Research Article
BibTex RIS Cite
Year 2025, Volume: 12 Issue: 1, 47 - 52, 03.03.2025
https://doi.org/10.18596/jotcsa.1598455

Abstract

References

  • 1. Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu Q. Redox flow batteries: A review. J Appl Electrochem [Internet]. 2011 Oct 2;41(10):1137–64. Available from: <URL>.
  • 2. Ye R, Henkensmeier D, Yoon SJ, Huang Z, Kim DK, Chang Z, et al. Redox flow batteries for energy storage: A technology review. J Electrochem Energy Convers Storage [Internet]. 2018 Feb 1;15(1):010801. Available from: <URL>.
  • 3. Bartolozzi M. Development of redox flow batteries. A historical bibliography. J Power Sources [Internet]. 1989 Sep 1;27(3):219–34. Available from: <URL>.
  • 4. Arenas LF, Ponce de León C, Walsh FC. Redox flow batteries for energy storage: Their promise, achievements and challenges. Curr Opin Electrochem [Internet]. 2019 Aug 1;16:117–26. Available from: <URL>.
  • 5. Li Z, Lu Y. Material design of aqueous redox flow batteries: Fundamental challenges and mitigation strategies. Adv Mater [Internet]. 2020 Nov 22;32(47):2002132. Available from: <URL>.
  • 6. Alotto P, Guarnieri M, Moro F. Redox flow batteries for the storage of renewable energy: A review. Renew Sustain Energy Rev [Internet]. 2014 Jan 1;29:325–35. Available from: <URL>.
  • 7. Sánchez-Díez E, Ventosa E, Guarnieri M, Trovò A, Flox C, Marcilla R, et al. Redox flow batteries: Status and perspective towards sustainable stationary energy storage. J Power Sources [Internet]. 2021 Jan 1;481:228804. Available from: <URL>.
  • 8. Zhang J, Jiang G, Xu P, Ghorbani Kashkooli A, Mousavi M, Yu A, et al. An all-aqueous redox flow battery with unprecedented energy density. Energy Environ Sci [Internet]. 2018 Aug 8;11(8):2010–5. Available from: <URL>.
  • 9. Rhodes Z, Cabrera‐Pardo JR, Li M, Minteer SD. Electrochemical advances in non‐aqueous redox flow batteries. Isr J Chem [Internet]. 2021 Jan 28;61(1–2):101–12. Available from: <URL>.
  • 10. Janoschka T, Martin N, Hager MD, Schubert US. An aqueous redox‐flow battery with high capacity and power: The TEMPTMA/MV system. Angew Chemie Int Ed [Internet]. 2016 Nov 7;55(46):14427–30. Available from: <URL>.
  • 11. Zhu F, Guo W, Fu Y. Functional materials for aqueous redox flow batteries: Merits and applications. Chem Soc Rev [Internet]. 2023 Nov 27;52(23):8410–46. Available from: <URL>.
  • 12. Yang G, Zhu Y, Hao Z, Lu Y, Zhao Q, Zhang K, et al. Organic electroactive materials for aqueous redox flow batteries. Adv Mater [Internet]. 2023 Aug 30;35(33):2301898. Available from: <URL>.
  • 13. Cannon CG, Klusener PAA, Brandon NP, Kucernak ARJ. Aqueous redox flow batteries: Small organic molecules for the positive electrolyte species. ChemSusChem [Internet]. 2023 Sep 22;16(18):e202300303. Available from: <URL>.
  • 14. Chen R, Zhang P, Chang Z, Yan J, Kraus T. Grafting and solubilization of redox‐active organic materials for aqueous redox flow batteries. ChemSusChem [Internet]. 2023 Apr 21;16(8):e202201993. Available from: <URL>.
  • 15. Zhang Y, Cao J, Chen Z, Xu J, Yu C. An organic-based aqueous hybrid flow battery with high power and long cycle life: A tetrapyridophenazine/ferrocyanide system. J Mater Chem A [Internet]. 2020 Apr 7;8(14):6874–81. Available from: <URL>.
  • 16. Sun P, Liu Y, Zuo P, Li Y, Chen Q, Yang Z, et al. Eu-based anolytes for high-voltage and long-lifetime aqueous flow batteries. J Energy Chem [Internet]. 2021 Sep 1;60:368–75. Available from: <URL>.
  • 17. Zeng D, Mao T, Zhang Z, Dai J, Ouyang J, Xie Z. A high-performance aqueous Eu/Ce redox flow battery for large-scale energy storage application. Int J Heat Mass Transf [Internet]. 2024 Nov 15;233:125978. Available from: <URL>.

Investigation of Novel Hybrid Europium/TEMPTMA-based Neutral pH Aqueous Redox Flow Batteries

Year 2025, Volume: 12 Issue: 1, 47 - 52, 03.03.2025
https://doi.org/10.18596/jotcsa.1598455

Abstract

In this study, Eu3+/TEMPTMA-based hybrid aqueous redox flow battery system at 1.35 V in neutral pH containing 1 M KCl media was introduced and this battery system was monitored for a long-term cycling performance. During battery and electrochemical studies, capacity change, self-discharge rate and coulombic efficiencies are examined and diffusion constant (D0) values are calculated for Eu3+ and TEMPTMA respectively. As a result, the adopted Eu3+/TEMPTMA-based aqueous redox flow battery system exhibits good performance, reversibility and stability such as >99.97% per cycle (>99.88% per day) discharge capacity within containing 0.25 M Eu3+ in 1 M KCl as negolyte at 120 cycles and 29 days battery testing against little excess of 0.5 M TEMPTMA in 1 M KCl as posolyte.

Thanks

We would like to acknowledge European Research Council through a starting grant (agreement no. 950038). Materials Analysis and Research Infrastructure (MARI) and Turku Centre for Chemical and Molecular Analytics (CCMA) of the University of Turku were utilized in this work. We would also like to thank to Aalto University for providing EPR spectrometer. We would also like to thank to Vahid Abbasi for scientific discussions.

References

  • 1. Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu Q. Redox flow batteries: A review. J Appl Electrochem [Internet]. 2011 Oct 2;41(10):1137–64. Available from: <URL>.
  • 2. Ye R, Henkensmeier D, Yoon SJ, Huang Z, Kim DK, Chang Z, et al. Redox flow batteries for energy storage: A technology review. J Electrochem Energy Convers Storage [Internet]. 2018 Feb 1;15(1):010801. Available from: <URL>.
  • 3. Bartolozzi M. Development of redox flow batteries. A historical bibliography. J Power Sources [Internet]. 1989 Sep 1;27(3):219–34. Available from: <URL>.
  • 4. Arenas LF, Ponce de León C, Walsh FC. Redox flow batteries for energy storage: Their promise, achievements and challenges. Curr Opin Electrochem [Internet]. 2019 Aug 1;16:117–26. Available from: <URL>.
  • 5. Li Z, Lu Y. Material design of aqueous redox flow batteries: Fundamental challenges and mitigation strategies. Adv Mater [Internet]. 2020 Nov 22;32(47):2002132. Available from: <URL>.
  • 6. Alotto P, Guarnieri M, Moro F. Redox flow batteries for the storage of renewable energy: A review. Renew Sustain Energy Rev [Internet]. 2014 Jan 1;29:325–35. Available from: <URL>.
  • 7. Sánchez-Díez E, Ventosa E, Guarnieri M, Trovò A, Flox C, Marcilla R, et al. Redox flow batteries: Status and perspective towards sustainable stationary energy storage. J Power Sources [Internet]. 2021 Jan 1;481:228804. Available from: <URL>.
  • 8. Zhang J, Jiang G, Xu P, Ghorbani Kashkooli A, Mousavi M, Yu A, et al. An all-aqueous redox flow battery with unprecedented energy density. Energy Environ Sci [Internet]. 2018 Aug 8;11(8):2010–5. Available from: <URL>.
  • 9. Rhodes Z, Cabrera‐Pardo JR, Li M, Minteer SD. Electrochemical advances in non‐aqueous redox flow batteries. Isr J Chem [Internet]. 2021 Jan 28;61(1–2):101–12. Available from: <URL>.
  • 10. Janoschka T, Martin N, Hager MD, Schubert US. An aqueous redox‐flow battery with high capacity and power: The TEMPTMA/MV system. Angew Chemie Int Ed [Internet]. 2016 Nov 7;55(46):14427–30. Available from: <URL>.
  • 11. Zhu F, Guo W, Fu Y. Functional materials for aqueous redox flow batteries: Merits and applications. Chem Soc Rev [Internet]. 2023 Nov 27;52(23):8410–46. Available from: <URL>.
  • 12. Yang G, Zhu Y, Hao Z, Lu Y, Zhao Q, Zhang K, et al. Organic electroactive materials for aqueous redox flow batteries. Adv Mater [Internet]. 2023 Aug 30;35(33):2301898. Available from: <URL>.
  • 13. Cannon CG, Klusener PAA, Brandon NP, Kucernak ARJ. Aqueous redox flow batteries: Small organic molecules for the positive electrolyte species. ChemSusChem [Internet]. 2023 Sep 22;16(18):e202300303. Available from: <URL>.
  • 14. Chen R, Zhang P, Chang Z, Yan J, Kraus T. Grafting and solubilization of redox‐active organic materials for aqueous redox flow batteries. ChemSusChem [Internet]. 2023 Apr 21;16(8):e202201993. Available from: <URL>.
  • 15. Zhang Y, Cao J, Chen Z, Xu J, Yu C. An organic-based aqueous hybrid flow battery with high power and long cycle life: A tetrapyridophenazine/ferrocyanide system. J Mater Chem A [Internet]. 2020 Apr 7;8(14):6874–81. Available from: <URL>.
  • 16. Sun P, Liu Y, Zuo P, Li Y, Chen Q, Yang Z, et al. Eu-based anolytes for high-voltage and long-lifetime aqueous flow batteries. J Energy Chem [Internet]. 2021 Sep 1;60:368–75. Available from: <URL>.
  • 17. Zeng D, Mao T, Zhang Z, Dai J, Ouyang J, Xie Z. A high-performance aqueous Eu/Ce redox flow battery for large-scale energy storage application. Int J Heat Mass Transf [Internet]. 2024 Nov 15;233:125978. Available from: <URL>.
There are 17 citations in total.

Details

Primary Language English
Subjects Electrochemistry
Journal Section RESEARCH ARTICLES
Authors

Ali Tuna 0000-0003-2801-5995

Pekka Peljo 0000-0002-1229-2261

Publication Date March 3, 2025
Submission Date December 9, 2024
Acceptance Date February 28, 2025
Published in Issue Year 2025 Volume: 12 Issue: 1

Cite

Vancouver Tuna A, Peljo P. Investigation of Novel Hybrid Europium/TEMPTMA-based Neutral pH Aqueous Redox Flow Batteries. JOTCSA. 2025;12(1):47-52.