Research Article
BibTex RIS Cite

Acid-Catalyzed Atmospheric Organosolv Treatment By Using gamma-Valerolactone and Ethylene Glycol For The Delignification of Hazelnut Shell and Precipitation of Lignin

Year 2023, , 73 - 84, 01.10.2023
https://doi.org/10.58692/jotcsb.1350439

Abstract

Lignin-based biorefineries are gaining importance day by day to obtain many value-added products from lignin. One of the most important processes that allow the recovery of both cellulose and lignin in those biorefineries is organosolv pretreatment. In this study, organosolv pretreatment was applied to the hazelnut shell at 130 °C for 60 min with ethylene glycol and γ-valerolactone solvents in the presence of a catalyst (either phosphoric acid or acetic acid). The success of solvent-catalyst systems was assessed by delignification efficiency and lignin recovery. Lignins obtained by precipitation were also analyzed by FTIR, TGA, DSC and Py-GC/MS. Highest delignification efficiency (33.9%) was detected for ethylene glycol- phosphoric acid solvent-catalyst pair. It was observed that acetic acid was not an effective catalyst compared to phosphoric acid. The delignification efficiency of γ-valerolactone was low (< 26 %) under atmospheric conditions, and in the presence of acetic acid, lignin was not precipitated from GVL system.

Supporting Institution

Yalova University Scientific Research Unit

Project Number

Project No: 2022/YL/0019

Thanks

This research was financially supported by Yalova University Scientific Research Unit (Project No: 2022/YL/0019).

References

  • Agustin, M. B., de Carvalho, D. M., Lahtinen, M. H., Hilden, K., Lundell, T., & Mikkonen, K. S. (2021). Laccase as a tool in building advanced lignin‐based materials. ChemSusChem, 14(21), 4615-4635. https://doi.org/10.1002/cssc.202101169
  • Alio, M. A., Marcati, A., Pons, A., & Vial, C. (2021). Modeling and simulation of a sawdust mixture-based integrated biorefinery plant producing bioethanol. Bioresource technology, 325, 124650. https://doi.org/10.1016/j.biortech.2020.124650
  • Ashokkumar, V., Venkatkarthick, R., Jayashree, S., Chuetor, S., Dharmaraj, S., Kumar, G., ... & Ngamcharussrivichai, C. (2022). Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts-A critical review. Bioresource technology, 344-359, https://doi.org/10.1016/j.biortech.2021.126195.
  • Bessa, W., Trache, D., Tarchoun, A. F., Abdelaziz, A., Hussin, M. H., & Brosse, N. (2023). Unraveling the Effect of Kraft and Organosolv Processes on the Physicochemical Properties and Thermal Stability of Cellulose and Its Microcrystals Produced from Eucalyptus Globulus. Sustainability, 15(4), 3384. https://doi.org/10.3390/su15043384
  • Bhatia, S. K., Jagtap, S. S., Bedekar, A. A., Bhatia, R. K., Patel, A. K., Pant, D., ... & Yang, Y. H. (2020). Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges. Bioresource technology, 300, 122724, https://doi.org/10.1016/j.biortech.2019.122724
  • Brebu, M., Tamminen, T., & Spiridon, I. (2013). Thermal degradation of various lignins by TG-MS/FTIR and Py-GC-MS. Journal of analytical and applied pyrolysis, 104, 531-539. https://doi.org/10.1016/j.jaap.2013.05.016
  • Cao, Y., Chen, S. S., Zhang, S., Ok, Y. S., Matsagar, B. M., Wu, K. C. W., & Tsang, D. C. (2019). Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery. Bioresource technology, 291, 121878. https://doi.org/10.1016/j.biortech.2019.121878
  • Cheng, F., Zhao, X., & Hu, Y. (2018). Lignocellulosic biomass delignification using aqueous alcohol solutions with the catalysis of acidic ionic liquids: A comparison study of solvents. Bioresource technology, 249, 969-975. https://doi.org/10.1016/j.biortech.2017.10.089
  • Chin, D. W. K., Lim, S., Pang, Y. L., Lim, C. H., Shuit, S. H., Lee, K. M., & Chong, C. T. (2021). Effects of organic solvents on the organosolv pretreatment of degraded empty fruit bunch for fractionation and lignin removal. Sustainability, 13(12), 6757. https://doi.org/10.3390/su13126757
  • Chotirotsukon, C., Raita, M., Champreda, V., & Laosiripojana, N. (2019). Fractionation of sugarcane trash by oxalic-acid catalyzed glycerol-based organosolv followed by mild solvent delignification. Industrial Crops and Products, 141, 111753. https://doi.org/10.1016/j.indcrop.2019.111753
  • Deng, W., Feng, Y., Fu, J., Guo, H., Guo, Y., Han, B., ... & Zhou, H. (2023). Catalytic conversion of lignocellulosic biomass into chemicals and fuels. Green Energy & Environment, 8(1), 10-114, https://doi.org/10.1016/j.gee.2022.07.003
  • Dharmaraja, J., Shobana, S., Arvindnarayan, S., Francis, R. R., Jeyakumar, R. B., Saratale, R., ... & Kumar, G. (2022). Lignocellulosic biomass conversion via greener pretreatment methods towards biorefinery applications. Bioresource technology, 128328. https://doi.org/10.1016/j.biortech.2022.128328.
  • Dong, C., Meng, X., Leu, S. Y., Xu, L., Wu, Z., Cravotto, G., & Fang, Z. (2022). Enhancing α-etherification of lignin in Eucalyptus diol pretreatment to improve lignin monomer production. Industrial Crops and Products, 185, 115130. https://doi.org/10.1016/j.indcrop.2022.115130
  • Ferreira, J. A., & Taherzadeh, M. J. (2020). Improving the economy of lignocellulose-based biorefineries with organosolv pretreatment. Bioresource technology, 299, 122695, https://doi.org/10.1016/j.biortech.2019.122695
  • Food and Agriculture Organizaton of the United Nations (FAO), Hazelnut Production, Access date: 08.08.2023 Access: https://www.fao.org/3/x4484e/x4484e03.htm
  • Gao, S., Cheng, Z., Zhou, X., Liu, Y., Wang, J., Wang, C., ... & Zhang, D. (2020). Fabrication of lignin based renewable dynamic networks and its applications as self-healing, antifungal and conductive adhesives. Chemical Engineering Journal, 394, 124896. https://doi.org/10.1016/j.cej.2020.124896
  • Gaudino, E. C., Tabasso, S., Grillo, G., Cravotto, G., Dreyer, T., Schories, G., ... & Telysheva, G. (2018). Wheat straw lignin extraction with bio-based solvents using enabling technologies. Comptes Rendus Chimie, 21(6), 563-571.https://doi.org/10.1016/j.crci.2018.01.010
  • Giannoni, T., Gelosia, M., Bertini, A., Fabbrizi, G., Nicolini, A., Coccia, V., ... & Cavalaglio, G. (2021). Fractionation of Cynara cardunculus L. by Acidified Organosolv Treatment for the Extraction of Highly Digestible Cellulose and Technical Lignin. Sustainability, 13(16), 8714. https://doi.org/10.3390/su13168714.
  • Haldar, D., & Purkait, M. K. (2021). A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: Mechanistic insight and advancements. Chemosphere, 264, 128523. https://doi.org/10.1016/j.chemosphere.2020.128523.
  • Ibrahim, Q., & Kruse, A. (2020). Prehydrolysis and organosolv delignification process for the recovery of hemicellulose and lignin from beech wood. Bioresource Technology Reports, 11, 100506. https://doi.org/10.1016/j.biteb.2020.100506.
  • Jędrzejczak, P., Collins, M. N., Jesionowski, T., & Klapiszewski, Ł. (2021). The role of lignin and lignin-based materials in sustainable construction–a comprehensive review. International Journal of Biological Macromolecules, 187, 624-650. https://doi.org/10.1016/j.ijbiomac.2021.07.125
  • Jiang, Z., Zhao, P., & Hu, C. (2018). Controlling the cleavage of the inter-and intra-molecular linkages in lignocellulosic biomass for further biorefining: a review. Bioresource Technology, 256, 466-477. https://doi.org/10.1016/j.biortech.2018.02.061
  • Kalogiannis, K. G., Karnaouri, A., Michailof, C., Tzika, A. M., Asimakopoulou, G., Topakas, E., & Lappas, A. A. (2020). OxiOrganosolv: A novel acid free oxidative organosolv fractionation for lignocellulose fine sugar streams. Bioresource Technology, 313, 123599. https://doi.org/10.1016/j.biortech.2020.123599.
  • Khongchamnan, P., Wanmolee, W., Laosiripojana, N., Champreda, V., Suriyachai, N., Kreetachat, T., ... & Imman, S. (2021). Solvothermal-based lignin fractionation from corn stover: Process optimization and product characteristics. Frontiers in Chemistry, 9, 697237. https://doi.org/10.3389/fchem.2021.697237.
  • Kurian, J. K., Gariepy, Y., Orsat, V., & Raghavan, G. S. (2015). Comparison of steam-assisted versus microwave-assisted treatments for the fractionation of sweet sorghum bagasse. Bioresources and Bioprocessing, 2(1), 1-16. https://doi.org/10.1186/s40643-015-0059-3
  • Li, Y. J., Li, H. Y., Sun, S. N., & Sun, R. C. (2019). Evaluating the efficiency of γ-valerolactone/water/acid system on Eucalyptus pretreatment by confocal Raman microscopy and enzymatic hydrolysis for bioethanol production. Renewable Energy, 134, 228-234. https://doi.org/10.1016/j.renene.2018.11.038
  • Liang, L., Wang, Y. Y., Bhagia, S., Sethuraman, V., Yang, Z., Meng, X., ... & Ragauskas, A. J. (2022). Chemical and Morphological Structure of Transgenic Switchgrass Organosolv Lignin Extracted by Ethanol, Tetrahydrofuran, and γ-Valerolactone Pretreatments. ACS Sustainable Chemistry & Engineering, 10(28), 9041-9052. https://doi.org/10.1021/acssuschemeng.2c00948
  • Lim, H. Y., Yusup, S., Loy, A. C. M., Samsuri, S., Ho, S. S. K., Manaf, A. S. A., ... & Rianawati, E. (2021). Review on conversion of lignin waste into value-added resources in tropical countries. Waste and Biomass Valorization, 12(10), 5285-5302. https://doi.org/10.1007/s12649-020-01307-8
  • Lin, X.; Sui, S.; Tan, S.; Pittman, C.U., Jr.; Sun, J.; Zhang, Z. Fast Pyrolysis of Four Lignins from Different Isolation Processes Using Py-GC/MS. Energies 2015, 8, 5107-5121. https://doi.org/10.3390/en8065107
  • Ling, R., Wei, W., & Jin, Y. (2022). Pretreatment of sugarcane bagasse with acid catalyzed ethylene glycol–water to improve the cellulose enzymatic conversion. Bioresource Technology, 361, 127723, https://doi.org/10.1016/j.biortech.2022.127723
  • Liu, C., Hu, J., Zhang, H., & Xiao, R. (2016). Thermal conversion of lignin to phenols: Relevance between chemical structure and pyrolysis behaviors. Fuel, 182, 864-870. https://doi.org/10.1016/j.fuel.2016.05.104
  • Liu, R., Dai, L., Xu, C., Wang, K., Zheng, C., & Si, C. (2020). Lignin‐based micro‐and nanomaterials and their composites in biomedical applications. ChemSusChem, 13(17), 4266-4283. https://doi.org/10.1002/cssc.202000783
  • Liu, S. (2013). An Overview of Biological Basics. Bioprocess Engineering, 21–84. doi:10.1016/b978-0-444-59525-6.00002-0 
  • Manzhao Yao, Xiaoyun Bi, Zuhao Wang, Peng Yu, Alain Dufresne, Can Jiang, Recent advances in lignin-based carbon materials and their applications: A review, International Journal of Biological Macromolecules, Volume 223, Part A, 2022, Pages 980-1014, ISSN 0141-8130, https://doi.org/10.1016/j.ijbiomac.2022.11.070.
  • Margellou, A. G., Lazaridis, P. A., Charisteidis, I. D., Nitsos, C. K., Pappa, C. P., Fotopoulos, A. P., ... & Triantafyllidis, K. S. (2021). Catalytic fast pyrolysis of beech wood lignin isolated by different biomass (pre) treatment processes: Organosolv, hydrothermal and enzymatic hydrolysis. Applied Catalysis A: General, 623, 118298. https://doi.org/10.1016/j.apcata.2021.118298
  • Meng, X., Wang, Y., Conte, A. J., Zhang, S., Ryu, J., Wie, J. J., ... & Ragauskas, A. J. (2022). Applications of biomass-derived solvents in biomass pretreatment–strategies, challenges, and prospects. Bioresource technology, 128280. https://doi.org/10.1016/j.biortech.2022.128280
  • Millán, D., González-Turen, F., Perez-Recabarren, J., Gonzalez-Ponce, C., Rezende, M. C., & Lopes, A. M. D. C. (2022). Solvent effects on the wood delignification with sustainable solvents. International Journal of Biological Macromolecules, 211, 490-498. https://doi.org/10.1016/j.ijbiomac.2022.05.030
  • Momayez, F., Hedenström, M., Stagge, S., Jönsson, L. J., & Martín, C. (2022). Valorization of hydrolysis lignin from a spruce-based biorefinery by applying γ-valerolactone treatment. Bioresource Technology, 359, 127466. https://doi.org/10.1016/j.biortech.2022.127466
  • Pan, Z., Li, Y., Wang, B., Sun, F., Xu, F., & Zhang, X. (2022a). Mild fractionation of poplar into reactive lignin via lignin-first strategy and its enhancement on cellulose saccharification. Bioresource Technology, 343, 126122. https://doi.org/10.1016/j.biortech.2021.126122
  • Pan, Z., Li, Y., Zhang, Z., Xu, F., Ramaswamy, S., Abdulkhani, A., & Zhang, X. (2022b). Fractionation of light-colored lignin via lignin-first strategy and enhancement of cellulose saccharification towards biomass valorization. Industrial Crops and Products, 186, 115173. https://doi.org/10.1016/j.indcrop.2022.115173
  • Pascal, K., Ren, H., Sun, F. F., Guo, S., Hu, J., & He, J. (2019). Mild acid-catalyzed atmospheric glycerol organosolv pretreatment effectively improves enzymatic hydrolyzability of lignocellulosic biomass. ACS omega, 4(22), 20015-20023. https://doi.org/10.1021/acsomega.9b02993
  • Pin, T. C., Nascimento, V. M., Costa, A. C., Pu, Y., Ragauskas, A. J., & Rabelo, S. C. (2020). Structural characterization of sugarcane lignins extracted from different protic ionic liquid pretreatments. Renewable Energy, 161, 579-592. https://doi.org/10.1016/j.renene.2020.07.078
  • Ponnusamy, V. K., Nguyen, D. D., Dharmaraja, J., Shobana, S., Banu, J. R., Saratale, R. G., ... & Kumar, G. (2019). A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresource technology, 271, 462-472. https://doi.org/10.1016/j.biortech.2018.09.070
  • Rabelo, S. C., Nakasu, P. Y. S., Scopel, E., Araújo, M. F., Cardoso, L. H., & da Costa, A. C. (2022). Organosolv pretreatment for biorefineries: Current status, perspectives, and challenges. Bioresource Technology, 128331. https://doi.org/10.1016/j.biortech.2022.128331.
  • Raj, T., Chandrasekhar, K., Banu, R., Yoon, J. J., Kumar, G., & Kim, S. H. (2021). Synthesis of γ-valerolactone (GVL) and their applications for lignocellulosic deconstruction for sustainable green biorefineries. Fuel, 303, 121333. https://doi.org/10.1016/j.fuel.2021.121333
  • Ramezani, N., & Sain, M. (2018). Thermal and physiochemical characterization of lignin extracted from wheat straw by organosolv process. Journal of Polymers and the Environment, 26, 3109-3116.
  • Salapa, I., Topakas, E., & Sidiras, D. (2018). Simulation and optimization of barley straw organosolv pretreatment. Industrial crops and products, 113, 80-88. https://doi.org/10.1016/j.indcrop.2018.01.018
  • Schmatz, A. A., Masarin, F., & Brienzo, M. (2022). Lignin removal and cellulose digestibility improved by adding antioxidants and surfactants to organosolv pretreatment of sugarcane bagasse. BioEnergy Research, 15(2), 1107-1115. https://doi.org/10.1007/s12155-021-10367-0
  • Sidiras, D., Politi, D., Giakoumakis, G., & Salapa, I. (2022). Simulation and optimization of organosolv based lignocellulosic biomass refinery: A review. Bioresource Technology, 343, 126158. https://doi.org/10.1016/j.biortech.2021.126158
  • Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. L. A. P. (2012). Determination of structural carbohydrates and lignin in biomass: laboratory analytical procedure (LAP). National Renewable Energy Laboratory, 1617(1), 1-16. https://www.nrel.gov/docs/gen/fy13/42618.pdf
  • Sui, W., Liu, X., Sun, H., Li, C., Parvez, A. M., & Wang, G. (2021). Improved high-solid loading enzymatic hydrolysis of steam exploded corn stalk using rapid room temperature γ-valerolactone delignification. Industrial Crops and Products, 165, 113389. https://doi.org/10.1016/j.indcrop.2021.113389
  • Sun, C., Ren, H., Sun, F., Hu, Y., Liu, Q., Song, G., ... & Show, P. L. (2022a). Glycerol organosolv pretreatment can unlock lignocellulosic biomass for production of fermentable sugars: Present situation and challenges. Bioresource technology, 344, 126264 https://doi.org/10.1016/j.biortech.2021.126264
  • Sun, C., Song, G., Pan, Z., Tu, M., Kharaziha, M., Zhang, X., ... & Sun, F. (2022b). Advances in organosolv modified components occurring during the organosolv pretreatment of lignocellulosic biomass. Bioresource Technology, 128356. https://doi.org/10.1016/j.biortech.2022.128356
  • Sun, Y., Wang, T., Sun, X., Bai, L., Han, C., & Zhang, P. (2021). The potential of biochar and lignin-based adsorbents for wastewater treatment: Comparison, mechanism, and application—A review. Industrial Crops and Products, 166, 113473. https://doi.org/10.1016/j.indcrop.2021.113473
  • Tchuidjang, T. T., Noubissié, E., & Ali, A. (2021). Optimization of the pre-treatment of white sawdust (Triplochiton scleroxylon) by the organosolv process for the production of bioethanol. Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, 76, 23. https://doi.org/10.2516/ogst/2021004
  • Teramura, H., Sasaki, K., Oshima, T., Kawaguchi, H., Ogino, C., Sazuka, T., & Kondo, A. (2018). Effective usage of sorghum bagasse: Optimization of organosolv pretreatment using 25% 1-butanol and subsequent nanofiltration membrane separation. Bioresource technology, 252, 157-164. https://doi.org/10.1016/j.biortech.2017.12.100
  • Vaidya, A. A., Murton, K. D., Smith, D. A., & Dedual, G. (2022). A review on organosolv pretreatment of softwood with a focus on enzymatic hydrolysis of cellulose. Biomass conversion and biorefinery, 12(11), 5427-5442, https://doi.org/10.1007/s13399-022-02373-9
  • Velvizhi, G., Balakumar, K., Shetti, N. P., Ahmad, E., Pant, K. K., & Aminabhavi, T. M. (2022). Integrated biorefinery processes for conversion of lignocellulosic biomass to value added materials: Paving a path towards circular economy. Bioresource technology, 343, 126151, https://doi.org/10.1016/j.biortech.2019.122695
  • Wang, H., Fu, F., Huang, M., Feng, Y., Han, D., Xi, Y., ... & Niu, L. (2023). Lignin-based materials for electrochemical energy storage devices. Nano Materials Science, 5(2), 141-160. https://doi.org/10.1016/j.nanoms.2022.01.002
  • Wang, S., Ru, B., Lin, H., Sun, W., & Luo, Z. (2015). Pyrolysis behaviors of four lignin polymers isolated from the same pine wood. Bioresource technology, 182, 120-127. https://doi.org/10.1016/j.biortech.2015.01.127
  • Weerasai, K., Laosiripojana, N., Imman, S., Kreetachat, T. & Suriyachai, N., (2021). Reusable alkaline catalyzed organosolv pretreatment and delignification of bagasse for sugar platform biorefinery. Biomass Conversion Biorefinery 1–11. https://doi.org/10.1007/ s13399-020-01269-w
  • Wei Kit Chin, D., Lim, S., Pang, Y. L., & Lam, M. K. (2020). Fundamental review of organosolv pretreatment and its challenges in emerging consolidated bioprocessing. Biofuels, bioproducts and biorefining, 14(4), 808-829. https://doi.org/10.1002/bbb.2096
  • Wei, W., Wang, B., Wang, X., Ling, R., & Jin, Y. (2021). Comparison of acid and alkali catalyzed ethylene glycol organosolv pretreatment for sugar production from bagasse. Bioresource Technology, 320, 124293. https://doi.org/10.1016/j.biortech.2020.124293
  • Wu, M., Yan, Z. Y., Zhang, X. M., Xu, F., & Sun, R. C. (2016). Integration of mild acid hydrolysis in γ-valerolactone/water system for enhancement of enzymatic saccharification from cotton stalk. Bioresource technology, 200, 23-28. https://doi.org/10.1016/j.biortech.2015.09.111.
  • Xu, X., Wang, K., Zhou, Y., Lai, C., Zhang, D., Xia, C., & Pugazhendhi, A. (2023). Comparison of organosolv pretreatment of masson pine with different solvents in promoting delignification and enzymatic hydrolysis efficiency. Fuel, 338, 127361. https://doi.org/10.1016/j.fuel.2022.127361
  • Yu, O., Yoo, C. G., Kim, C. S., & Kim, K. H. (2019). Understanding the effects of ethylene glycol-assisted biomass fractionation parameters on lignin characteristics using a full factorial design and computational modeling. ACS omega, 4(14), 16103-16110. https://doi.org/10.1021/acsomega.9b02298
  • Zhang, K., Pei, Z., & Wang, D. (2016). Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review. Bioresource Technology, 199, 21-33. https://doi.org/10.1016/j.biortech.2015.08.102
  • Zhang, Y., Ding, Z., Hossain, M. S., Maurya, R., Yang, Y., Singh, V., ... & Awasthi, M. K. (2022). Recent advances in lignocellulosic and algal biomass pretreatment and its biorefinery approaches for biochemicals and bioenergy conversion. Bioresource Technology, 128281. https://doi.org/10.1016/j.biortech.2022.128281
  • Zhao, J., Yao, F., & Hu, C. (2022). Enhancing enzymatic hydrolysis efficiency of crop straws via tetrahydrofuran/water co-solvent pretreatment. Bioresource Technology, 358, 127428. https://doi.org/10.1016/j.biortech.2022.127428
  • Zhou, M., & Tian, X. (2022). Development of different pretreatments and related technologies for efficient biomass conversion of lignocellulose. International Journal of Biological Macromolecules, 202, 256-268. https://doi.org/10.1016/j.ijbiomac.2022.01.036
  • Zhuang, J.; Li, M.; Pu, Y.; Ragauskas, A.J.; Yoo, C.G. Observation of Potential Contaminants in Processed Biomass Using Fourier Transform Infrared Spectroscopy. Applied Science, 2020, 10, 4345. https://doi.org/10.3390/app10124345
Year 2023, , 73 - 84, 01.10.2023
https://doi.org/10.58692/jotcsb.1350439

Abstract

Project Number

Project No: 2022/YL/0019

References

  • Agustin, M. B., de Carvalho, D. M., Lahtinen, M. H., Hilden, K., Lundell, T., & Mikkonen, K. S. (2021). Laccase as a tool in building advanced lignin‐based materials. ChemSusChem, 14(21), 4615-4635. https://doi.org/10.1002/cssc.202101169
  • Alio, M. A., Marcati, A., Pons, A., & Vial, C. (2021). Modeling and simulation of a sawdust mixture-based integrated biorefinery plant producing bioethanol. Bioresource technology, 325, 124650. https://doi.org/10.1016/j.biortech.2020.124650
  • Ashokkumar, V., Venkatkarthick, R., Jayashree, S., Chuetor, S., Dharmaraj, S., Kumar, G., ... & Ngamcharussrivichai, C. (2022). Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts-A critical review. Bioresource technology, 344-359, https://doi.org/10.1016/j.biortech.2021.126195.
  • Bessa, W., Trache, D., Tarchoun, A. F., Abdelaziz, A., Hussin, M. H., & Brosse, N. (2023). Unraveling the Effect of Kraft and Organosolv Processes on the Physicochemical Properties and Thermal Stability of Cellulose and Its Microcrystals Produced from Eucalyptus Globulus. Sustainability, 15(4), 3384. https://doi.org/10.3390/su15043384
  • Bhatia, S. K., Jagtap, S. S., Bedekar, A. A., Bhatia, R. K., Patel, A. K., Pant, D., ... & Yang, Y. H. (2020). Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges. Bioresource technology, 300, 122724, https://doi.org/10.1016/j.biortech.2019.122724
  • Brebu, M., Tamminen, T., & Spiridon, I. (2013). Thermal degradation of various lignins by TG-MS/FTIR and Py-GC-MS. Journal of analytical and applied pyrolysis, 104, 531-539. https://doi.org/10.1016/j.jaap.2013.05.016
  • Cao, Y., Chen, S. S., Zhang, S., Ok, Y. S., Matsagar, B. M., Wu, K. C. W., & Tsang, D. C. (2019). Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery. Bioresource technology, 291, 121878. https://doi.org/10.1016/j.biortech.2019.121878
  • Cheng, F., Zhao, X., & Hu, Y. (2018). Lignocellulosic biomass delignification using aqueous alcohol solutions with the catalysis of acidic ionic liquids: A comparison study of solvents. Bioresource technology, 249, 969-975. https://doi.org/10.1016/j.biortech.2017.10.089
  • Chin, D. W. K., Lim, S., Pang, Y. L., Lim, C. H., Shuit, S. H., Lee, K. M., & Chong, C. T. (2021). Effects of organic solvents on the organosolv pretreatment of degraded empty fruit bunch for fractionation and lignin removal. Sustainability, 13(12), 6757. https://doi.org/10.3390/su13126757
  • Chotirotsukon, C., Raita, M., Champreda, V., & Laosiripojana, N. (2019). Fractionation of sugarcane trash by oxalic-acid catalyzed glycerol-based organosolv followed by mild solvent delignification. Industrial Crops and Products, 141, 111753. https://doi.org/10.1016/j.indcrop.2019.111753
  • Deng, W., Feng, Y., Fu, J., Guo, H., Guo, Y., Han, B., ... & Zhou, H. (2023). Catalytic conversion of lignocellulosic biomass into chemicals and fuels. Green Energy & Environment, 8(1), 10-114, https://doi.org/10.1016/j.gee.2022.07.003
  • Dharmaraja, J., Shobana, S., Arvindnarayan, S., Francis, R. R., Jeyakumar, R. B., Saratale, R., ... & Kumar, G. (2022). Lignocellulosic biomass conversion via greener pretreatment methods towards biorefinery applications. Bioresource technology, 128328. https://doi.org/10.1016/j.biortech.2022.128328.
  • Dong, C., Meng, X., Leu, S. Y., Xu, L., Wu, Z., Cravotto, G., & Fang, Z. (2022). Enhancing α-etherification of lignin in Eucalyptus diol pretreatment to improve lignin monomer production. Industrial Crops and Products, 185, 115130. https://doi.org/10.1016/j.indcrop.2022.115130
  • Ferreira, J. A., & Taherzadeh, M. J. (2020). Improving the economy of lignocellulose-based biorefineries with organosolv pretreatment. Bioresource technology, 299, 122695, https://doi.org/10.1016/j.biortech.2019.122695
  • Food and Agriculture Organizaton of the United Nations (FAO), Hazelnut Production, Access date: 08.08.2023 Access: https://www.fao.org/3/x4484e/x4484e03.htm
  • Gao, S., Cheng, Z., Zhou, X., Liu, Y., Wang, J., Wang, C., ... & Zhang, D. (2020). Fabrication of lignin based renewable dynamic networks and its applications as self-healing, antifungal and conductive adhesives. Chemical Engineering Journal, 394, 124896. https://doi.org/10.1016/j.cej.2020.124896
  • Gaudino, E. C., Tabasso, S., Grillo, G., Cravotto, G., Dreyer, T., Schories, G., ... & Telysheva, G. (2018). Wheat straw lignin extraction with bio-based solvents using enabling technologies. Comptes Rendus Chimie, 21(6), 563-571.https://doi.org/10.1016/j.crci.2018.01.010
  • Giannoni, T., Gelosia, M., Bertini, A., Fabbrizi, G., Nicolini, A., Coccia, V., ... & Cavalaglio, G. (2021). Fractionation of Cynara cardunculus L. by Acidified Organosolv Treatment for the Extraction of Highly Digestible Cellulose and Technical Lignin. Sustainability, 13(16), 8714. https://doi.org/10.3390/su13168714.
  • Haldar, D., & Purkait, M. K. (2021). A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: Mechanistic insight and advancements. Chemosphere, 264, 128523. https://doi.org/10.1016/j.chemosphere.2020.128523.
  • Ibrahim, Q., & Kruse, A. (2020). Prehydrolysis and organosolv delignification process for the recovery of hemicellulose and lignin from beech wood. Bioresource Technology Reports, 11, 100506. https://doi.org/10.1016/j.biteb.2020.100506.
  • Jędrzejczak, P., Collins, M. N., Jesionowski, T., & Klapiszewski, Ł. (2021). The role of lignin and lignin-based materials in sustainable construction–a comprehensive review. International Journal of Biological Macromolecules, 187, 624-650. https://doi.org/10.1016/j.ijbiomac.2021.07.125
  • Jiang, Z., Zhao, P., & Hu, C. (2018). Controlling the cleavage of the inter-and intra-molecular linkages in lignocellulosic biomass for further biorefining: a review. Bioresource Technology, 256, 466-477. https://doi.org/10.1016/j.biortech.2018.02.061
  • Kalogiannis, K. G., Karnaouri, A., Michailof, C., Tzika, A. M., Asimakopoulou, G., Topakas, E., & Lappas, A. A. (2020). OxiOrganosolv: A novel acid free oxidative organosolv fractionation for lignocellulose fine sugar streams. Bioresource Technology, 313, 123599. https://doi.org/10.1016/j.biortech.2020.123599.
  • Khongchamnan, P., Wanmolee, W., Laosiripojana, N., Champreda, V., Suriyachai, N., Kreetachat, T., ... & Imman, S. (2021). Solvothermal-based lignin fractionation from corn stover: Process optimization and product characteristics. Frontiers in Chemistry, 9, 697237. https://doi.org/10.3389/fchem.2021.697237.
  • Kurian, J. K., Gariepy, Y., Orsat, V., & Raghavan, G. S. (2015). Comparison of steam-assisted versus microwave-assisted treatments for the fractionation of sweet sorghum bagasse. Bioresources and Bioprocessing, 2(1), 1-16. https://doi.org/10.1186/s40643-015-0059-3
  • Li, Y. J., Li, H. Y., Sun, S. N., & Sun, R. C. (2019). Evaluating the efficiency of γ-valerolactone/water/acid system on Eucalyptus pretreatment by confocal Raman microscopy and enzymatic hydrolysis for bioethanol production. Renewable Energy, 134, 228-234. https://doi.org/10.1016/j.renene.2018.11.038
  • Liang, L., Wang, Y. Y., Bhagia, S., Sethuraman, V., Yang, Z., Meng, X., ... & Ragauskas, A. J. (2022). Chemical and Morphological Structure of Transgenic Switchgrass Organosolv Lignin Extracted by Ethanol, Tetrahydrofuran, and γ-Valerolactone Pretreatments. ACS Sustainable Chemistry & Engineering, 10(28), 9041-9052. https://doi.org/10.1021/acssuschemeng.2c00948
  • Lim, H. Y., Yusup, S., Loy, A. C. M., Samsuri, S., Ho, S. S. K., Manaf, A. S. A., ... & Rianawati, E. (2021). Review on conversion of lignin waste into value-added resources in tropical countries. Waste and Biomass Valorization, 12(10), 5285-5302. https://doi.org/10.1007/s12649-020-01307-8
  • Lin, X.; Sui, S.; Tan, S.; Pittman, C.U., Jr.; Sun, J.; Zhang, Z. Fast Pyrolysis of Four Lignins from Different Isolation Processes Using Py-GC/MS. Energies 2015, 8, 5107-5121. https://doi.org/10.3390/en8065107
  • Ling, R., Wei, W., & Jin, Y. (2022). Pretreatment of sugarcane bagasse with acid catalyzed ethylene glycol–water to improve the cellulose enzymatic conversion. Bioresource Technology, 361, 127723, https://doi.org/10.1016/j.biortech.2022.127723
  • Liu, C., Hu, J., Zhang, H., & Xiao, R. (2016). Thermal conversion of lignin to phenols: Relevance between chemical structure and pyrolysis behaviors. Fuel, 182, 864-870. https://doi.org/10.1016/j.fuel.2016.05.104
  • Liu, R., Dai, L., Xu, C., Wang, K., Zheng, C., & Si, C. (2020). Lignin‐based micro‐and nanomaterials and their composites in biomedical applications. ChemSusChem, 13(17), 4266-4283. https://doi.org/10.1002/cssc.202000783
  • Liu, S. (2013). An Overview of Biological Basics. Bioprocess Engineering, 21–84. doi:10.1016/b978-0-444-59525-6.00002-0 
  • Manzhao Yao, Xiaoyun Bi, Zuhao Wang, Peng Yu, Alain Dufresne, Can Jiang, Recent advances in lignin-based carbon materials and their applications: A review, International Journal of Biological Macromolecules, Volume 223, Part A, 2022, Pages 980-1014, ISSN 0141-8130, https://doi.org/10.1016/j.ijbiomac.2022.11.070.
  • Margellou, A. G., Lazaridis, P. A., Charisteidis, I. D., Nitsos, C. K., Pappa, C. P., Fotopoulos, A. P., ... & Triantafyllidis, K. S. (2021). Catalytic fast pyrolysis of beech wood lignin isolated by different biomass (pre) treatment processes: Organosolv, hydrothermal and enzymatic hydrolysis. Applied Catalysis A: General, 623, 118298. https://doi.org/10.1016/j.apcata.2021.118298
  • Meng, X., Wang, Y., Conte, A. J., Zhang, S., Ryu, J., Wie, J. J., ... & Ragauskas, A. J. (2022). Applications of biomass-derived solvents in biomass pretreatment–strategies, challenges, and prospects. Bioresource technology, 128280. https://doi.org/10.1016/j.biortech.2022.128280
  • Millán, D., González-Turen, F., Perez-Recabarren, J., Gonzalez-Ponce, C., Rezende, M. C., & Lopes, A. M. D. C. (2022). Solvent effects on the wood delignification with sustainable solvents. International Journal of Biological Macromolecules, 211, 490-498. https://doi.org/10.1016/j.ijbiomac.2022.05.030
  • Momayez, F., Hedenström, M., Stagge, S., Jönsson, L. J., & Martín, C. (2022). Valorization of hydrolysis lignin from a spruce-based biorefinery by applying γ-valerolactone treatment. Bioresource Technology, 359, 127466. https://doi.org/10.1016/j.biortech.2022.127466
  • Pan, Z., Li, Y., Wang, B., Sun, F., Xu, F., & Zhang, X. (2022a). Mild fractionation of poplar into reactive lignin via lignin-first strategy and its enhancement on cellulose saccharification. Bioresource Technology, 343, 126122. https://doi.org/10.1016/j.biortech.2021.126122
  • Pan, Z., Li, Y., Zhang, Z., Xu, F., Ramaswamy, S., Abdulkhani, A., & Zhang, X. (2022b). Fractionation of light-colored lignin via lignin-first strategy and enhancement of cellulose saccharification towards biomass valorization. Industrial Crops and Products, 186, 115173. https://doi.org/10.1016/j.indcrop.2022.115173
  • Pascal, K., Ren, H., Sun, F. F., Guo, S., Hu, J., & He, J. (2019). Mild acid-catalyzed atmospheric glycerol organosolv pretreatment effectively improves enzymatic hydrolyzability of lignocellulosic biomass. ACS omega, 4(22), 20015-20023. https://doi.org/10.1021/acsomega.9b02993
  • Pin, T. C., Nascimento, V. M., Costa, A. C., Pu, Y., Ragauskas, A. J., & Rabelo, S. C. (2020). Structural characterization of sugarcane lignins extracted from different protic ionic liquid pretreatments. Renewable Energy, 161, 579-592. https://doi.org/10.1016/j.renene.2020.07.078
  • Ponnusamy, V. K., Nguyen, D. D., Dharmaraja, J., Shobana, S., Banu, J. R., Saratale, R. G., ... & Kumar, G. (2019). A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresource technology, 271, 462-472. https://doi.org/10.1016/j.biortech.2018.09.070
  • Rabelo, S. C., Nakasu, P. Y. S., Scopel, E., Araújo, M. F., Cardoso, L. H., & da Costa, A. C. (2022). Organosolv pretreatment for biorefineries: Current status, perspectives, and challenges. Bioresource Technology, 128331. https://doi.org/10.1016/j.biortech.2022.128331.
  • Raj, T., Chandrasekhar, K., Banu, R., Yoon, J. J., Kumar, G., & Kim, S. H. (2021). Synthesis of γ-valerolactone (GVL) and their applications for lignocellulosic deconstruction for sustainable green biorefineries. Fuel, 303, 121333. https://doi.org/10.1016/j.fuel.2021.121333
  • Ramezani, N., & Sain, M. (2018). Thermal and physiochemical characterization of lignin extracted from wheat straw by organosolv process. Journal of Polymers and the Environment, 26, 3109-3116.
  • Salapa, I., Topakas, E., & Sidiras, D. (2018). Simulation and optimization of barley straw organosolv pretreatment. Industrial crops and products, 113, 80-88. https://doi.org/10.1016/j.indcrop.2018.01.018
  • Schmatz, A. A., Masarin, F., & Brienzo, M. (2022). Lignin removal and cellulose digestibility improved by adding antioxidants and surfactants to organosolv pretreatment of sugarcane bagasse. BioEnergy Research, 15(2), 1107-1115. https://doi.org/10.1007/s12155-021-10367-0
  • Sidiras, D., Politi, D., Giakoumakis, G., & Salapa, I. (2022). Simulation and optimization of organosolv based lignocellulosic biomass refinery: A review. Bioresource Technology, 343, 126158. https://doi.org/10.1016/j.biortech.2021.126158
  • Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. L. A. P. (2012). Determination of structural carbohydrates and lignin in biomass: laboratory analytical procedure (LAP). National Renewable Energy Laboratory, 1617(1), 1-16. https://www.nrel.gov/docs/gen/fy13/42618.pdf
  • Sui, W., Liu, X., Sun, H., Li, C., Parvez, A. M., & Wang, G. (2021). Improved high-solid loading enzymatic hydrolysis of steam exploded corn stalk using rapid room temperature γ-valerolactone delignification. Industrial Crops and Products, 165, 113389. https://doi.org/10.1016/j.indcrop.2021.113389
  • Sun, C., Ren, H., Sun, F., Hu, Y., Liu, Q., Song, G., ... & Show, P. L. (2022a). Glycerol organosolv pretreatment can unlock lignocellulosic biomass for production of fermentable sugars: Present situation and challenges. Bioresource technology, 344, 126264 https://doi.org/10.1016/j.biortech.2021.126264
  • Sun, C., Song, G., Pan, Z., Tu, M., Kharaziha, M., Zhang, X., ... & Sun, F. (2022b). Advances in organosolv modified components occurring during the organosolv pretreatment of lignocellulosic biomass. Bioresource Technology, 128356. https://doi.org/10.1016/j.biortech.2022.128356
  • Sun, Y., Wang, T., Sun, X., Bai, L., Han, C., & Zhang, P. (2021). The potential of biochar and lignin-based adsorbents for wastewater treatment: Comparison, mechanism, and application—A review. Industrial Crops and Products, 166, 113473. https://doi.org/10.1016/j.indcrop.2021.113473
  • Tchuidjang, T. T., Noubissié, E., & Ali, A. (2021). Optimization of the pre-treatment of white sawdust (Triplochiton scleroxylon) by the organosolv process for the production of bioethanol. Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, 76, 23. https://doi.org/10.2516/ogst/2021004
  • Teramura, H., Sasaki, K., Oshima, T., Kawaguchi, H., Ogino, C., Sazuka, T., & Kondo, A. (2018). Effective usage of sorghum bagasse: Optimization of organosolv pretreatment using 25% 1-butanol and subsequent nanofiltration membrane separation. Bioresource technology, 252, 157-164. https://doi.org/10.1016/j.biortech.2017.12.100
  • Vaidya, A. A., Murton, K. D., Smith, D. A., & Dedual, G. (2022). A review on organosolv pretreatment of softwood with a focus on enzymatic hydrolysis of cellulose. Biomass conversion and biorefinery, 12(11), 5427-5442, https://doi.org/10.1007/s13399-022-02373-9
  • Velvizhi, G., Balakumar, K., Shetti, N. P., Ahmad, E., Pant, K. K., & Aminabhavi, T. M. (2022). Integrated biorefinery processes for conversion of lignocellulosic biomass to value added materials: Paving a path towards circular economy. Bioresource technology, 343, 126151, https://doi.org/10.1016/j.biortech.2019.122695
  • Wang, H., Fu, F., Huang, M., Feng, Y., Han, D., Xi, Y., ... & Niu, L. (2023). Lignin-based materials for electrochemical energy storage devices. Nano Materials Science, 5(2), 141-160. https://doi.org/10.1016/j.nanoms.2022.01.002
  • Wang, S., Ru, B., Lin, H., Sun, W., & Luo, Z. (2015). Pyrolysis behaviors of four lignin polymers isolated from the same pine wood. Bioresource technology, 182, 120-127. https://doi.org/10.1016/j.biortech.2015.01.127
  • Weerasai, K., Laosiripojana, N., Imman, S., Kreetachat, T. & Suriyachai, N., (2021). Reusable alkaline catalyzed organosolv pretreatment and delignification of bagasse for sugar platform biorefinery. Biomass Conversion Biorefinery 1–11. https://doi.org/10.1007/ s13399-020-01269-w
  • Wei Kit Chin, D., Lim, S., Pang, Y. L., & Lam, M. K. (2020). Fundamental review of organosolv pretreatment and its challenges in emerging consolidated bioprocessing. Biofuels, bioproducts and biorefining, 14(4), 808-829. https://doi.org/10.1002/bbb.2096
  • Wei, W., Wang, B., Wang, X., Ling, R., & Jin, Y. (2021). Comparison of acid and alkali catalyzed ethylene glycol organosolv pretreatment for sugar production from bagasse. Bioresource Technology, 320, 124293. https://doi.org/10.1016/j.biortech.2020.124293
  • Wu, M., Yan, Z. Y., Zhang, X. M., Xu, F., & Sun, R. C. (2016). Integration of mild acid hydrolysis in γ-valerolactone/water system for enhancement of enzymatic saccharification from cotton stalk. Bioresource technology, 200, 23-28. https://doi.org/10.1016/j.biortech.2015.09.111.
  • Xu, X., Wang, K., Zhou, Y., Lai, C., Zhang, D., Xia, C., & Pugazhendhi, A. (2023). Comparison of organosolv pretreatment of masson pine with different solvents in promoting delignification and enzymatic hydrolysis efficiency. Fuel, 338, 127361. https://doi.org/10.1016/j.fuel.2022.127361
  • Yu, O., Yoo, C. G., Kim, C. S., & Kim, K. H. (2019). Understanding the effects of ethylene glycol-assisted biomass fractionation parameters on lignin characteristics using a full factorial design and computational modeling. ACS omega, 4(14), 16103-16110. https://doi.org/10.1021/acsomega.9b02298
  • Zhang, K., Pei, Z., & Wang, D. (2016). Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review. Bioresource Technology, 199, 21-33. https://doi.org/10.1016/j.biortech.2015.08.102
  • Zhang, Y., Ding, Z., Hossain, M. S., Maurya, R., Yang, Y., Singh, V., ... & Awasthi, M. K. (2022). Recent advances in lignocellulosic and algal biomass pretreatment and its biorefinery approaches for biochemicals and bioenergy conversion. Bioresource Technology, 128281. https://doi.org/10.1016/j.biortech.2022.128281
  • Zhao, J., Yao, F., & Hu, C. (2022). Enhancing enzymatic hydrolysis efficiency of crop straws via tetrahydrofuran/water co-solvent pretreatment. Bioresource Technology, 358, 127428. https://doi.org/10.1016/j.biortech.2022.127428
  • Zhou, M., & Tian, X. (2022). Development of different pretreatments and related technologies for efficient biomass conversion of lignocellulose. International Journal of Biological Macromolecules, 202, 256-268. https://doi.org/10.1016/j.ijbiomac.2022.01.036
  • Zhuang, J.; Li, M.; Pu, Y.; Ragauskas, A.J.; Yoo, C.G. Observation of Potential Contaminants in Processed Biomass Using Fourier Transform Infrared Spectroscopy. Applied Science, 2020, 10, 4345. https://doi.org/10.3390/app10124345
There are 71 citations in total.

Details

Primary Language English
Subjects Biomaterial , Bioengineering (Other), Material Production Technologies
Journal Section Full-length articles
Authors

Kübra Al 0000-0001-5201-5245

Sibel Başakçılardan Kabakcı 0000-0001-9717-5111

Project Number Project No: 2022/YL/0019
Publication Date October 1, 2023
Submission Date August 26, 2023
Acceptance Date September 19, 2023
Published in Issue Year 2023

Cite

APA Al, K., & Başakçılardan Kabakcı, S. (2023). Acid-Catalyzed Atmospheric Organosolv Treatment By Using gamma-Valerolactone and Ethylene Glycol For The Delignification of Hazelnut Shell and Precipitation of Lignin. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 6(2), 73-84. https://doi.org/10.58692/jotcsb.1350439

Creative Commons Lisansı
This piece of scholarly information is licensed under Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı.

J. Turk. Chem. Soc., Sect. B: Chem. Eng. (JOTCSB)