Research Article
BibTex RIS Cite

Synthesis and Investigation of Thermal and Dynamic Mechanical Properties of Urethane-Containing Epoxy Resins

Year 2023, , 95 - 106, 01.10.2023
https://doi.org/10.58692/jotcsb.1309480

Abstract

This study aims to improve the thermal and mechanical properties of epoxy-based materials. For this purpose, the structure of epoxy resins was changed by chemical modification and epoxy resin containing urethane was synthesized. The synthesized resin was blended with commercial epoxy resin at the ratios of 25%, 50%, 75% by weight and hardened by curing. The thermal and mechanical properties of urethane-containing epoxy materials prepared in different proportions were compared with those produced from commercial epoxy resin. The structural characterization of the prepared materials was investigated by Fourier Transform Infrared Spectroscopy (FTIR) analysis, their thermal behavior was investigated by Thermogravimetric Analysis (TGA), and their mechanical properties were investigated by Dynamic Mechanical Analysis (DMA). TGA and DMA analyses of the materials showed that the presence of urethane in the structure of epoxy resins significantly changed the mechanical and thermal properties. It was observed that the storage and loss modulus values of urethane-containing resins increased approximately 2.5 times compared to commercial epoxy resins, and a decrease of approximately 10% in thermal degradation temperatures was observed.

Supporting Institution

Scientific Research Projects Coordination Unit of Istanbul University-Cerrahpasa

Project Number

56922

Thanks

The authors would like to thank Prof. Dr. Ali Durmuş and Assoc. Prof. Dr. Alper Kaşgöz for their assistance in DMA analysis.

References

  • Akovali, G. (2001). Handbook of Composite Fabrication. Smithers Rapra Publishing. https://books.google.com.tr/books?id=klcCAAAACAAJ
  • Anand Prabu, A., & Alagar, M. (2004). Mechanical and electrical studies of silicone modified polyurethane-epoxy intercrosslinked networks. Polymer Journal, 36(10), 848–855. https://doi.org/10.1295/polymj.36.848
  • Barcia, F. L., Amaral, T. P., & Soares, B. G. (2003). Synthesis and properties of epoxy resin modified with epoxy-terminated liquid polybutadiene. Polymer, 44(19), 5811–5819. https://doi.org/10.1016/S0032-3861(03)00537-8
  • Basnet, S., Otsuka, M., Sasaki, C., Asada, C., & Nakamura, Y. (2015). Functionalization of the active ingredients of Japanese green tea (Camellia sinensis) for the synthesis of bio-based epoxy resin. Industrial Crops and Products, 73, 63–72. https://doi.org/10.1016/j.indcrop.2015.03.091
  • Chen, K., Tian, C., Liang, S., Zhao, X., & Wang, X. (2018). Effect of stoichiometry on the thermal stability and flame retardation of polyisocyanurate foams modified with epoxy resin. Polymer Degradation and Stability, 150, 105–113. https://doi.org/10.1016/j.polymdegradstab.2018.02.015
  • Dağ, M. (2023). Obtaining Diatomite Reinforced Epoxy Composite and Determination of Its Thermophysical Properties. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 6(1), 9–16. https://doi.org/10.58692/jotcsb.1174746
  • Demčenko, A., Koissin, V., & Korneev, V. A. (2014). Noncollinear wave mixing for measurement of dynamic processes in polymers: Physical ageing in thermoplastics and epoxy cure. Ultrasonics, 54(2), 684–693. https://doi.org/10.1016/j.ultras.2013.09.011
  • Dhevi, D. M., Prabu, A. A., Kim, H., Pathak, M. (2014). Studies on the toughening of epoxy resin modified with varying hyperbranched polyester-toluene diisocyanate content. Journal of Polymer Research, 21, Art.no. 503, https://doi.org/10.1007/s10965-014-0503-7.
  • Ellis, B. (Ed.). (1993). Chemistry and Technology of Epoxy Resins. Springer Netherlands. https://doi.org/10.1007/978-94-011-2932-9
  • Garcia, F. G., Soares, B. G., Pita, V. J. R. R., Sánchez, R., & Rieumont, J. (2007). Mechanical properties of epoxy networks based on DGEBA and aliphatic amines. Journal of Applied Polymer Science, 106(3), 2047–2055. https://doi.org/10.1002/app.24895
  • Hsieh, K. H., Han, J. L., Yu, C. T., & Fu, S. C. (2001). Graft interpenetrating polymer networks of urethane-modified bismaleimide and epoxy (I): Mechanical behavior and morphology. Polymer, 42(6), 2491–2500. https://doi.org/10.1016/S0032-3861(00)00641-8
  • Hsieh, T. H., Kinloch, A. J., Masania, K., Sohn Lee, J., Taylor, A. C., & Sprenger, S. (2010). The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles. Journal of Materials Science, 45(5), 1193–1210. https://doi.org/10.1007/s10853-009-4064-9
  • Huang, P., Zheng, S., Huang, J., Guo, Q., & Zhu, W. (1997). Miscibility and mechanical properties of epoxy resin/polysulfone blends. Polymer, 38(22), 5565–5571. https://doi.org/10.1016/S0032-3861(97)00104-3
  • Jiang, W., Jin, F.-L., & Park, S.-J. (2012). Thermo-mechanical behaviors of epoxy resins reinforced with nano-Al2O3 particles. Journal of Industrial and Engineering Chemistry, 18(2), 594–596. https://doi.org/10.1016/j.jiec.2011.11.140
  • Jin, F.-L., Liu, H.-C., Yang, B., & Park, S.-J. (2015). Synthesis and thermal properties of urethane-containing epoxy resin. Journal of Industrial and Engineering Chemistry, 24, 20–23. https://doi.org/10.1016/j.jiec.2014.10.006
  • Jin, F.-L., & Park, S.-J. (2008). Interfacial toughness properties of trifunctional epoxy resins/calcium carbonate nanocomposites. Materials Science and Engineering: A, 475(1–2), 190–193. https://doi.org/10.1016/j.msea.2007.04.046
  • Kirillov, A. N. (2014). Epoxy-urethane binders based on the blocked isocyanate Desmocap 11. Polymer Science Series D, 7(1), 14–18. https://doi.org/10.1134/S1995421214010079
  • Kricheldorf, H. R.; Nuyken, O.; Swift, G. (Ed.). (2004). Handbook of Polymer Synthesis. CRC Press.
  • Kunz, S. C., & Beaumont, P. W. R. (1981). Low-temperature behaviour of epoxy-rubber particulate composites. Journal of Materials Science, 16(11), 3141–3152. https://doi.org/10.1007/BF00540323
  • Lee, M., Kwon, W., Kwon, D., Lee, E., & Jeong, E. (2019). Fracture toughness of the novel in-situ polytriazolesulfone modified epoxy resin for carbon fiber/epoxy composites. Journal of Industrial and Engineering Chemistry, 77, 461–469. https://doi.org/10.1016/j.jiec.2019.05.012
  • Levita, G., Marchetti, A., & Butta, E. (1985). Influence of the temperature of cure on the mechanical properties of ATBN/epoxy blends. Polymer, 26(7), 1110–1116. https://doi.org/https://doi.org/10.1016/0032-3861(85)90238-1
  • May, C. (2018). Epoxy resins: chemistry and technology. Routledge.
  • Paul Swaraj. (1995). Surface Coatings Science Technology (2nd ed.). Wiley.
  • Prabu, A. A., & Alagar, M. (2004). Mechanical and thermal studies of intercross-linked networks based on siliconized polyurethane-epoxy/unsaturated polyester coatings. Progress in Organic Coatings, 49(3), 236–243. https://doi.org/10.1016/j.porgcoat.2003.09.018
  • Ramos, V. D., da Costa, H. M., Soares, V. L. P., & Nascimento, R. S. V. (2005). Modification of epoxy resin: a comparison of different types of elastomer. Polymer Testing, 24(3), 387–394. https://doi.org/10.1016/j.polymertesting.2004.09.010
  • Rath, S. K., Chavan, J. G., Sasane, S., Srivastava, A., Patri, M., Samui, A. B., Chakraborty, B. C., & Sawant, S. N. (2009). Coatings of PDMS-modified epoxy via urethane linkage: Segmental correlation length, phase morphology, thermomechanical and surface behavior. Progress in Organic Coatings, 65(3), 366–374. https://doi.org/10.1016/j.porgcoat.2009.02.007
  • Socrates, G. (2001). Infrared and Raman characteristic group frequencies. Tables and charts. Stefani, P. M., Moschiar, S. M., & Aranguren, M. I. (2001). Epoxy-urethane copolymers: Relation between morphology and properties. Journal of Applied Polymer Science, 82(10), 2544–2552. https://doi.org/10.1002/app.2105
  • Wazarkar, K., Kathalewar, M., & Sabnis, A. (2016). Development of epoxy-urethane hybrid coatings via non-isocyanate route. European Polymer Journal, 84, 812–827. https://doi.org/10.1016/j.eurpolymj.2016.10.021
  • Yang, K., & Gu, M. (2009). Fabrication, morphology and cure behavior of triethylenetetramine-grafted multiwalled carbon nanotube/epoxy nanocomposites. Polymer Journal, 41(9), 752–763. https://doi.org/10.1295/polymj.PJ2009064
  • Zhou, S., Yang, C., Hu, J., He, X., & Zhang, R. (2018). Damping analysis of some inorganic particles on poly(butyl-methacrylate). Materials, 11(6), 1–12. https://doi.org/10.3390/ma11060992
Year 2023, , 95 - 106, 01.10.2023
https://doi.org/10.58692/jotcsb.1309480

Abstract

Project Number

56922

References

  • Akovali, G. (2001). Handbook of Composite Fabrication. Smithers Rapra Publishing. https://books.google.com.tr/books?id=klcCAAAACAAJ
  • Anand Prabu, A., & Alagar, M. (2004). Mechanical and electrical studies of silicone modified polyurethane-epoxy intercrosslinked networks. Polymer Journal, 36(10), 848–855. https://doi.org/10.1295/polymj.36.848
  • Barcia, F. L., Amaral, T. P., & Soares, B. G. (2003). Synthesis and properties of epoxy resin modified with epoxy-terminated liquid polybutadiene. Polymer, 44(19), 5811–5819. https://doi.org/10.1016/S0032-3861(03)00537-8
  • Basnet, S., Otsuka, M., Sasaki, C., Asada, C., & Nakamura, Y. (2015). Functionalization of the active ingredients of Japanese green tea (Camellia sinensis) for the synthesis of bio-based epoxy resin. Industrial Crops and Products, 73, 63–72. https://doi.org/10.1016/j.indcrop.2015.03.091
  • Chen, K., Tian, C., Liang, S., Zhao, X., & Wang, X. (2018). Effect of stoichiometry on the thermal stability and flame retardation of polyisocyanurate foams modified with epoxy resin. Polymer Degradation and Stability, 150, 105–113. https://doi.org/10.1016/j.polymdegradstab.2018.02.015
  • Dağ, M. (2023). Obtaining Diatomite Reinforced Epoxy Composite and Determination of Its Thermophysical Properties. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 6(1), 9–16. https://doi.org/10.58692/jotcsb.1174746
  • Demčenko, A., Koissin, V., & Korneev, V. A. (2014). Noncollinear wave mixing for measurement of dynamic processes in polymers: Physical ageing in thermoplastics and epoxy cure. Ultrasonics, 54(2), 684–693. https://doi.org/10.1016/j.ultras.2013.09.011
  • Dhevi, D. M., Prabu, A. A., Kim, H., Pathak, M. (2014). Studies on the toughening of epoxy resin modified with varying hyperbranched polyester-toluene diisocyanate content. Journal of Polymer Research, 21, Art.no. 503, https://doi.org/10.1007/s10965-014-0503-7.
  • Ellis, B. (Ed.). (1993). Chemistry and Technology of Epoxy Resins. Springer Netherlands. https://doi.org/10.1007/978-94-011-2932-9
  • Garcia, F. G., Soares, B. G., Pita, V. J. R. R., Sánchez, R., & Rieumont, J. (2007). Mechanical properties of epoxy networks based on DGEBA and aliphatic amines. Journal of Applied Polymer Science, 106(3), 2047–2055. https://doi.org/10.1002/app.24895
  • Hsieh, K. H., Han, J. L., Yu, C. T., & Fu, S. C. (2001). Graft interpenetrating polymer networks of urethane-modified bismaleimide and epoxy (I): Mechanical behavior and morphology. Polymer, 42(6), 2491–2500. https://doi.org/10.1016/S0032-3861(00)00641-8
  • Hsieh, T. H., Kinloch, A. J., Masania, K., Sohn Lee, J., Taylor, A. C., & Sprenger, S. (2010). The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles. Journal of Materials Science, 45(5), 1193–1210. https://doi.org/10.1007/s10853-009-4064-9
  • Huang, P., Zheng, S., Huang, J., Guo, Q., & Zhu, W. (1997). Miscibility and mechanical properties of epoxy resin/polysulfone blends. Polymer, 38(22), 5565–5571. https://doi.org/10.1016/S0032-3861(97)00104-3
  • Jiang, W., Jin, F.-L., & Park, S.-J. (2012). Thermo-mechanical behaviors of epoxy resins reinforced with nano-Al2O3 particles. Journal of Industrial and Engineering Chemistry, 18(2), 594–596. https://doi.org/10.1016/j.jiec.2011.11.140
  • Jin, F.-L., Liu, H.-C., Yang, B., & Park, S.-J. (2015). Synthesis and thermal properties of urethane-containing epoxy resin. Journal of Industrial and Engineering Chemistry, 24, 20–23. https://doi.org/10.1016/j.jiec.2014.10.006
  • Jin, F.-L., & Park, S.-J. (2008). Interfacial toughness properties of trifunctional epoxy resins/calcium carbonate nanocomposites. Materials Science and Engineering: A, 475(1–2), 190–193. https://doi.org/10.1016/j.msea.2007.04.046
  • Kirillov, A. N. (2014). Epoxy-urethane binders based on the blocked isocyanate Desmocap 11. Polymer Science Series D, 7(1), 14–18. https://doi.org/10.1134/S1995421214010079
  • Kricheldorf, H. R.; Nuyken, O.; Swift, G. (Ed.). (2004). Handbook of Polymer Synthesis. CRC Press.
  • Kunz, S. C., & Beaumont, P. W. R. (1981). Low-temperature behaviour of epoxy-rubber particulate composites. Journal of Materials Science, 16(11), 3141–3152. https://doi.org/10.1007/BF00540323
  • Lee, M., Kwon, W., Kwon, D., Lee, E., & Jeong, E. (2019). Fracture toughness of the novel in-situ polytriazolesulfone modified epoxy resin for carbon fiber/epoxy composites. Journal of Industrial and Engineering Chemistry, 77, 461–469. https://doi.org/10.1016/j.jiec.2019.05.012
  • Levita, G., Marchetti, A., & Butta, E. (1985). Influence of the temperature of cure on the mechanical properties of ATBN/epoxy blends. Polymer, 26(7), 1110–1116. https://doi.org/https://doi.org/10.1016/0032-3861(85)90238-1
  • May, C. (2018). Epoxy resins: chemistry and technology. Routledge.
  • Paul Swaraj. (1995). Surface Coatings Science Technology (2nd ed.). Wiley.
  • Prabu, A. A., & Alagar, M. (2004). Mechanical and thermal studies of intercross-linked networks based on siliconized polyurethane-epoxy/unsaturated polyester coatings. Progress in Organic Coatings, 49(3), 236–243. https://doi.org/10.1016/j.porgcoat.2003.09.018
  • Ramos, V. D., da Costa, H. M., Soares, V. L. P., & Nascimento, R. S. V. (2005). Modification of epoxy resin: a comparison of different types of elastomer. Polymer Testing, 24(3), 387–394. https://doi.org/10.1016/j.polymertesting.2004.09.010
  • Rath, S. K., Chavan, J. G., Sasane, S., Srivastava, A., Patri, M., Samui, A. B., Chakraborty, B. C., & Sawant, S. N. (2009). Coatings of PDMS-modified epoxy via urethane linkage: Segmental correlation length, phase morphology, thermomechanical and surface behavior. Progress in Organic Coatings, 65(3), 366–374. https://doi.org/10.1016/j.porgcoat.2009.02.007
  • Socrates, G. (2001). Infrared and Raman characteristic group frequencies. Tables and charts. Stefani, P. M., Moschiar, S. M., & Aranguren, M. I. (2001). Epoxy-urethane copolymers: Relation between morphology and properties. Journal of Applied Polymer Science, 82(10), 2544–2552. https://doi.org/10.1002/app.2105
  • Wazarkar, K., Kathalewar, M., & Sabnis, A. (2016). Development of epoxy-urethane hybrid coatings via non-isocyanate route. European Polymer Journal, 84, 812–827. https://doi.org/10.1016/j.eurpolymj.2016.10.021
  • Yang, K., & Gu, M. (2009). Fabrication, morphology and cure behavior of triethylenetetramine-grafted multiwalled carbon nanotube/epoxy nanocomposites. Polymer Journal, 41(9), 752–763. https://doi.org/10.1295/polymj.PJ2009064
  • Zhou, S., Yang, C., Hu, J., He, X., & Zhang, R. (2018). Damping analysis of some inorganic particles on poly(butyl-methacrylate). Materials, 11(6), 1–12. https://doi.org/10.3390/ma11060992
There are 30 citations in total.

Details

Primary Language English
Subjects Polymer Science and Technologies
Journal Section Full-length articles
Authors

Orçun Yüksel This is me 0009-0000-7598-5586

Eren Yıldırım This is me 0000-0002-7924-9698

Oğuz Yücel 0000-0003-1389-2899

Serkan Emik 0000-0002-6005-9704

Project Number 56922
Publication Date October 1, 2023
Submission Date June 4, 2023
Acceptance Date September 26, 2023
Published in Issue Year 2023

Cite

APA Yüksel, O., Yıldırım, E., Yücel, O., Emik, S. (2023). Synthesis and Investigation of Thermal and Dynamic Mechanical Properties of Urethane-Containing Epoxy Resins. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 6(2), 95-106. https://doi.org/10.58692/jotcsb.1309480

Creative Commons Lisansı
This piece of scholarly information is licensed under Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı.

J. Turk. Chem. Soc., Sect. B: Chem. Eng. (JOTCSB)