Research Article
BibTex RIS Cite

Optimization and PID Control of pH and Temperature in an Electrocoagulation Process

Year 2024, , 13 - 24, 01.04.2024
https://doi.org/10.58692/jotcsb.1353347

Abstract

In this work, effects of temperature and pH in batch treatment of pulp and paper mill wastewater using electrocoagulation has been investigated. Conductivity, temperature, and pH are selected as controlled variables; supporting electrolyte, cooling water, acid and base flow rates are selected as manipulated variables, respectively. Real time experimental multi input-multi output (MIMO) control of conductivity, temperature, and pH under constant current conditions are achieved using MIMO Proportional Integral Derivative (PID) control algorithms coded in MATLAB™. A central composite design (CCD) has been applied to the system under controlled conditions and optimum pH and temperature values are obtained using response surface methodology (RSM). Both controlled and uncontrolled experiments are performed using optimum values and results are compared in terms of removal efficiencies of pollutants. Results show that 34.47% chemical oxygen demand (COD), 98.06% total suspended solids (TSS), 99.80% turbidity, 99.93% color, and 13.40% SO42- removal is achieved in 45 minutes of process operation under controlled conditions and COD, TSS, turbidity, color and SO42- removal are increased by 10.92, 2.97, 4.06, 2.89, 3.17 respectively in comparison with uncontrolled operation. The highest removal percentages are obtained under controlled operating conditions as 98.5% and 98.3% for turbidity and color, respectively, for 10 minutes operation. It is concluded that optimum process operating conditions for removal of turbidity and color of pulp and paper mill wastewater is obtained under constant 6.45 pH, 23.24 °C temperature, 1.78 mS/cm conductivity, and power consumption is reduced by 25.3% under controlled conditions.

References

  • Alinsafi, A., Khemis, M., Pons, M. N., Leclerc, J. P., Yaacoubi, A., Benhammou, A., & Nejmeddine, A. (2005). Electro-coagulation of reactive textile dyes and textile wastewater. Chemical Engineering and Processing: Process Intensification, 44(4), 461–470. https://doi.org/https://doi.org/10.1016/j.cep.2004.06.010
  • Attour, A., Touati, M., Tlili, M., Ben Amor, M., Lapicque, F., & Leclerc, J.-P. (2014). Influence of operating parameters on phosphate removal from water by electrocoagulation using aluminum electrodes. Separation and Purification Technology, 123, 124–129. https://doi.org/https://doi.org/10.1016/j.seppur.2013.12.030
  • Bayramoglu, M., Kobya, M., Can, O. T., & Sozbir, M. (2004). Operating cost analysis of electrocoagulation of textile dye wastewater. Separation and Purification Technology, 37(2), 117–125. https://doi.org/https://doi.org/10.1016/j.seppur.2003.09.002
  • Bozoglu, M. D., Ertunc, S., Akay, B., Bursali, N., Vural, N., Hapoglu, H., & Demirci, Y. (2015). The effect of temperature, pH and SO2 on ethanol concentration and sugar consumption rate (SCR) in apple wine process. Journal of the Chemical Society of Pakistan, 37(3), 431–439.
  • Camcioglu, S., Ozyurt, B., & Hapoglu, H. (2017a). Effect of process control on optimization of pulp and paper mill wastewater treatment by electrocoagulation. Process Safety and Environmental Protection, 111, 300–319. https://doi.org/https://doi.org/10.1016/j.psep.2017.07.014
  • Camcioglu, S., Ozyurt, B., & Hapoglu, H. (2017b). MIMO control application for pulp and paper mill wastewater treatment by electrocoagulation. Desalination and Water Treatment, 93, 200–213.
  • Camcıoğlu, Ş., Özyurt, B., Doğan, İ. C., & Hapoğlu, H. (2017). Application of response surface methodology as a new PID tuning method in an electrocoagulation process control case. Water Science and Technology, 76(12), 3410–3427. https://doi.org/10.2166/wst.2017.506
  • Cañizares, P., Carmona, M., Lobato, J., Martínez, F., & Rodrigo, M. A. (2005). Electrodissolution of Aluminum Electrodes in Electrocoagulation Processes. Industrial & Engineering Chemistry Research, 44(12), 4178–4185. https://doi.org/10.1021/ie048858a
  • Eaton, A. D., Clesceri, L. S., Franson, M. A. H., Association, A. P. H., Rice, E. W., Greenberg, A. E., Association, A. W. W., & Federation, W. E. (2005). Standard Methods for the Examination of Water & Wastewater (Issue 21. c.). American Public Health Association. https://books.google.com.tr/books?id=buTn1rmfSI4C
  • El-Ashtoukhy, E.-S. Z., Amin, N. K., & Abdelwahab, O. (2009). Treatment of paper mill effluents in a batch-stirred electrochemical tank reactor. Chemical Engineering Journal, 146(2), 205–210. https://doi.org/https://doi.org/10.1016/j.cej.2008.05.037
  • Kalyani, K. S. P., Balasubramanian, N., & Srinivasakannan, C. (2009). Decolorization and COD reduction of paper industrial effluent using electro-coagulation. Chemical Engineering Journal, 151(1), 97–104. https://doi.org/https://doi.org/10.1016/j.cej.2009.01.050
  • Katal, R., & Pahlavanzadeh, H. (2011). Influence of different combinations of aluminum and iron electrode on electrocoagulation efficiency: Application to the treatment of paper mill wastewater. Desalination, 265(1), 199–205. https://doi.org/https://doi.org/10.1016/j.desal.2010.07.052
  • Khansorthong, S., & Hunsom, M. (2009). Remediation of wastewater from pulp and paper mill industry by the electrochemical technique. Chemical Engineering Journal, 151(1), 228–234. https://doi.org/https://doi.org/10.1016/j.cej.2009.02.038
  • Korkmaz, M., Özmetin, C., Cirtlik, A., & Siğirci, Ş. I. (2017). Full factorial design of experiments for boron removal from solutions by Purolite S 108 resin converted to hydroxyl form. Particulate Science and Technology, 35(6), 742–748. https://doi.org/10.1080/02726351.2016.1196277
  • Linares-Hernández, I., Barrera-Díaz, C., Roa-Morales, G., Bilyeu, B., & Ureña-Núñez, F. (2009). Influence of the anodic material on electrocoagulation performance. Chemical Engineering Journal, 148(1), 97–105. https://doi.org/https://doi.org/10.1016/j.cej.2008.08.007
  • Merzouk, B., Gourich, B., Sekki, A., Madani, K., Vial, C., & Barkaoui, M. (2009). Studies on the decolorization of textile dye wastewater by continuous electrocoagulation process. Chemical Engineering Journal, 149(1), 207–214. https://doi.org/https://doi.org/10.1016/j.cej.2008.10.018
  • Mollah, M. Y. A., Morkovsky, P., Gomes, J. A. G., Kesmez, M., Parga, J., & Cocke, D. L. (2004). Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials, 114(1), 199–210. https://doi.org/https://doi.org/10.1016/j.jhazmat.2004.08.009
  • Özyurt, B., Camcıoğlu, Ş., Karatokuş, T., & Yüksek, C. (2021). Ayçiçek yağı endüstrisi atık sularının koagülasyon-flokülasyon ve elektro-Fenton yöntemleriyle arıtılması . Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi , 36(1), 275–290. https://doi.org/10.17341/gazimmfd.553847
  • Pokhrel, D., & Viraraghavan, T. (2004). Treatment of pulp and paper mill wastewater—a review. Science of The Total Environment, 333(1), 37–58. https://doi.org/https://doi.org/10.1016/j.scitotenv.2004.05.017
  • Rai, A., Mohanty, B., & Bhargava, R. (2016). Supercritical extraction of sunflower oil: A central composite design for extraction variables. Food Chemistry, 192, 647–659. https://doi.org/https://doi.org/10.1016/j.foodchem.2015.07.070
  • Soloman, P. A., Ahmed Basha, C., Velan, M., Balasubramanian, N., & Marimuthu, P. (2009). Augmentation of biodegradability of pulp and paper industry wastewater by electrochemical pre-treatment and optimization by RSM. Separation and Purification Technology, 69(1), 109–117. https://doi.org/https://doi.org/10.1016/j.seppur.2009.07.002
  • Sridhar, R., Sivakumar, V., Prince Immanuel, V., & Prakash Maran, J. (2011). Treatment of pulp and paper industry bleaching effluent by electrocoagulant process. Journal of Hazardous Materials, 186(2), 1495–1502. https://doi.org/https://doi.org/10.1016/j.jhazmat.2010.12.028
  • Terrazas, E., Vázquez, A., Briones, R., Lázaro, I., & Rodríguez, I. (2010). EC treatment for reuse of tissue paper wastewater: Aspects that affect energy consumption. Journal of Hazardous Materials, 181(1), 809–816. https://doi.org/https://doi.org/10.1016/j.jhazmat.2010.05.086
  • Uğurlu, M., Gürses, A., Doğar, Ç., & Yalçın, M. (2008). The removal of lignin and phenol from paper mill effluents by electrocoagulation. Journal of Environmental Management, 87(3), 420–428. https://doi.org/https://doi.org/10.1016/j.jenvman.2007.01.007
  • Vepsäläinen, M., Ghiasvand, M., Selin, J., Pienimaa, J., Repo, E., Pulliainen, M., & Sillanpää, M. (2009). Investigations of the effects of temperature and initial sample pH on natural organic matter (NOM) removal with electrocoagulation using response surface method (RSM). Separation and Purification Technology, 69(3), 255–261. https://doi.org/https://doi.org/10.1016/j.seppur.2009.08.001
  • Zaied, M., & Bellakhal, N. (2009). Electrocoagulation treatment of black liquor from paper industry. Journal of Hazardous Materials, 163(2), 995–1000. https://doi.org/https://doi.org/10.1016/j.jhazmat.2008.07.115
Year 2024, , 13 - 24, 01.04.2024
https://doi.org/10.58692/jotcsb.1353347

Abstract

References

  • Alinsafi, A., Khemis, M., Pons, M. N., Leclerc, J. P., Yaacoubi, A., Benhammou, A., & Nejmeddine, A. (2005). Electro-coagulation of reactive textile dyes and textile wastewater. Chemical Engineering and Processing: Process Intensification, 44(4), 461–470. https://doi.org/https://doi.org/10.1016/j.cep.2004.06.010
  • Attour, A., Touati, M., Tlili, M., Ben Amor, M., Lapicque, F., & Leclerc, J.-P. (2014). Influence of operating parameters on phosphate removal from water by electrocoagulation using aluminum electrodes. Separation and Purification Technology, 123, 124–129. https://doi.org/https://doi.org/10.1016/j.seppur.2013.12.030
  • Bayramoglu, M., Kobya, M., Can, O. T., & Sozbir, M. (2004). Operating cost analysis of electrocoagulation of textile dye wastewater. Separation and Purification Technology, 37(2), 117–125. https://doi.org/https://doi.org/10.1016/j.seppur.2003.09.002
  • Bozoglu, M. D., Ertunc, S., Akay, B., Bursali, N., Vural, N., Hapoglu, H., & Demirci, Y. (2015). The effect of temperature, pH and SO2 on ethanol concentration and sugar consumption rate (SCR) in apple wine process. Journal of the Chemical Society of Pakistan, 37(3), 431–439.
  • Camcioglu, S., Ozyurt, B., & Hapoglu, H. (2017a). Effect of process control on optimization of pulp and paper mill wastewater treatment by electrocoagulation. Process Safety and Environmental Protection, 111, 300–319. https://doi.org/https://doi.org/10.1016/j.psep.2017.07.014
  • Camcioglu, S., Ozyurt, B., & Hapoglu, H. (2017b). MIMO control application for pulp and paper mill wastewater treatment by electrocoagulation. Desalination and Water Treatment, 93, 200–213.
  • Camcıoğlu, Ş., Özyurt, B., Doğan, İ. C., & Hapoğlu, H. (2017). Application of response surface methodology as a new PID tuning method in an electrocoagulation process control case. Water Science and Technology, 76(12), 3410–3427. https://doi.org/10.2166/wst.2017.506
  • Cañizares, P., Carmona, M., Lobato, J., Martínez, F., & Rodrigo, M. A. (2005). Electrodissolution of Aluminum Electrodes in Electrocoagulation Processes. Industrial & Engineering Chemistry Research, 44(12), 4178–4185. https://doi.org/10.1021/ie048858a
  • Eaton, A. D., Clesceri, L. S., Franson, M. A. H., Association, A. P. H., Rice, E. W., Greenberg, A. E., Association, A. W. W., & Federation, W. E. (2005). Standard Methods for the Examination of Water & Wastewater (Issue 21. c.). American Public Health Association. https://books.google.com.tr/books?id=buTn1rmfSI4C
  • El-Ashtoukhy, E.-S. Z., Amin, N. K., & Abdelwahab, O. (2009). Treatment of paper mill effluents in a batch-stirred electrochemical tank reactor. Chemical Engineering Journal, 146(2), 205–210. https://doi.org/https://doi.org/10.1016/j.cej.2008.05.037
  • Kalyani, K. S. P., Balasubramanian, N., & Srinivasakannan, C. (2009). Decolorization and COD reduction of paper industrial effluent using electro-coagulation. Chemical Engineering Journal, 151(1), 97–104. https://doi.org/https://doi.org/10.1016/j.cej.2009.01.050
  • Katal, R., & Pahlavanzadeh, H. (2011). Influence of different combinations of aluminum and iron electrode on electrocoagulation efficiency: Application to the treatment of paper mill wastewater. Desalination, 265(1), 199–205. https://doi.org/https://doi.org/10.1016/j.desal.2010.07.052
  • Khansorthong, S., & Hunsom, M. (2009). Remediation of wastewater from pulp and paper mill industry by the electrochemical technique. Chemical Engineering Journal, 151(1), 228–234. https://doi.org/https://doi.org/10.1016/j.cej.2009.02.038
  • Korkmaz, M., Özmetin, C., Cirtlik, A., & Siğirci, Ş. I. (2017). Full factorial design of experiments for boron removal from solutions by Purolite S 108 resin converted to hydroxyl form. Particulate Science and Technology, 35(6), 742–748. https://doi.org/10.1080/02726351.2016.1196277
  • Linares-Hernández, I., Barrera-Díaz, C., Roa-Morales, G., Bilyeu, B., & Ureña-Núñez, F. (2009). Influence of the anodic material on electrocoagulation performance. Chemical Engineering Journal, 148(1), 97–105. https://doi.org/https://doi.org/10.1016/j.cej.2008.08.007
  • Merzouk, B., Gourich, B., Sekki, A., Madani, K., Vial, C., & Barkaoui, M. (2009). Studies on the decolorization of textile dye wastewater by continuous electrocoagulation process. Chemical Engineering Journal, 149(1), 207–214. https://doi.org/https://doi.org/10.1016/j.cej.2008.10.018
  • Mollah, M. Y. A., Morkovsky, P., Gomes, J. A. G., Kesmez, M., Parga, J., & Cocke, D. L. (2004). Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials, 114(1), 199–210. https://doi.org/https://doi.org/10.1016/j.jhazmat.2004.08.009
  • Özyurt, B., Camcıoğlu, Ş., Karatokuş, T., & Yüksek, C. (2021). Ayçiçek yağı endüstrisi atık sularının koagülasyon-flokülasyon ve elektro-Fenton yöntemleriyle arıtılması . Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi , 36(1), 275–290. https://doi.org/10.17341/gazimmfd.553847
  • Pokhrel, D., & Viraraghavan, T. (2004). Treatment of pulp and paper mill wastewater—a review. Science of The Total Environment, 333(1), 37–58. https://doi.org/https://doi.org/10.1016/j.scitotenv.2004.05.017
  • Rai, A., Mohanty, B., & Bhargava, R. (2016). Supercritical extraction of sunflower oil: A central composite design for extraction variables. Food Chemistry, 192, 647–659. https://doi.org/https://doi.org/10.1016/j.foodchem.2015.07.070
  • Soloman, P. A., Ahmed Basha, C., Velan, M., Balasubramanian, N., & Marimuthu, P. (2009). Augmentation of biodegradability of pulp and paper industry wastewater by electrochemical pre-treatment and optimization by RSM. Separation and Purification Technology, 69(1), 109–117. https://doi.org/https://doi.org/10.1016/j.seppur.2009.07.002
  • Sridhar, R., Sivakumar, V., Prince Immanuel, V., & Prakash Maran, J. (2011). Treatment of pulp and paper industry bleaching effluent by electrocoagulant process. Journal of Hazardous Materials, 186(2), 1495–1502. https://doi.org/https://doi.org/10.1016/j.jhazmat.2010.12.028
  • Terrazas, E., Vázquez, A., Briones, R., Lázaro, I., & Rodríguez, I. (2010). EC treatment for reuse of tissue paper wastewater: Aspects that affect energy consumption. Journal of Hazardous Materials, 181(1), 809–816. https://doi.org/https://doi.org/10.1016/j.jhazmat.2010.05.086
  • Uğurlu, M., Gürses, A., Doğar, Ç., & Yalçın, M. (2008). The removal of lignin and phenol from paper mill effluents by electrocoagulation. Journal of Environmental Management, 87(3), 420–428. https://doi.org/https://doi.org/10.1016/j.jenvman.2007.01.007
  • Vepsäläinen, M., Ghiasvand, M., Selin, J., Pienimaa, J., Repo, E., Pulliainen, M., & Sillanpää, M. (2009). Investigations of the effects of temperature and initial sample pH on natural organic matter (NOM) removal with electrocoagulation using response surface method (RSM). Separation and Purification Technology, 69(3), 255–261. https://doi.org/https://doi.org/10.1016/j.seppur.2009.08.001
  • Zaied, M., & Bellakhal, N. (2009). Electrocoagulation treatment of black liquor from paper industry. Journal of Hazardous Materials, 163(2), 995–1000. https://doi.org/https://doi.org/10.1016/j.jhazmat.2008.07.115
There are 26 citations in total.

Details

Primary Language English
Subjects Wastewater Treatment Processes
Journal Section Full-length articles
Authors

Şule Camcıoğlu 0000-0002-8983-3193

Baran Özyurt 0000-0003-0011-8351

Publication Date April 1, 2024
Submission Date August 31, 2023
Acceptance Date January 13, 2024
Published in Issue Year 2024

Cite

APA Camcıoğlu, Ş., & Özyurt, B. (2024). Optimization and PID Control of pH and Temperature in an Electrocoagulation Process. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 7(1), 13-24. https://doi.org/10.58692/jotcsb.1353347

Creative Commons Lisansı
This piece of scholarly information is licensed under Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı.

J. Turk. Chem. Soc., Sect. B: Chem. Eng. (JOTCSB)