BibTex RIS Cite
Year 2016, Volume: 1 Issue: 1, 115 - 126, 23.02.2017

Abstract

References

  • Han E,Yang Y, Cai J, Zhang X, Dong X. Development of tyrosinase biosensor based on quantum dots/chitosan nanocomposite for detection of phenoliccompounds. Analytical Biochemistry. 2015; 486: 102.
  • Yu C, Gou L, Zhou X, Bao N, Gu H. Chitosan-Fe3O4 nanocomposite based electrochemical sensors for the determination of bisphenol A. ElectrochimicaActa.2011; 56:9056.
  • Yang L, Xiuhua Z, Wang S. A novel tyrosinase biosensor based on chitosan-carbon-coated nickel nanocomposite film. Bioelectrochemistry. 2012; 84: 44.
  • Moldoveanu SC, Kiser M. Gas chromatography/massspectrometry versus liquid chromatography/fluorescence detection in the analysis of phenols in main stream cigarette smoke. Journal of Chromatography A. 2007; 1141: 90.
  • Mehrotra P. Biosensors and their applications – A review, Journal of Oral Biology Craniofacial Research. 2016; 6: 153.
  • Turner APF. Biosensors: sense and sensibility. Chemical Society Reviews. 2013; 42(8): 3175.
  • Grieshaber D, MacKenzie R, Vörös J, Reimhult E. Electrochemical Biosensors - Sensor Principles and Architectures. Sensors. 2008; 8: 1400.
  • Thevenot DR, Toth K, Durst RA, Wilson, GS. An acetylcholinesterase (AChE) biosensor with enhanced solvent resistance based on chitosan for the detection of pesticides, Talanta. 2016; 146:279.
  • Amine A, Mohammadi H, Bourais I, Palleschi G. Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosensors and Bioelectronics. 2006;21: 1405.
  • Dalkiran B, Kaçar C, Erden PE, Kiliç E. Amperometric xanthine biosensors based on chitosan- Co3O4-multiwall carbon nanotube modified glassy carbon electrode. Sensors and Actuators B. 2014; 200: 83.
  • Bhatt AS, Bhat DK., Santosh MS. Electrical and magnetic properties of chitosan-magnetite nanocomposites. Physica B. 2010; 405: 2078.
  • Wang S, Tan Y, Zhao D, Liu G. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitosan nanocomposite. Biosensors and Bioelectronics. 2008; 23: 1781.
  • Feng D,Wang F, Chen Z. Electrochemical glucose sensor based on one-step construction of gold nanoparticle–chitosan composite film. Sensors and Actuators B. 2009; 138: 539.
  • Pingarro JM, Yanez-Sedeno P, Gonzalez-Cortes A. Gold nanoparticle-based electrochemical biosensors. Electrochimica Acta. 2008; 53: 5848.
  • Feng D, Wang F, Chen Z. Electrochemical glucose sensor based on one-step construction of gold nanoparticle–chitosancomposite film. Sensors and Actuators B. 2009;138:539.

DEVELOPMENT OF A GOLD NANOPARTICLE BASED ELECTROCHEMICAL BIOSENSOR FOR DETECTION OF PHENOLIC COMPOUNDS

Year 2016, Volume: 1 Issue: 1, 115 - 126, 23.02.2017

Abstract

In this study, an enzymatic biosensor was developed with gold nanoparticles and its performance was tested for detection of phenolic compounds. Glassy carbon working electrode (GCE) was covered with different combinations of chitosan (Chit) as a support, gold nanoparticle (GNP) and tyrosinase enzyme (T) to form the enzymatic biosensor. The sensor components (Chit, GNP and T) were characterized by cyclic voltametry (CV) and electrochemical impedance spectroscopy (EIS) while its performance was tested by chronoamperometry method for catechol (as a model phenolic compound) selectivity. Increase in sensor signal was observed depending on high conductivity of gold nanoparticles. The developed sensor has wide linear range (0.046-50 µM), low detection limit (13.8 nM) and high sensitivity (1.144 A/M). The results indicate that this kind of biosensors is potential candidates for cheap, fast and simple detection of phenolic compounds. 

References

  • Han E,Yang Y, Cai J, Zhang X, Dong X. Development of tyrosinase biosensor based on quantum dots/chitosan nanocomposite for detection of phenoliccompounds. Analytical Biochemistry. 2015; 486: 102.
  • Yu C, Gou L, Zhou X, Bao N, Gu H. Chitosan-Fe3O4 nanocomposite based electrochemical sensors for the determination of bisphenol A. ElectrochimicaActa.2011; 56:9056.
  • Yang L, Xiuhua Z, Wang S. A novel tyrosinase biosensor based on chitosan-carbon-coated nickel nanocomposite film. Bioelectrochemistry. 2012; 84: 44.
  • Moldoveanu SC, Kiser M. Gas chromatography/massspectrometry versus liquid chromatography/fluorescence detection in the analysis of phenols in main stream cigarette smoke. Journal of Chromatography A. 2007; 1141: 90.
  • Mehrotra P. Biosensors and their applications – A review, Journal of Oral Biology Craniofacial Research. 2016; 6: 153.
  • Turner APF. Biosensors: sense and sensibility. Chemical Society Reviews. 2013; 42(8): 3175.
  • Grieshaber D, MacKenzie R, Vörös J, Reimhult E. Electrochemical Biosensors - Sensor Principles and Architectures. Sensors. 2008; 8: 1400.
  • Thevenot DR, Toth K, Durst RA, Wilson, GS. An acetylcholinesterase (AChE) biosensor with enhanced solvent resistance based on chitosan for the detection of pesticides, Talanta. 2016; 146:279.
  • Amine A, Mohammadi H, Bourais I, Palleschi G. Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosensors and Bioelectronics. 2006;21: 1405.
  • Dalkiran B, Kaçar C, Erden PE, Kiliç E. Amperometric xanthine biosensors based on chitosan- Co3O4-multiwall carbon nanotube modified glassy carbon electrode. Sensors and Actuators B. 2014; 200: 83.
  • Bhatt AS, Bhat DK., Santosh MS. Electrical and magnetic properties of chitosan-magnetite nanocomposites. Physica B. 2010; 405: 2078.
  • Wang S, Tan Y, Zhao D, Liu G. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitosan nanocomposite. Biosensors and Bioelectronics. 2008; 23: 1781.
  • Feng D,Wang F, Chen Z. Electrochemical glucose sensor based on one-step construction of gold nanoparticle–chitosan composite film. Sensors and Actuators B. 2009; 138: 539.
  • Pingarro JM, Yanez-Sedeno P, Gonzalez-Cortes A. Gold nanoparticle-based electrochemical biosensors. Electrochimica Acta. 2008; 53: 5848.
  • Feng D, Wang F, Chen Z. Electrochemical glucose sensor based on one-step construction of gold nanoparticle–chitosancomposite film. Sensors and Actuators B. 2009;138:539.
There are 15 citations in total.

Details

Journal Section Full-length articles
Authors

İlker Polatoglu

Melike Kızılkaya This is me

Ülfet Eren This is me

Publication Date February 23, 2017
Submission Date September 21, 2016
Published in Issue Year 2016 Volume: 1 Issue: 1

Cite

APA Polatoglu, İ., Kızılkaya, M., & Eren, Ü. (2017). DEVELOPMENT OF A GOLD NANOPARTICLE BASED ELECTROCHEMICAL BIOSENSOR FOR DETECTION OF PHENOLIC COMPOUNDS. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 1(1), 115-126.

Creative Commons Lisansı
This piece of scholarly information is licensed under Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı.

J. Turk. Chem. Soc., Sect. B: Chem. Eng. (JOTCSB)