Research Article
BibTex RIS Cite

OPTIMIZATION AND PHYSICOCHEMICAL CHARACTERIZATION OF OIL EXTRACTED FROM LOOFAH (Luffa cylindrica) SEED USING RESPONSE SURFACE METHODOLOGY

Year 2019, Volume: 2 Issue: 2, 57 - 68, 15.11.2019

Abstract

Response Surface Methodology(RSM)
involving Central Composite Face Centred Design (CCFCD) was used to optimize the process of solvent extraction of
oil from loofah seeds. The effect of process parameters such as binary solvent
(hexane/ethanol) composition, temperature and extraction time on the response
(yield of oil) was investigated. The designed experiments gave that, the
maximum yield (30 %) of the seed oil was obtained at 60oC, 150 min
and solvent composition (100% ethanol). However, from the optimization study,
it is observed that, the optimum yield required can best be obtained at 40oC,
151.9 min and, solvent composition (2% hexane / 98% ethanol) with a
desirability of 100%. There was a good correlation between the predicted and
experimental values using the developed quadratic model for oil yield
prediction with a correlation coefficient (R2) of 0.993. Findings
showed that refining process significantly improved the quality of the extract.
From the Gas Chromatography- Mass Spectrophotometric (GC-MS) analysis, it was
concluded that the extracted loofah seed oil (LSO) could find various
applications in the soap industry, surface coating, and other areas.

References

  • 1. Amoo I, Eleyinmi A, Ilelaboye N, Akoja S. Characterisation of oil extracted from gourd (Cucurbita maxima) seed. Journal of Food Agriculture and Environment. 2004;2(2):38-39.
  • 2. Abayeh O, Garba I, Adamu H, Abayeh O. Quality characteristics of Luffa aegyptiaca seed oil. International Journal of Scientific & Engineering Research. 2013;4(4):11-15.
  • 3. Sujatha D, Chithakari R, Raghuvardhan L, Prasad B, Khan G. In vitro plantlet regeneration and genetic transformation of sponge gourd (Luffa cylindrica). African Journal of Plant Science. 2013;7(6):244 - 252.
  • 4. Ndukwe G, Amupitan J, Badmus N. Preliminary investigation on the antibiotic and fungicidal activities of the extracts from the seeds of Luffa cylindrica. Journal of Engineering Technology. 2001;8(2):3202 - 3207.
  • 5. Ozulu O. Production and characterization of biodiesel from Luffa Cylindrica seed oil: Nsukka, University of Nigeria; 2015.
  • 6. Bal K, Bal Y, Lallam A. Gross morphology and absorption capacity of cell-fibers from the fibrous vascular system of loofah (Luffa cylindrica). Textile research journal. 2004;73(4):241 - 247.
  • 7. Gafar M, Itodo A, Warra A, Wyasu G, Usman J. Physico-chemical, cold saponification and GC-MS analysis of sponge gourd (Luffa cylindraca Linn.) seed oil. International J Modern Chem. 2012;3(2):98 - 107.
  • 8. Oboh I, Aluyor E. Luffa cylindrica-an emerging cash crop. . African Journal of Agricultural Research,. 2009;4(8):684 -688.
  • 9. Ajiwe V, Ndukwe G, Anyadiegwu I. Vegetable diesel fuels from Luffa cylindrica oil, its methyl ester and ester-diesel blends. Chemistry Class Journal. 2005;2(2):1-4.
  • 10. Ferreira-Dias S, Valente D, Abreu J. Comparison between ethanol and hexane for oil extraction from Quercus suber L. fruits. Grasas Aceites. 2003;54(4):378 - 383.
  • 11. Araromi D, Alade A, Bello M, Bakare T, Akinwande B, Jameel A, et al. Optimization of oil extraction from pitanga (Eugenia Uniflora L) leaves using simplex centroid design (SCD. Separation Science and Technology. 2017;52(8):1341-1349.
  • 12. Sineiro J, Domínguez H, Núñez M, Lema J. Ethanolic extraction of sunflower oil in a pulsing extractor. Journal of the American Oil Chemists' Society. 1998;75(6):753-754.
  • 13. Auta M, Hameed B. Optimized waste tea activated carbon for adsorption of Methylene Blue and Acid Blue 29 dyes using response surface methodology. Chemical Engineering Journal. 2001;175(1):233 - 243.
  • 14. Mani S, Jaya S, Vadivambal R. Optimization of solvent extraction of Moringa (Moringa oleifera) seed kernel oil using response surface methodology. Food and Bioproducts Processing. 2007;85(4):328 -335.
  • 15. Audu T, Aluyor E, Egualeona S, Momoh S. Extraction and characterization of Chrysophyllum albidum and Luffa cylindrica seed oils. Food Chemistry. 2013;8(3):201 - 208.
  • 16. Horwitz W. Official methods of analysis of the AOAC International 2000.
  • 17. Barchan A, Bakkali M, Arakrak A, Pagán R, Laglaoui A. The effects of sol‑vents polarity on the phenolic contents and antioxidant activity of three Mentha species extracts. Int J Curr Microbiol App Sci,. 2014;3(11):399 - 412.
  • 18. Jayaprakasha G, Singh R, Sakariah K. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. . Food Chemistry. 2001;73(3):285 - 290.
  • 19. Lee Y, Huang G, Liang Z, Mau J. Antioxidant properties of three extracts from Pleurotus citrinopileatus. LWT-Food Science and Technology. 2007;40(5):823 - 833.
  • 20. Ozsoy N, Can A, Yanardag R, Akev N. Antioxidant activity of Smilax excelsa L. leaf extracts. Food Chemistry. 2008;110(3):571 - 583.
  • 21. Adewoye L, Mustapha S, Adeniyi A, Tijani J, Amoloye M, Ayinde L. Optimization of nickel (ii) and chromium (iii) removal from contaminated water using sorghum bicolor. Nigerian Journal of Technology. 2017;36(3):960-972.
  • 22. Khuri A, Mukhopadhyay S. Response surface methodology. Wiley Interdisciplinary Reviews: Computational Statistics. 2010;2(2):128 - 149.
  • 23. Rashid U, Anwar F, Ashraf M, Saleem M, Yusup S. Application of response surface methodology for optimizing transesterification of Moringa oleifera oil: Biodiesel production. Energy Conversion and Management. 2011;52(8):3034 - 3042.
  • 24. Ibeto C, Okoye C, Ofoefule A. Comparative study of the physicochemical characterization of some oils as potential feedstock for biodiesel production. ISRN Renewable Energy. 2012:1- 5.
  • 25. Jerković I, Rajić M, Marijanović Z, Bilić M, Jokić S. Optimization of supercritical CO2 extraction of dried Helichrysum italicum flowers by response surface methodology: GC-MS profiles of the extracts and essential oil. Separation Science and Technology. 2016;51(18):2925 - 2931.
  • 26. Ejikeme P, Egbounu C, Anyaogu I, Eze V. Fatty acid methyl esters of melon seed oil: Characterisation for potential diesel fuel application. Leonardo Journal of Sciences. 2011;18:75 - 84.
  • 27. Audu TOK, Aluyor EO, Egualeona S, Momoh SS. Extraction and Characterization of Chrysophyllum albidum and Luffa cylindrica Seed Oils. Petroleum Technology Development Journal. 2013;3(1):1-7.
  • 28. Onyeike E, Acheru G. Chemical composition of selected Nigerian oil seeds and physicochemical properties of the oil extracts. Food Chemistry. 2002;77(4):431 - 437.
  • 29. Sayeed M, Ali M, Sohel F, Khan G, Yeasmin M. Physico-chemical characteristics of Mesua ferrea seed oil and nutritional composition of its seed and leaves. Bulletin of the Chemical Society of Ethiopia,. 2004;18(2):157 - 166.
  • 30. Kittiphoom S, Sutasinee S. Mango seed kernel oil and its physicochemical properties. International Food Research Journal. 2013;20(3):1145-1149.
Year 2019, Volume: 2 Issue: 2, 57 - 68, 15.11.2019

Abstract

References

  • 1. Amoo I, Eleyinmi A, Ilelaboye N, Akoja S. Characterisation of oil extracted from gourd (Cucurbita maxima) seed. Journal of Food Agriculture and Environment. 2004;2(2):38-39.
  • 2. Abayeh O, Garba I, Adamu H, Abayeh O. Quality characteristics of Luffa aegyptiaca seed oil. International Journal of Scientific & Engineering Research. 2013;4(4):11-15.
  • 3. Sujatha D, Chithakari R, Raghuvardhan L, Prasad B, Khan G. In vitro plantlet regeneration and genetic transformation of sponge gourd (Luffa cylindrica). African Journal of Plant Science. 2013;7(6):244 - 252.
  • 4. Ndukwe G, Amupitan J, Badmus N. Preliminary investigation on the antibiotic and fungicidal activities of the extracts from the seeds of Luffa cylindrica. Journal of Engineering Technology. 2001;8(2):3202 - 3207.
  • 5. Ozulu O. Production and characterization of biodiesel from Luffa Cylindrica seed oil: Nsukka, University of Nigeria; 2015.
  • 6. Bal K, Bal Y, Lallam A. Gross morphology and absorption capacity of cell-fibers from the fibrous vascular system of loofah (Luffa cylindrica). Textile research journal. 2004;73(4):241 - 247.
  • 7. Gafar M, Itodo A, Warra A, Wyasu G, Usman J. Physico-chemical, cold saponification and GC-MS analysis of sponge gourd (Luffa cylindraca Linn.) seed oil. International J Modern Chem. 2012;3(2):98 - 107.
  • 8. Oboh I, Aluyor E. Luffa cylindrica-an emerging cash crop. . African Journal of Agricultural Research,. 2009;4(8):684 -688.
  • 9. Ajiwe V, Ndukwe G, Anyadiegwu I. Vegetable diesel fuels from Luffa cylindrica oil, its methyl ester and ester-diesel blends. Chemistry Class Journal. 2005;2(2):1-4.
  • 10. Ferreira-Dias S, Valente D, Abreu J. Comparison between ethanol and hexane for oil extraction from Quercus suber L. fruits. Grasas Aceites. 2003;54(4):378 - 383.
  • 11. Araromi D, Alade A, Bello M, Bakare T, Akinwande B, Jameel A, et al. Optimization of oil extraction from pitanga (Eugenia Uniflora L) leaves using simplex centroid design (SCD. Separation Science and Technology. 2017;52(8):1341-1349.
  • 12. Sineiro J, Domínguez H, Núñez M, Lema J. Ethanolic extraction of sunflower oil in a pulsing extractor. Journal of the American Oil Chemists' Society. 1998;75(6):753-754.
  • 13. Auta M, Hameed B. Optimized waste tea activated carbon for adsorption of Methylene Blue and Acid Blue 29 dyes using response surface methodology. Chemical Engineering Journal. 2001;175(1):233 - 243.
  • 14. Mani S, Jaya S, Vadivambal R. Optimization of solvent extraction of Moringa (Moringa oleifera) seed kernel oil using response surface methodology. Food and Bioproducts Processing. 2007;85(4):328 -335.
  • 15. Audu T, Aluyor E, Egualeona S, Momoh S. Extraction and characterization of Chrysophyllum albidum and Luffa cylindrica seed oils. Food Chemistry. 2013;8(3):201 - 208.
  • 16. Horwitz W. Official methods of analysis of the AOAC International 2000.
  • 17. Barchan A, Bakkali M, Arakrak A, Pagán R, Laglaoui A. The effects of sol‑vents polarity on the phenolic contents and antioxidant activity of three Mentha species extracts. Int J Curr Microbiol App Sci,. 2014;3(11):399 - 412.
  • 18. Jayaprakasha G, Singh R, Sakariah K. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. . Food Chemistry. 2001;73(3):285 - 290.
  • 19. Lee Y, Huang G, Liang Z, Mau J. Antioxidant properties of three extracts from Pleurotus citrinopileatus. LWT-Food Science and Technology. 2007;40(5):823 - 833.
  • 20. Ozsoy N, Can A, Yanardag R, Akev N. Antioxidant activity of Smilax excelsa L. leaf extracts. Food Chemistry. 2008;110(3):571 - 583.
  • 21. Adewoye L, Mustapha S, Adeniyi A, Tijani J, Amoloye M, Ayinde L. Optimization of nickel (ii) and chromium (iii) removal from contaminated water using sorghum bicolor. Nigerian Journal of Technology. 2017;36(3):960-972.
  • 22. Khuri A, Mukhopadhyay S. Response surface methodology. Wiley Interdisciplinary Reviews: Computational Statistics. 2010;2(2):128 - 149.
  • 23. Rashid U, Anwar F, Ashraf M, Saleem M, Yusup S. Application of response surface methodology for optimizing transesterification of Moringa oleifera oil: Biodiesel production. Energy Conversion and Management. 2011;52(8):3034 - 3042.
  • 24. Ibeto C, Okoye C, Ofoefule A. Comparative study of the physicochemical characterization of some oils as potential feedstock for biodiesel production. ISRN Renewable Energy. 2012:1- 5.
  • 25. Jerković I, Rajić M, Marijanović Z, Bilić M, Jokić S. Optimization of supercritical CO2 extraction of dried Helichrysum italicum flowers by response surface methodology: GC-MS profiles of the extracts and essential oil. Separation Science and Technology. 2016;51(18):2925 - 2931.
  • 26. Ejikeme P, Egbounu C, Anyaogu I, Eze V. Fatty acid methyl esters of melon seed oil: Characterisation for potential diesel fuel application. Leonardo Journal of Sciences. 2011;18:75 - 84.
  • 27. Audu TOK, Aluyor EO, Egualeona S, Momoh SS. Extraction and Characterization of Chrysophyllum albidum and Luffa cylindrica Seed Oils. Petroleum Technology Development Journal. 2013;3(1):1-7.
  • 28. Onyeike E, Acheru G. Chemical composition of selected Nigerian oil seeds and physicochemical properties of the oil extracts. Food Chemistry. 2002;77(4):431 - 437.
  • 29. Sayeed M, Ali M, Sohel F, Khan G, Yeasmin M. Physico-chemical characteristics of Mesua ferrea seed oil and nutritional composition of its seed and leaves. Bulletin of the Chemical Society of Ethiopia,. 2004;18(2):157 - 166.
  • 30. Kittiphoom S, Sutasinee S. Mango seed kernel oil and its physicochemical properties. International Food Research Journal. 2013;20(3):1145-1149.
There are 30 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Full-length articles
Authors

Omodele Eletta 0000-0002-5079-5548

Latifat Adewoye This is me

Sheriff Mustapha This is me

Adewale Adeniyi This is me

Oladipupo Ogunleye This is me

Oladimeji Aladerokun This is me

İdowu Tijani This is me

Publication Date November 15, 2019
Submission Date May 2, 2018
Acceptance Date June 19, 2019
Published in Issue Year 2019 Volume: 2 Issue: 2

Cite

APA Eletta, O., Adewoye, L., Mustapha, S., Adeniyi, A., et al. (2019). OPTIMIZATION AND PHYSICOCHEMICAL CHARACTERIZATION OF OIL EXTRACTED FROM LOOFAH (Luffa cylindrica) SEED USING RESPONSE SURFACE METHODOLOGY. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 2(2), 57-68.

Creative Commons Lisansı
This piece of scholarly information is licensed under Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı.

J. Turk. Chem. Soc., Sect. B: Chem. Eng. (JOTCSB)