CRYSTALLINE STARCH CITRATE BIOPOLYMER NANORODS AS POTENTIAL STABILIZERS IN NANO AND MICRO EMULSIONS
Year 2017,
Volume: 1 Issue: 2, 191 - 200, 12.11.2017
Oluwaseyi Saliu
,
Gabriel Olatunji
Oluwatoyin Ajetomobi
Adebayo Olosho
İdobu Abiodun
Gbenga Amusan
Abstract
The area of green chemistry which
involves the synthesis of biodegradable polymers with better stabilizing
properties is fast-developing. Starch biopolymer was citrate modified and
converted to crystalline nanorods through green methods and was fully
characterized using the fourier transform infrared spectroscopy (FTIR),
scanning electron microscopy (SEM), transmission electron microscopy (TEM),
x-ray diffraction studies (XRD) and thermogravimetric analysis (TGA). The
crystalline starch citrate showed better morphological and thermal stability
properties than the ordinary and modified normal starch which has not been
converted to nano form. The starch citrate nanoparticle showed characteristic
bragg reflection angles at 2θ of 24°, 29° and 33° while the TGA result revealed
a single step thermal degradation at 240 to 410 °C and percentage weight loss
of about 89%. The SEM and TEM also confirmed the synthesis of rod-like or
cylindrical nanoparticles with little or no aggregation. This property coupled
with the thermal stability makes starch citrate nanoparticles a good stabilizer
for nano and micro emulsions.
References
- 1. Ma, X., Jian, R., Chang, P. R., & Yu, J. (2008). Fabrication and Characterization of Citric Acid-Modified Starch Nanoparticles/Plasticized-Starch Composites. Biomacromolecules, 9(11), 3314–3320. doi:10.1021/bm800987c
2. Yu, J., Wang, N., & Ma, X. (2008). Fabrication and Characterization of Poly(lactic acid)/Acetyl Tributyl Citrate/Carbon Black as Conductive Polymer Composites. Biomacromolecules, 9(3), 1050–1057. doi:10.1021/bm7012857
3. Santander-Ortega, M. J., Csaba, N., Alonso, M. J., Ortega-Vinuesa, J. L., & Bastos-González, D. (2007). Stability and physicochemical characteristics of PLGA, PLGA:poloxamer and PLGA:poloxamine blend nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 296(1-3), 132–140. doi:10.1016/j.colsurfa.2006.09.036
4. Santander-Ortega, M. J., Stauner, T., Loretz, B., Ortega-Vinuesa, J. L., Bastos-González, D., Wenz, G., … Lehr, C. M. (2010). Nanoparticles made from novel starch derivatives for transdermal drug delivery. Journal of Controlled Release, 141(1), 85–92. doi:10.1016/j.jconrel.2009.08.012
5. López-León, T., Elaïssari, A., Ortega-Vinuesa, J. L., & Bastos-González, D. (2007). Hofmeister Effects on Poly(NIPAM) Microgel Particles: Macroscopic Evidence of Ion Adsorption and Changes in Water Structure. ChemPhysChem, 8(1), 148–156. doi:10.1002/cphc.200600521
6. Chivrac, F., Pollet, E., Schmutz, M., & Avérous, L. (2008). New Approach to Elaborate Exfoliated Starch-Based Nanobiocomposites. Biomacromolecules, 9(3), 896–900. doi:10.1021/bm7012668
7. Enturi, V., Chowdary, By., & Chowdary, K. P. . (2014). Enhancement of dissolution rate and formulation development of irbesartan tablets by employing starch phosphate: A new modified starch. Asian Journal of Pharmaceutics, 8(3), 171. doi:10.4103/0973-8398.139180
8. Jivraj, M., Martini, L. G., & Thomson, C. M. (2000). An overview of the different excipients useful for the direct compression of tablets. Pharmaceutical Science & Technology Today, 3(2), 58–63. doi:10.1016/s1461-5347(99)00237-0
9. B. Wepner, E. Berghofer, E. Miesenberger, K. Tiefenbacher and P. N. K. Ng, Starch., 51, 354 (1999).
10. Chin, S. F., Pang, S. C., & Tay, S. H. (2011). Size controlled synthesis of starch nanoparticles by a simple nanoprecipitation method. Carbohydrate Polymers, 86(4), 1817–1819. doi:10.1016/j.carbpol.2011.07.012
11. Pang, S. C., Chin, S. F., Tay, S. H., & Tchong, F. M. (2011). Starch–maleate–polyvinyl alcohol hydrogels with controllable swelling behaviors. Carbohydrate Polymers, 84(1), 424–429. doi:10.1016/j.carbpol.2010.12.002
12. Kim, J.-Y., & Lim, S.-T. (2009). Preparation of nano-sized starch particles by complex formation with n-butanol. Carbohydrate Polymers, 76(1), 110–116. doi:10.1016/j.carbpol.2008.09.030
13. Loftsson, T., Másson, M., & Brewster, M. E. (2004). Self-Association of Cyclodextrins and Cyclodextrin Complexes. Journal of Pharmaceutical Sciences, 93(5), 1091–1099. doi:10.1002/jps.20047
14. Rondeau-Mouro, C., Bail, P. L., & Buléon, A. (2004). Structural investigation of amylose complexes with small ligands: inter- or intra-helical associations? International Journal of Biological Macromolecules, 34(5), 251–257. doi:10.1016/j.ijbiomac.2004.09.002
15. Shi, A., Li, D., Wang, L., Li, B., & Adhikari, B. (2011). Preparation of starch-based nanoparticles through high-pressure homogenization and miniemulsion cross-linking: Influence of various process parameters on particle size and stability. Carbohydrate Polymers, 83(4), 1604–1610. doi:10.1016/j.carbpol.2010.10.011
16. Veiseh, O., Gunn, J. W., & Zhang, M. (2010). Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Advanced Drug Delivery Reviews, 62(3), 284–304. doi:10.1016/j.addr.2009.11.002
17. Demitri, C., Del Sole, R., Scalera, F., Sannino, A., Vasapollo, G., Maffezzoli, A., … Nicolais, L. (2008). Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. Journal of Applied Polymer Science, 110(4), 2453–2460. doi:10.1002/app.28660
18. Fujioka, R., Tanaka, Y., & Yoshimura, T. (2009). Synthesis and properties of superabsorbent hydrogels based on guar gum and succinic anhydride. Journal of Applied Polymer Science, 114(1), 612–616. doi:10.1002/app.30600
19. Salam, A., Pawlak, J. J., Venditti, R. A., & El-tahlawy, K. (2010). Synthesis and Characterization of Starch Citrate−Chitosan Foam with Superior Water and Saline Absorbance Properties. Biomacromolecules, 11(6), 1453–1459. doi:10.1021/bm1000235
20. Chang,P.R.,Yu,J. and Ma,X. (2011), Carbohydrate Polymers. 83, 1016-1019.
21. Abbas,S., Bashari,M., Akhtar,W, Li,W.W. and Zhang,X., (2014), Ultrasonics sonochemistry. 21, 1265-1274.
22. A. Karadag, X. Yang, B. Ozcelik, Q. Huang, Optimization of preparation conditions for quercetin nanoemulsions using response surface methodology, J. Agric. Food Chem. 61 (2013) 2130–2139.
23. Manoi, K., & Rizvi, S. S. H. (2010). Physicochemical characteristics of phosphorylated
cross-linked starch produced by reactive supercritical fluid extrusion. Carbohydrate Polymers, 81, 687–694
24. V. Ghosh, A. Mukherjee, N. Chandrasekaran, Ultrasonic emulsification of food grade nanoemulsion formulation and evaluation of its bactericidal activity, Ultrason. Sonochem. 20 (2013) 338–344.
Year 2017,
Volume: 1 Issue: 2, 191 - 200, 12.11.2017
Oluwaseyi Saliu
,
Gabriel Olatunji
Oluwatoyin Ajetomobi
Adebayo Olosho
İdobu Abiodun
Gbenga Amusan
References
- 1. Ma, X., Jian, R., Chang, P. R., & Yu, J. (2008). Fabrication and Characterization of Citric Acid-Modified Starch Nanoparticles/Plasticized-Starch Composites. Biomacromolecules, 9(11), 3314–3320. doi:10.1021/bm800987c
2. Yu, J., Wang, N., & Ma, X. (2008). Fabrication and Characterization of Poly(lactic acid)/Acetyl Tributyl Citrate/Carbon Black as Conductive Polymer Composites. Biomacromolecules, 9(3), 1050–1057. doi:10.1021/bm7012857
3. Santander-Ortega, M. J., Csaba, N., Alonso, M. J., Ortega-Vinuesa, J. L., & Bastos-González, D. (2007). Stability and physicochemical characteristics of PLGA, PLGA:poloxamer and PLGA:poloxamine blend nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 296(1-3), 132–140. doi:10.1016/j.colsurfa.2006.09.036
4. Santander-Ortega, M. J., Stauner, T., Loretz, B., Ortega-Vinuesa, J. L., Bastos-González, D., Wenz, G., … Lehr, C. M. (2010). Nanoparticles made from novel starch derivatives for transdermal drug delivery. Journal of Controlled Release, 141(1), 85–92. doi:10.1016/j.jconrel.2009.08.012
5. López-León, T., Elaïssari, A., Ortega-Vinuesa, J. L., & Bastos-González, D. (2007). Hofmeister Effects on Poly(NIPAM) Microgel Particles: Macroscopic Evidence of Ion Adsorption and Changes in Water Structure. ChemPhysChem, 8(1), 148–156. doi:10.1002/cphc.200600521
6. Chivrac, F., Pollet, E., Schmutz, M., & Avérous, L. (2008). New Approach to Elaborate Exfoliated Starch-Based Nanobiocomposites. Biomacromolecules, 9(3), 896–900. doi:10.1021/bm7012668
7. Enturi, V., Chowdary, By., & Chowdary, K. P. . (2014). Enhancement of dissolution rate and formulation development of irbesartan tablets by employing starch phosphate: A new modified starch. Asian Journal of Pharmaceutics, 8(3), 171. doi:10.4103/0973-8398.139180
8. Jivraj, M., Martini, L. G., & Thomson, C. M. (2000). An overview of the different excipients useful for the direct compression of tablets. Pharmaceutical Science & Technology Today, 3(2), 58–63. doi:10.1016/s1461-5347(99)00237-0
9. B. Wepner, E. Berghofer, E. Miesenberger, K. Tiefenbacher and P. N. K. Ng, Starch., 51, 354 (1999).
10. Chin, S. F., Pang, S. C., & Tay, S. H. (2011). Size controlled synthesis of starch nanoparticles by a simple nanoprecipitation method. Carbohydrate Polymers, 86(4), 1817–1819. doi:10.1016/j.carbpol.2011.07.012
11. Pang, S. C., Chin, S. F., Tay, S. H., & Tchong, F. M. (2011). Starch–maleate–polyvinyl alcohol hydrogels with controllable swelling behaviors. Carbohydrate Polymers, 84(1), 424–429. doi:10.1016/j.carbpol.2010.12.002
12. Kim, J.-Y., & Lim, S.-T. (2009). Preparation of nano-sized starch particles by complex formation with n-butanol. Carbohydrate Polymers, 76(1), 110–116. doi:10.1016/j.carbpol.2008.09.030
13. Loftsson, T., Másson, M., & Brewster, M. E. (2004). Self-Association of Cyclodextrins and Cyclodextrin Complexes. Journal of Pharmaceutical Sciences, 93(5), 1091–1099. doi:10.1002/jps.20047
14. Rondeau-Mouro, C., Bail, P. L., & Buléon, A. (2004). Structural investigation of amylose complexes with small ligands: inter- or intra-helical associations? International Journal of Biological Macromolecules, 34(5), 251–257. doi:10.1016/j.ijbiomac.2004.09.002
15. Shi, A., Li, D., Wang, L., Li, B., & Adhikari, B. (2011). Preparation of starch-based nanoparticles through high-pressure homogenization and miniemulsion cross-linking: Influence of various process parameters on particle size and stability. Carbohydrate Polymers, 83(4), 1604–1610. doi:10.1016/j.carbpol.2010.10.011
16. Veiseh, O., Gunn, J. W., & Zhang, M. (2010). Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Advanced Drug Delivery Reviews, 62(3), 284–304. doi:10.1016/j.addr.2009.11.002
17. Demitri, C., Del Sole, R., Scalera, F., Sannino, A., Vasapollo, G., Maffezzoli, A., … Nicolais, L. (2008). Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. Journal of Applied Polymer Science, 110(4), 2453–2460. doi:10.1002/app.28660
18. Fujioka, R., Tanaka, Y., & Yoshimura, T. (2009). Synthesis and properties of superabsorbent hydrogels based on guar gum and succinic anhydride. Journal of Applied Polymer Science, 114(1), 612–616. doi:10.1002/app.30600
19. Salam, A., Pawlak, J. J., Venditti, R. A., & El-tahlawy, K. (2010). Synthesis and Characterization of Starch Citrate−Chitosan Foam with Superior Water and Saline Absorbance Properties. Biomacromolecules, 11(6), 1453–1459. doi:10.1021/bm1000235
20. Chang,P.R.,Yu,J. and Ma,X. (2011), Carbohydrate Polymers. 83, 1016-1019.
21. Abbas,S., Bashari,M., Akhtar,W, Li,W.W. and Zhang,X., (2014), Ultrasonics sonochemistry. 21, 1265-1274.
22. A. Karadag, X. Yang, B. Ozcelik, Q. Huang, Optimization of preparation conditions for quercetin nanoemulsions using response surface methodology, J. Agric. Food Chem. 61 (2013) 2130–2139.
23. Manoi, K., & Rizvi, S. S. H. (2010). Physicochemical characteristics of phosphorylated
cross-linked starch produced by reactive supercritical fluid extrusion. Carbohydrate Polymers, 81, 687–694
24. V. Ghosh, A. Mukherjee, N. Chandrasekaran, Ultrasonic emulsification of food grade nanoemulsion formulation and evaluation of its bactericidal activity, Ultrason. Sonochem. 20 (2013) 338–344.