Research Article
BibTex RIS Cite

Removal of Naphthol Blue Black by Heterogeneous Fenton-like Reaction with (Bimetallic Iron-Zinc Nanoparticles)/Carbon Composite Material

Year 2020, Volume: 3 Issue: 2, 41 - 54, 30.11.2020

Abstract

In this work, the synthesis and characterization of [(Fe-Zn NPs)/C] were carried out and then it was evaluated as a heterogeneous catalyst in the Fenton-like reaction of NBB. The characterization studies showed that the synthesized composite material had amorphous structure and it contained C, O, Fe, and Zn elements. Also, it was observed by SEM analysis that iron-zinc nanoparticles (Fe-Zn NPs) formed between the carbon microspheres indicating the hydrochar structure. The Fenton-like removal ability of [(Fe-Zn NPs)/C] was also evaluated and the results demonstrated that [(Fe-Zn NPs)/C] could be a promising Fenton-like catalyst for the removal of NBB dyestuff from aqueous solutions. The optimum experimental conditions of this Fenton-like reaction were determined to be 3.0 of initial pH, 50 mM of H2O2 concentration, 40 ⁰C of temperature, and 0.25 g/L of catalyst concentration. The reaction order and rate constant were found as 0.5669 and 4.45, respectively.

Thanks

This study was presented in 2nd Cilicia International Symposium on Engineering and Technology (CISET 2019) as an oral presentation and ievaluated by Journal of the Turkish Chemical Society Section B: Chemical Engineering.

References

  • 1. Kumar V, Ghime D, Ghosh P. Decolorization of textile dye Rifafix Red 3BN by natural hematite and a comparative study on different types of Fenton process. Chem Eng Commun [Internet]. 2019;0(0):1–10. Available from: https://doi.org/10.1080/00986445.2019.1652603
  • 2. Tarkwa JB, Oturan N, Acayanka E, Laminsi S, Oturan MA. Photo-Fenton oxidation of Orange G azo dye: process optimization and mineralization mechanism. Environ Chem Lett [Internet]. 2019;17(1):473–9. Available from: https://doi.org/10.1007/s10311-018-0773-0
  • 3. Katheresan V, Kansedo J, Lau SY. Efficiency of various recent wastewater dye removal methods: A review. J Environ Chem Eng. 2018;6(4):4676–97.
  • 4. Khan J, Tariq M, Muhammad M, Mehmood MH, Ullah I, Raziq A, Akbar F, Saqib M, Rahim A, Niaz A. Kinetic and thermodynamic study of oxidative degradation of acid yellow 17 dye by fenton-like process: effect of HCO3−, CO32−,Cl− and SO42− on dye degradation. Bull. Chem. Soc. Ethiop. 2019;33(2):243–54.
  • 5. Gu T, Dong H, Lu T, Han L, Zhan Y. Fluoride ion accelerating degradation of organic pollutants by Cu(II)-catalyzed Fenton-like reaction at wide pH range. J Hazard Mater [Internet]. 2019;377(January):365–70. Available from: https://doi.org/10.1016/j.jhazmat.2019.05.073
  • 6. Vu AT, Xuan TN, Lee CH. Preparation of mesoporous Fe2O3·SiO2 composite from rice husk as an efficient heterogeneous Fenton-like catalyst for degradation of organic dyes. J Water Process Eng [Internet]. 2019;28(January):169–80. Available from: https://doi.org/10.1016/j.jwpe.2019.01.019
  • 7. Yavari S, Mahmodi NM, Teymouri P, Shahmoradi B, Maleki A. Cobalt ferrite nanoparticles: Preparation, characterization and anionic dye removal capability. J Taiwan Inst Chem Eng [Internet]. 2016;59:320–9. Available from: http://dx.doi.org/10.1016/j.jtice.2015.08.011
  • 8. Ma Q, Cui L, Zhou S, Li Y, Shi W, Ai S. Iron nanoparticles in situ encapsulated in lignin-derived hydrochar as an effective catalyst for phenol removal. Environ Sci Pollut Res. 2018;25(21):20833–40.
  • 9. Gai C, Zhu N, Hoekman SK, Liu Z, Jiao W, Peng N. Highly dispersed nickel nanoparticles supported on hydrochar for hydrogen-rich syngas production from catalytic reforming of biomass. Energy Convers Manag [Internet]. 2019;183(January):474–84. Available from: https://doi.org/10.1016/j.enconman.2018.12.121
  • 10. Wang T, Zhai Y, Zhu Y, Li C, Zeng G. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renew Sustain Energy Rev [Internet]. 2018;90(December 2016):223–47. Available from: https://doi.org/10.1016/j.rser.2018.03.071
  • 11. Basso D, Castello D, Baratieri M, Fiori L. Hydrothermal carbonization of waste biomass: progress report and prospects. 21st Eur Biomass Conf Exhib. 2013;(June):1478–87.
  • 12. Liang C, Liu Y, Li K, Wen J, Xing S, Ma Z, et al. Heterogeneous photo-Fenton degradation of organic pollutants with amorphous Fe-Zn-oxide/hydrochar under visible light irradiation. Sep Purif Technol [Internet]. 2017;188:105–11. Available from: http://dx.doi.org/10.1016/j.seppur.2017.07.027
  • 13. Khataee A, Kayan B, Kalderis D, Karimi A, Akay S, Konsolakis M. Ultrasound-assisted removal of Acid Red 17 using nanosized Fe3O4-loaded coffee waste hydrochar. Ultrason Sonochem [Internet]. 2017;35:72–80. Available from: http://dx.doi.org/10.1016/j.ultsonch.2016.09.004
  • 14. Liu Z, Zhang F, Hoekman SK, Liu T, Gai C, Peng N. Homogeneously Dispersed Zerovalent Iron Nanoparticles Supported on Hydrochar-Derived Porous Carbon: Simple, in Situ Synthesis and Use for Dechlorination of PCBs. ACS Sustain Chem Eng. 2016;4(6):3261–7.
  • 15. Gai C, Zhang F, Lang Q, Liu T, Peng N, Liu Z. Facile one-pot synthesis of iron nanoparticles immobilized into the porous hydrochar for catalytic decomposition of phenol. Appl Catal B Environ [Internet]. 2017;204:566–76. Available from: http://dx.doi.org/10.1016/j.apcatb.2016.12.005
  • 16. Hassani A, Çelikdağ G, Eghbali P, Sevim M, Karaca S, Metin Ö. Heterogeneous sono-Fenton-like process using magnetic cobalt ferrite-reduced graphene oxide (CoFe2O4-rGO) nanocomposite for the removal of organic dyes from aqueous solution. Ultrason Sonochem. 2018;40(August 2017):841–52.
  • 17. Wang N, Zheng T, Zhang G, Wang P. A review on Fenton-like processes for organic wastewater treatment. J Environ Chem Eng [Internet]. 2016;4(1):762–87. Available from: http://dx.doi.org/10.1016/j.jece.2015.12.016
  • 18. Ahmed SA, Soliman EM. Silica coated magnetic particles using microwave synthesis for removal of dyes from natural water samples: Synthesis, characterization, equilibrium, isotherm and kinetics studies. Appl Surf Sci [Internet]. 2013;284:23–32. Available from: http://dx.doi.org/10.1016/j.apsusc.2013.06.129
  • 19. Ferkous H, Merouani S, Hamdaoui O. Sonolytic degradation of naphthol blue black at 1700kHz: Effects of salts, complex matrices and persulfate. J Water Process Eng [Internet]. 2016;9:67–77. Available from: http://dx.doi.org/10.1016/j.jwpe.2015.11.003
  • 20. Ferkous H, Merouani S, Hamdaoui O, Rezgui Y, Guemini M. Comprehensive experimental and numerical investigations of the effect of frequency and acoustic intensity on the sonolytic degradation of naphthol blue black in water. Ultrason Sonochem [Internet]. 2015;26:30–9. Available from: http://dx.doi.org/10.1016/j.ultsonch.2015.02.004
  • 21. Debnath S, Ballav N, Nyoni H, Maity A, Pillay K. Optimization and mechanism elucidation of the catalytic photo-degradation of the dyes Eosin Yellow (EY) and Naphthol blue black (NBB) by a polyaniline-coated titanium dioxide nanocomposite. Appl Catal B Environ [Internet]. 2015;163:330–42. Available from: http://dx.doi.org/10.1016/j.apcatb.2014.08.011
  • 22. Reddy DR, Dinesh GK, Anandan S, Sivasankar T. Sonophotocatalytic treatment of Naphthol Blue Black dye and real textile wastewater using synthesized Fe doped TiO2. Chem Eng Process Process Intensif. 2016;99:10–8.
  • 23. Ferkous H, Merouani S, Hamdaoui O, Pétrier C. Persulfate-enhanced sonochemical degradation of naphthol blue black in water: Evidence of sulfate radical formation. Ultrason Sonochem [Internet]. 2017;34:580–7. Available from: http://dx.doi.org/10.1016/j.ultsonch.2016.06.027
  • 24. Onder S, Celebi M, Altikatoglu M, Hatipoglu A, Kuzu H. Decolorization of naphthol blue black using the horseradish peroxidase. Appl Biochem Biotechnol. 2011;163(3):433–43.
  • 25. Mamba G, Mbianda XY, Mishra AK. Photocatalytic degradation of the diazo dye naphthol blue black in water using MWCNT/Gd,N,S-TiO2 nanocomposites under simulated solar light. Environ Sci (China) [Internet]. 2015;33:219–28. Available from: http://dx.doi.org/10.1016/j.jes.2014.06.052
  • 26. Ferkous H, Hamdaoui O, Merouani S. Sonochemical degradation of naphthol blue black in water: Effect of operating parameters. Ultrason Sonochem [Internet]. 2015;26:40–7. Available from: http://dx.doi.org/10.1016/j.ultsonch.2015.03.013
  • 27. Krishnakumar B, Kumar S, Gil JM, Pandiyan V, Aguiar A, Sobral AJFN. Highly active P25@Pd/C nanocomposite for the degradation of Naphthol Blue Black with visible light. J Mol Struct. 2018;1153:346–52.
  • 28. Krishnakumar B, Swaminathan M. Solar photocatalytic degradation of Naphthol Blue Black. Desalin Water Treat. 2013;51(34–36):6572–9.
Year 2020, Volume: 3 Issue: 2, 41 - 54, 30.11.2020

Abstract

References

  • 1. Kumar V, Ghime D, Ghosh P. Decolorization of textile dye Rifafix Red 3BN by natural hematite and a comparative study on different types of Fenton process. Chem Eng Commun [Internet]. 2019;0(0):1–10. Available from: https://doi.org/10.1080/00986445.2019.1652603
  • 2. Tarkwa JB, Oturan N, Acayanka E, Laminsi S, Oturan MA. Photo-Fenton oxidation of Orange G azo dye: process optimization and mineralization mechanism. Environ Chem Lett [Internet]. 2019;17(1):473–9. Available from: https://doi.org/10.1007/s10311-018-0773-0
  • 3. Katheresan V, Kansedo J, Lau SY. Efficiency of various recent wastewater dye removal methods: A review. J Environ Chem Eng. 2018;6(4):4676–97.
  • 4. Khan J, Tariq M, Muhammad M, Mehmood MH, Ullah I, Raziq A, Akbar F, Saqib M, Rahim A, Niaz A. Kinetic and thermodynamic study of oxidative degradation of acid yellow 17 dye by fenton-like process: effect of HCO3−, CO32−,Cl− and SO42− on dye degradation. Bull. Chem. Soc. Ethiop. 2019;33(2):243–54.
  • 5. Gu T, Dong H, Lu T, Han L, Zhan Y. Fluoride ion accelerating degradation of organic pollutants by Cu(II)-catalyzed Fenton-like reaction at wide pH range. J Hazard Mater [Internet]. 2019;377(January):365–70. Available from: https://doi.org/10.1016/j.jhazmat.2019.05.073
  • 6. Vu AT, Xuan TN, Lee CH. Preparation of mesoporous Fe2O3·SiO2 composite from rice husk as an efficient heterogeneous Fenton-like catalyst for degradation of organic dyes. J Water Process Eng [Internet]. 2019;28(January):169–80. Available from: https://doi.org/10.1016/j.jwpe.2019.01.019
  • 7. Yavari S, Mahmodi NM, Teymouri P, Shahmoradi B, Maleki A. Cobalt ferrite nanoparticles: Preparation, characterization and anionic dye removal capability. J Taiwan Inst Chem Eng [Internet]. 2016;59:320–9. Available from: http://dx.doi.org/10.1016/j.jtice.2015.08.011
  • 8. Ma Q, Cui L, Zhou S, Li Y, Shi W, Ai S. Iron nanoparticles in situ encapsulated in lignin-derived hydrochar as an effective catalyst for phenol removal. Environ Sci Pollut Res. 2018;25(21):20833–40.
  • 9. Gai C, Zhu N, Hoekman SK, Liu Z, Jiao W, Peng N. Highly dispersed nickel nanoparticles supported on hydrochar for hydrogen-rich syngas production from catalytic reforming of biomass. Energy Convers Manag [Internet]. 2019;183(January):474–84. Available from: https://doi.org/10.1016/j.enconman.2018.12.121
  • 10. Wang T, Zhai Y, Zhu Y, Li C, Zeng G. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renew Sustain Energy Rev [Internet]. 2018;90(December 2016):223–47. Available from: https://doi.org/10.1016/j.rser.2018.03.071
  • 11. Basso D, Castello D, Baratieri M, Fiori L. Hydrothermal carbonization of waste biomass: progress report and prospects. 21st Eur Biomass Conf Exhib. 2013;(June):1478–87.
  • 12. Liang C, Liu Y, Li K, Wen J, Xing S, Ma Z, et al. Heterogeneous photo-Fenton degradation of organic pollutants with amorphous Fe-Zn-oxide/hydrochar under visible light irradiation. Sep Purif Technol [Internet]. 2017;188:105–11. Available from: http://dx.doi.org/10.1016/j.seppur.2017.07.027
  • 13. Khataee A, Kayan B, Kalderis D, Karimi A, Akay S, Konsolakis M. Ultrasound-assisted removal of Acid Red 17 using nanosized Fe3O4-loaded coffee waste hydrochar. Ultrason Sonochem [Internet]. 2017;35:72–80. Available from: http://dx.doi.org/10.1016/j.ultsonch.2016.09.004
  • 14. Liu Z, Zhang F, Hoekman SK, Liu T, Gai C, Peng N. Homogeneously Dispersed Zerovalent Iron Nanoparticles Supported on Hydrochar-Derived Porous Carbon: Simple, in Situ Synthesis and Use for Dechlorination of PCBs. ACS Sustain Chem Eng. 2016;4(6):3261–7.
  • 15. Gai C, Zhang F, Lang Q, Liu T, Peng N, Liu Z. Facile one-pot synthesis of iron nanoparticles immobilized into the porous hydrochar for catalytic decomposition of phenol. Appl Catal B Environ [Internet]. 2017;204:566–76. Available from: http://dx.doi.org/10.1016/j.apcatb.2016.12.005
  • 16. Hassani A, Çelikdağ G, Eghbali P, Sevim M, Karaca S, Metin Ö. Heterogeneous sono-Fenton-like process using magnetic cobalt ferrite-reduced graphene oxide (CoFe2O4-rGO) nanocomposite for the removal of organic dyes from aqueous solution. Ultrason Sonochem. 2018;40(August 2017):841–52.
  • 17. Wang N, Zheng T, Zhang G, Wang P. A review on Fenton-like processes for organic wastewater treatment. J Environ Chem Eng [Internet]. 2016;4(1):762–87. Available from: http://dx.doi.org/10.1016/j.jece.2015.12.016
  • 18. Ahmed SA, Soliman EM. Silica coated magnetic particles using microwave synthesis for removal of dyes from natural water samples: Synthesis, characterization, equilibrium, isotherm and kinetics studies. Appl Surf Sci [Internet]. 2013;284:23–32. Available from: http://dx.doi.org/10.1016/j.apsusc.2013.06.129
  • 19. Ferkous H, Merouani S, Hamdaoui O. Sonolytic degradation of naphthol blue black at 1700kHz: Effects of salts, complex matrices and persulfate. J Water Process Eng [Internet]. 2016;9:67–77. Available from: http://dx.doi.org/10.1016/j.jwpe.2015.11.003
  • 20. Ferkous H, Merouani S, Hamdaoui O, Rezgui Y, Guemini M. Comprehensive experimental and numerical investigations of the effect of frequency and acoustic intensity on the sonolytic degradation of naphthol blue black in water. Ultrason Sonochem [Internet]. 2015;26:30–9. Available from: http://dx.doi.org/10.1016/j.ultsonch.2015.02.004
  • 21. Debnath S, Ballav N, Nyoni H, Maity A, Pillay K. Optimization and mechanism elucidation of the catalytic photo-degradation of the dyes Eosin Yellow (EY) and Naphthol blue black (NBB) by a polyaniline-coated titanium dioxide nanocomposite. Appl Catal B Environ [Internet]. 2015;163:330–42. Available from: http://dx.doi.org/10.1016/j.apcatb.2014.08.011
  • 22. Reddy DR, Dinesh GK, Anandan S, Sivasankar T. Sonophotocatalytic treatment of Naphthol Blue Black dye and real textile wastewater using synthesized Fe doped TiO2. Chem Eng Process Process Intensif. 2016;99:10–8.
  • 23. Ferkous H, Merouani S, Hamdaoui O, Pétrier C. Persulfate-enhanced sonochemical degradation of naphthol blue black in water: Evidence of sulfate radical formation. Ultrason Sonochem [Internet]. 2017;34:580–7. Available from: http://dx.doi.org/10.1016/j.ultsonch.2016.06.027
  • 24. Onder S, Celebi M, Altikatoglu M, Hatipoglu A, Kuzu H. Decolorization of naphthol blue black using the horseradish peroxidase. Appl Biochem Biotechnol. 2011;163(3):433–43.
  • 25. Mamba G, Mbianda XY, Mishra AK. Photocatalytic degradation of the diazo dye naphthol blue black in water using MWCNT/Gd,N,S-TiO2 nanocomposites under simulated solar light. Environ Sci (China) [Internet]. 2015;33:219–28. Available from: http://dx.doi.org/10.1016/j.jes.2014.06.052
  • 26. Ferkous H, Hamdaoui O, Merouani S. Sonochemical degradation of naphthol blue black in water: Effect of operating parameters. Ultrason Sonochem [Internet]. 2015;26:40–7. Available from: http://dx.doi.org/10.1016/j.ultsonch.2015.03.013
  • 27. Krishnakumar B, Kumar S, Gil JM, Pandiyan V, Aguiar A, Sobral AJFN. Highly active P25@Pd/C nanocomposite for the degradation of Naphthol Blue Black with visible light. J Mol Struct. 2018;1153:346–52.
  • 28. Krishnakumar B, Swaminathan M. Solar photocatalytic degradation of Naphthol Blue Black. Desalin Water Treat. 2013;51(34–36):6572–9.
There are 28 citations in total.

Details

Primary Language English
Subjects Chemical Engineering, Nanotechnology
Journal Section Full-length articles
Authors

Deniz Uzunoğlu 0000-0001-9706-303X

Ege Karadeniz 0000-0002-3860-2889

Prof.dr. Ayla Özer This is me 0000-0002-7824-238X

Publication Date November 30, 2020
Submission Date November 29, 2019
Acceptance Date November 1, 2020
Published in Issue Year 2020 Volume: 3 Issue: 2

Cite

APA Uzunoğlu, D., Karadeniz, E., & Özer, P. A. (2020). Removal of Naphthol Blue Black by Heterogeneous Fenton-like Reaction with (Bimetallic Iron-Zinc Nanoparticles)/Carbon Composite Material. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 3(2), 41-54.

Creative Commons Lisansı
This piece of scholarly information is licensed under Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı.

J. Turk. Chem. Soc., Sect. B: Chem. Eng. (JOTCSB)