin R, Walters G, Fan F, Voznyy O, et al. Quantum-dot-in-perovskite solids. Nature [Internet]. 2015 Jul 16;523(7560):324–8. Available from: <URL>.
  • 36. Yan J, Saunders BR. Third-generation solar cells: a review and comparison of polymer:fullerene, hybrid polymer and perovskite solar cells. RSC Adv [Internet]. 2014 Sep 12;4(82):43286–314. Available from: <URL>.
  • 37. Piliego C, Protesescu L, Bisri SZ, Kovalenko M V., Loi MA. 5.2% efficient PbS nanocrystal schottky solar cells. Energy Environ Sci [Internet]. 2013 Sep 20;6(10):3054–9. Available from: <URL>.
  • 38. Ge Z, Qiao J, Li Y, Song J, Zhang C, Fu Z, et al. Over 18% efficiency of all‐polymer solar cells with long‐term stability enabled by Y6 as a solid additive. Adv Mater [Internet]. 2023 Jul 24;35(28):2301906. Available from: <URL>.
  • 39. LaPotin A, Schulte KL, Steiner MA, Buznitsky K, Kelsall CC, Friedman DJ, et al. Thermophotovoltaic efficiency of 40%. Nature [Internet]. 2022 Apr 14;604(7905):287–91. Available from: <URL>.
  • 40. Shah N, Shah AA, Leung PK, Khan S, Sun K, Zhu X, et al. A review of third generation solar cells. Processes [Internet]. 2023 Jun 20;11(6):1852. Available from: <URL>.
  • 41. Suhail A, Pan G, Jenkins D, Islam K. Improved efficiency of graphene/Si Schottky junction solar cell based on back contact structure and DUV treatment. Carbon N Y [Internet]. 2018 Apr 1;129:520–6. Available from: <URL>.
  • 42. Kim T, Jin X, Song JH, Jeong S, Park T. Efficiency limit of colloidal quantum dot solar cells: Effect of optical interference on active layer absorption. ACS Energy Lett [Internet]. 2020 Jan 10;5(1):248–51. Available from: <URL>.
  • 43. Zhou Y, Chen Y, Zhang Q, Zhou Y, Tai M, Koumoto K, et al. A highly-efficient concentrated perovskite solar cell-thermoelectric generator tandem system. J Energy Chem [Internet]. 2021 Aug 1;59:730–5. Available from: <URL>.
  • 44. Mayer AC, Scully SR, Hardin BE, Rowell MW, McGehee MD. Polymer-based solar cells. Mater Today [Internet]. 2007 Nov 1;10(11):28–33. Available from: <URL>.
  • 45. Sharma K, Sharma V, Sharma SS. Dye-sensitized solar cells: Fundamentals and current status. Nanoscale Res Lett [Internet]. 2018 Dec 28;13(1):381. Available from: <URL>.
  • 46. Wei D. Dye sensitized solar cells. Int J Mol Sci [Internet]. 2010 Mar 16;11(3):1103–13. Available from: <URL>.
  • 47. Baby R, Nixon PD, Kumar NM, Subathra MSP, Ananthi N. A comprehensive review of dye-sensitized solar cell optimal fabrication conditions, natural dye selection, and application-based future perspectives. Environ Sci Pollut Res [Internet]. 2022 Jan 21;29(1):371–404. Available from: <URL>.
  • 48. Fitra M, Daut I, Gomesh N, Irwanto M, Irwan YM. Dye solar cell using syzigium oleina organic dye. Energy Procedia [Internet]. 2013 Jan 1;36:341–8. Available from: <URL>.
  • 49. Srinivasu P, Singh SP, Islam A, Han L. Solar energy conversion by dye-sensitized photovoltaic cells using high surface area mesoporous carbon counter electrode. Adv Optoelectron [Internet]. 2011 Oct 10;2011(1):1–4. Available from: <URL>.
  • 50. Ito S, Ha NLC, Rothenberger G, Liska P, Comte P, Zakeeruddin SM, et al. High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. Chem Commun [Internet]. 2006 Sep 26;2006(38):4004–6. Available from: <URL>.
  • 51. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Dye-sensitized solar cells. Chem Rev [Internet]. 2010 Nov 10;110(11):6595–663. Available from: <URL>.
  • 52. Kharul A, Yusuf NM, Mustafar S, Borines ML, Kusumawati EN, Hashim N. Versatility of photosensitizers in dye-sensitized solar cells (DSSCs). Biointerface Res Appl Chem [Internet]. 2021 Dec 13;12(6):8543–60. Available from: <URL>.
  • 53. Michaels H, Rinderle M, Freitag R, Benesperi I, Edvinsson T, Socher R, et al. Dye-sensitized solar cells under ambient light powering machine learning: Towards autonomous smart sensors for the internet of things. Chem Sci [Internet]. 2020 Mar 18;11(11):2895–906. Available from: <URL>.
  • 54. Sekaran PD, Marimuthu R. An extensive analysis of dye-sensitized solar cell (DSSC). Brazilian J Phys [Internet]. 2024 Feb 8;54(1):28. Available from: <URL>.
  • 55. Mohiuddin O, Obaidullah M, Sabah C. Improvement in dye sensitized solar cells from past to present. Opt Quantum Electron [Internet]. 2018 Oct 5;50(10):377. Available from: <URL>.
  • 56. Freitag M, Teuscher J, Saygili Y, Zhang X, Giordano F, Liska P, et al. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat Photonics [Internet]. 2017 Jun 1;11(6):372–8. Available from: <URL>.
  • 57. Sheehan S, Surolia PK, Byrne O, Garner S, Cimo P, Li X, et al. Flexible glass substrate based dye sensitized solar cells. Sol Energy Mater Sol Cells [Internet]. 2015 Jan 1;132:237–44. Available from: <URL>.
  • 58. Patni N, Sharma P, Parikh M, Joshi P, Pillai SG. Cost effective approach of using substrates for electrodes of enhanced efficient dye sensitized solar cell. Mater Res Express [Internet]. 2018 Aug 17;5(9):095509. Available from: <URL>.
  • 59. Marques A dos S, da Silva VAS, Ribeiro ES, Malta LFB. Dye-sensitized solar cells: components screening for glass substrate, counter-electrode, photoanode and electrolyte. Mater Res [Internet]. 2020 Nov 23;23(5):e20200168. Available from: <URL>.
  • 60. Yeoh ME, Chan KY. Recent advances in photo-anode for dye-sensitized solar cells: A review. Int J Energy Res [Internet]. 2017 Dec 1;41(15):2446–67. Available from: <URL>.
  • 61. Ye M, Wen X, Wang M, Iocozzia J, Zhang N, Lin C, et al. Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater Today [Internet]. 2015 Apr 1;18(3):155–62. Available from: <URL>.
  • 62. Bagheri O, Dehghani H, Afrooz M. Pyridine derivatives; new efficient additives in bromide/tribromide electrolyte for dye sensitized solar cells. RSC Adv [Internet]. 2015 Oct 12;5(105):86191–8. Available from: <URL>.
  • 63. Zhao M, Zhang L, Liu M, Dong Y, Zou C, Hu Y, et al. Growth of atomically thin MoS2 flakes on high-κ substrates by chemical vapor deposition. J Mater Sci [Internet]. 2018 Mar 20;53(6):4262–73. Available from: <URL>.
  • 64. Chen W, Qiu Y, Zhong Y, Wong KS, Yang S. High-efficiency dye-sensitized solar cells based on the composite photoanodes of SnO2 nanoparticles/ZnO nanotetrapods. J Phys Chem A [Internet]. 2010 Mar 11;114(9):3127–38. Available from: <URL>.
  • 65. Chiang TL, Chou CS, Wu DH, Hsiung CM. Applications of P-type NiO in dye-sensitized solar cells. Adv Mater Res [Internet]. 2011 May 12;239–242:1747–50. Available from: <URL>.
  • 66. Alami AH, Rajab B, Abed J, Faraj M, Hawili AA, Alawadhi H. Investigating various copper oxides-based counter electrodes for dye sensitized solar cell applications. Energy [Internet]. 2019 May 1;174:526–33. Available from: <URL>.
  • 67. Hosseinnezhad M, Gharanjig K, Yazdi MK, Zarrintaj P, Moradian S, Saeb MR, et al. Dye-sensitized solar cells based on natural photosensitizers: A green view from Iran. J Alloys Compd [Internet]. 2020 Jul 5;828:154329. Available from: <URL>.
  • 68. Arof AK, Ping TL. Chlorophyll as photosensitizer in dye-sensitized solar cells. In: Jacob-Lopes E, Zepka LQ, Queiroz MI, editors. Chlorophyll [Internet]. Rijeka, Croatia: InTech; 2017. Available from: <URL>.
  • 69. Bartkowiak A, Korolevych O, Chiarello GL, Makowska-Janusik M, Zalas M. Experimental and theoretical insight into DSSCs mechanism influenced by different doping metal ions. Appl Surf Sci [Internet]. 2022 Sep 30;597:153607. Available from: <URL>.
  • 70. Lee CP, Li CT, Ho KC. Use of organic materials in dye-sensitized solar cells. Mater Today [Internet]. 2017 Jun 1;20(5):267–83. Available from: <URL>.
  • 71. Grätzel M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem [Internet]. 2005 Oct 1;44(20):6841–51. Available from: <URL>.
  • 72. Jilakian M, Ghaddar TH. Eco-friendly aqueous dye-sensitized solar cell with a copper(I/II) electrolyte system: Efficient performance under ambient light conditions. ACS Appl Energy Mater [Internet]. 2022 Jan 24;5(1):257–65. Available from: <URL>.
  • 73. Yella A, Lee HW, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, et al. Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science [Internet]. 2011 Nov 4;334(6056):629–34. Available from: <URL>.
  • 74. Feldt SM, Gibson EA, Gabrielsson E, Sun L, Boschloo G, Hagfeldt A. Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells. J Am Chem Soc [Internet]. 2010 Nov 24;132(46):16714–24. Available from: <URL>.
  • 75. Lee CP, Chu TC, Chang LY, Lin JJ, Ho KC. Solid-state Ionic liquid based electrolytes for dye-sensitized solar cells. In: Jacob-Lopes E, Zepka LQ, Queiroz MI, editors. Chlorophyll [Internet]. Rijeka, Croatia: InTech; 2017. Available from: <URL>.
  • 76. Gnanasekar S, Kollu P, Jeong SK, Grace AN. Pt-free, low-cost and efficient counter electrode with carbon wrapped VO2(M) nanofiber for dye-sensitized solar cells. Sci Rep [Internet]. 2019 Mar 26;9(1):5177. Available from: <URL>.
  • 77. Wu J, Lan Z, Lin J, Huang M, Huang Y, Fan L, et al. Counter electrodes in dye-sensitized solar cells. Chem Soc Rev [Internet]. 2017 Oct 2;46(19):5975–6023. Available from: <URL>.
  • 78. Ahmed U, Alizadeh M, Rahim NA, Shahabuddin S, Ahmed MS, Pandey AK. A comprehensive review on counter electrodes for dye sensitized solar cells: A special focus on Pt-TCO free counter electrodes. Sol Energy [Internet]. 2018 Nov 1;174:1097–125. Available from: <URL>.
  • 79. Thomas S, Deepak TG, Anjusree GS, Arun TA, Nair S V., Nair AS. A review on counter electrode materials in dye-sensitized solar cells. J Mater Chem A [Internet]. 2014 Mar 4;2(13):4474–90. Available from: <URL>.
  • 80. Wu CS, Chang TW, Teng H, Lee YL. High performance carbon black counter electrodes for dye-sensitized solar cells. Energy [Internet]. 2016 Nov 15;115:513–8. Available from: <URL>.
  • 81. Wang H, Hu YH. Graphene as a counter electrode material for dye-sensitized solar cells. Energy Environ Sci [Internet]. 2012 Jul 18;5(8):8182–8. Available from: <URL>.
  • 82. Chou CS, Hsiung CM, Wang CP, Yang RY, Guo MG. Preparation of a counter electrode with P-type NiO and its applications in dye-sensitized solar cell. Int J Photoenergy [Internet]. 2010 Jan 1;2010(1):902385. Available from: <URL>.
  • 83. Richhariya G, Kumar A, Shukla AK, Shukla KN, Meikap BC. Effect of different counter electrodes on power conversion efficiency of DSSCs. J Electron Mater [Internet]. 2023 Jan 20;52(1):60–71. Available from: <URL>.
  • 84. Jamalullail N, Mohamad IS, Norizan MN, Baharum NA, Mahmed N. Short review: Natural pigments photosensitizer for dye-sensitized solar cell (DSSC). In: 2017 IEEE 15th Student Conference on Research and Development (SCOReD) [Internet]. IEEE; 2017. p. 344–9. Available from: <URL>.
  • 85. Ghernaout D, Boudjemline A, Elboughdiri N. Electrochemical engineering in the core of the dye-sensitized solar cells (DSSCs). OALib [Internet]. 2020 Mar 5;07(03):1–12. Available from: <URL>.
  • 86. Francis OI, Ikenna A. Review of dye-sensitized solar cell (DSSCs) development. Nat Sci [Internet]. 2021 Dec 7;13(12):496–509. Available from: <URL>.
  • 87. Bera S, Sengupta D, Roy S, Mukherjee K. Research into dye-sensitized solar cells: A review highlighting progress in India. J Phys Energy [Internet]. 2021 Jul 1;3(3):032013. Available from: <URL>.
  • 88. Bej S, Ghosh P, Majumdar G, Murmu NC, Banerjee P. Design and synthesis of new ruthenium coordination complex as efficient dye in DSSC Like alternative energy resources with a bird’s eye view on strategies towards GHGs mitigation. In: Encyclopedia of Renewable and Sustainable Materials [Internet]. Elsevier; 2020. p. 395–410. Available from: <URL>.
  • 89. Zhang L, Cole JM. Anchoring groups for dye-sensitized solar cells. ACS Appl Mater Interfaces [Internet]. 2015 Feb 18;7(6):3427–55. Available from: <URL>.
  • 90. Ladomenou K, Kitsopoulos TN, Sharma GD, Coutsolelos AG. The importance of various anchoring groups attached on porphyrins as potential dyes for DSSC applications. RSC Adv [Internet]. 2014 May 14;4(41):21379–404. Available from: <URL>.
  • 91. Rafique S, Rashid I, Sharif R. Cost effective dye sensitized solar cell based on novel Cu polypyrrole multiwall carbon nanotubes nanocomposites counter electrode. Sci Rep [Internet]. 2021 Jul21;11(1):14830. Available from: <URL>.
  • 92. Younas M, Gondal MA, Dastageer MA, Harrabi K. Efficient and cost-effective dye-sensitized solar cells using MWCNT-TiO2 nanocomposite as photoanode and MWCNT as Pt-free counter electrode. Sol Energy [Internet]. 2019 Aug 1;188:1178–88. Available from: <URL>.
  • 93. Sen A, Putra MH, Biswas AK, Behera AK, Groβ A. Insight on the choice of sensitizers/dyes for dye sensitized solar cells: A review. Dye Pigment [Internet]. 2023 May 1;213:111087. Available from: <URL>.
  • 94. Agarwal R, Vyas Y, Chundawat P, Dharmendra, Ameta C. Outdoor performance and stability assessment of dye-sensitized solar cells (DSSCs). In: Aghaei M, editor. Solar Radiation - Measurement, Modeling and Forecasting Techniques for Photovoltaic Solar Energy Applications [Internet]. IntechOpen; 2021. Available from: <URL>.
  • 95. Shukor NIA, Chan KY, Thien GSH, Yeoh ME, Low PL, Devaraj NK, et al. A green approach to natural dyes in dye-sensitized solar cells. Sensors [Internet]. 2023 Oct 12;23(20):8412. Available from: <URL>.
  • 96. Parasuraman D, Ramakrishnan M. A review on dye-sensitized solar cells (DSSCs), materials and applications. Iran J Mater Sci Eng [Internet]. 2023 Mar;20(1):1–23. Available from: <URL>.
  • 97. Calogero G, Bartolotta A, Di Marco G, Di Carlo A, Bonaccorso F. Vegetable-based dye-sensitized solar cells. Chem Soc Rev [Internet]. 2015 May 12;44(10):3244–94. Available from: <URL>.
  • 98. Mekapogu M, Vasamsetti BMK, Kwon OK, Ahn MS, Lim SH, Jung JA. Anthocyanins in floral colors: biosynthesis and regulation in chrysanthemum flowers. Int J Mol Sci [Internet]. 2020 Sep 7;21(18):6537. Available from: <URL>.
  • 99. Derince B, Gorgun K, Caglar Y, Caglar M. Architectural design of new conjugated systems carrying donor-π-acceptor groups (carbazole-CF3): Characterizations, optical, photophysical properties and DSSC’s applications. J Mol Struct [Internet]. 2022 Feb 15;1250:131689. Available from: <URL>.
  • 100. Saad Ebied M, Dongol M, Ibrahim M, Nassary M, Elnobi S, Abuelwafa AA. Effect of carboxylic acid and cyanoacrylic acid as anchoring groups on Coumarin 6 dye for dye-sensitized solar cells: DFT and TD-DFT study. Struct Chem [Internet]. 2022 Dec 16;33(6):1921–33. Available from: <URL>.
  • 101. Nitha PR, Soman S, John J. Indole fused heterocycles as sensitizers in dye-sensitized solar cells: An overview. Mater Adv [Internet]. 2021 Oct 4;2(19):6136–68. Available from: <URL>.
  • 102. Jabeen M. A comprehensive review on analytical applications of hydrazone derivatives. J Turkish Chem Soc Sect A Chem [Internet]. 2022 Aug 31;9(3):663–98. Available from: <URL>.
  • 103. Zou J, Yan Q, Li C, Lu Y, Tong Z, Xie Y. Light-absorbing pyridine derivative as a new electrolyte additive for developing efficient porphyrin dye-sensitized solar cells. ACS Appl Mater Interfaces [Internet]. 2020 Dec 23;12(51):57017–24. Available from: <URL>.
  • 104. Higashino T, Imahori H. Porphyrins as excellent dyes for dye-sensitized solar cells: Recent developments and insights. Dalt Trans [Internet]. 2015 Dec 9;44(2):448–63. Available from: <URL>.
  • 105. Mahadevi P, Sumathi S. Mini review on the performance of schiff base and their metal complexes as photosensitizers in dye-sensitized solar cells. Synth Commun [Internet]. 2020 Aug 2;50(15):2237–49. Available from: <URL>.
  • 106. Meyer TJ, Meyer GJ, Pfennig BW, Schoonover JR, Timpson CJ, Wall JF, et al. Molecular-level electron transfer and excited state assemblies on surfaces of metal oxides and glass. Inorg Chem [Internet]. 1994 Aug 1;33(18):3952–64. Available from: <URL>.
  • 107. El-Agez TM, Taya SA, Elrefi KS, Abdel-Latif MS. Dye-sensitized solar cells using some organic dyes as photosensitizers. Opt Appl [Internet]. 2014;44(2):345–51. Available from: <URL>.
  • 108. Arjmand F, Rashidi Ranjbar Z, Fatemi E. G H. Effect of dye complex structure on performance in DSSCs; An experimental and theoretical study. Heliyon [Internet]. 2022 Nov 1;8(11):e11692. Available from: <URL>.
  • 109. Bashir R, Makhdoom AR, Bilal MK, Ahmad Badar M. Comparative study of the photovoltaic behavior of ruthenium and the other organic and inorganic dye-sensitized solar cells (DSSC). Optik (Stuttg) [Internet]. 2018 Mar 1;157:11–5. Available from: <URL>.
  • 110. Pawlus K, Jarosz T. Transition metal coordination compounds as novel materials for dye-sensitized solar cells. Appl Sci [Internet]. 2022 Mar 28;12(7):3442. Available from: <URL>.
  • 111. Linfoot CL, Richardson P, McCall KL, Durrant JR, Morandeira A, Robertson N. A nickel-complex sensitiser for dye-sensitised solar cells. Sol Energy [Internet]. 2011 Jun 1;85(6):1195–203. Available from: <URL>.
  • 112. Mauri L, Colombo A, Dragonetti C, Fagnani F. A fascinating trip into iron and copper dyes for DSSCs. Inorganics [Internet]. 2022 Sep 10;10(9):137. Available from: <URL>.
  • 113. Muddassir M, Alarifi A, Abduh NAY, Afzal M. New isomeric pyridyl imine zinc(II) complexes as potential co-sensitizers for state of the Art N719 dye in DSSC. J Mol Struct [Internet]. 2021 Dec 15;1246:131191. Available from: <URL>.
There are 113 citations in total.

Details

Primary Language English
Subjects Instrumental Methods, Inorganic Materials, Optical Properties of Materials, Organic Green Chemistry
Journal Section REVIEW ARTICLES
Authors

Mussarat Jabeen 0000-0002-0818-0662

Iqra Mutaza 0009-0009-7721-3200

Rabia Anwar 0009-0002-9721-6096

Publication Date March 3, 2025
Submission Date April 14, 2024
Acceptance Date January 16, 2025
Published in Issue Year 2025 Volume: 12 Issue: 1

Cite

Vancouver Jabeen M, Mutaza I, Anwar R. DSSC sensitizers: A Panoramic comparison. JOTCSA. 2025;12(1):35-46.