Research Article
BibTex RIS Cite
Year 2021, Volume: 4 Issue: 2, 27 - 34, 30.11.2021

Abstract

References

  • 1. Logar N, Kaučič V. Nanoporous materials: From catalysis and hydrogen storage to wastewater treatment. Acta Chim Slov. 2006;53(2):117–35.
  • 2. Dhal JP, Dash T, Hota G. Iron oxide impregnated mesoporous MCM-41: synthesis, characterization and adsorption studies. J Porous Mater. 2020;27(1):205–16. DOI: https://doi.org/10.1007/s10934-019-00803-0.
  • 3. Galacho C, Carrott M, Carrott P. Effect of calcination parameters on structural properties of Ti-MCM-41 materials synthesized at room temperature. In: Actas do XX Encontro Nacional da Sociedade Portuguesa de Química Campus da Caparica [Internet]. 2006. p. 209. Available from: https://dspace.uevora.pt/rdpc/handle/10174/6338.
  • 4. Wang G, Xu L, Zhang J, Yin T, Han D. Enhanced Photocatalytic Activity of Powders (P25) via Calcination Treatment. International Journal of Photoenergy. 2012;2012:1–9. DOI: https://doi.org/10.1155/2012/265760.
  • 5. Garcı́a-Labiano F, Abad A, de Diego LF, Gayán P, Adánez J. Calcination of calcium-based sorbents at pressure in a broad range of CO2 concentrations. Chemical Engineering Science. 2002;57(13):2381–93. DOI. https://doi.org/10.1016/S0009-2509(02)00137-9.
  • 6. Lourenço JP, Fernandes A, Henriques C, Ribeiro MF. Al-containing MCM-41 type materials prepared by different synthesis methods: Hydrothermal stability and catalytic properties. Microporous and Mesoporous Materials. 2006;94(1–3):56–65. DOI: https://doi.org/10.1016/j.micromeso.2006.03.020.
  • 7. Sohrabnezhad Sh, Jafarzadeh A, Pourahmad A. Synthesis and characterization of MCM-41 ropes. Materials Letters. 2018;212:16–9. DOI: https://doi.org/10.1016/j.matlet.2017.10.059.
  • 8. Laghaei M, Sadeghi M, Ghalei B, Dinari M. The effect of various types of post-synthetic modifications on the structure and properties of MCM-41 mesoporous silica. Progress in Organic Coatings. 2016;90:163–70. DOI: https://doi.org/10.1016/j.porgcoat.2015.10.007.
  • 9. He N, Lu Z, Yuan C, Hong J, Yang C, Bao S, et al. Effect of trivalent elements on the thermal and hydrothermal stability of MCM-41 mesoporous molecular materials. Supramolecular Science. 1998;5(5–6):553–8. DOI: https://doi.org/10.1016/S0968-5677(98)00073-X.
  • 10. Fellenz NA, Bengoa JF, Marchetti SG, Gervasini A. Influence of the Brönsted and Lewis acid sites on the catalytic activity and selectivity of Fe/MCM-41 system. Applied Catalysis A: General. 2012;435–436:187–96. DOI: https://doi.org/10.1016/j.apcata.2012.06.003.
  • 11. Yin A, Wen C, Dai W-L, Fan K. Ag/MCM-41 as a highly efficient mesostructured catalyst for the chemoselective synthesis of methyl glycolate and ethylene glycol. Applied Catalysis B: Environmental. 2011;108–109:90–9. DOI: https://doi.org/10.1016/j.apcatb.2011.08.013.
  • 12. Martin P, Rafti M, Marchetti S, Fellenz N. MCM-41-based composite with enhanced stability for Cr(VI) removal from aqueous media. Solid State Sciences. 2020;106:106300. DOI: https://doi.org/10.1016/j.solidstatesciences.2020.106300.
  • 13. Chen H, Fu S, Fu L, Yang H, Chen D. Simple Synthesis and Characterization of Hexagonal and Ordered Al–MCM–41 from Natural Perlite. Minerals. 2019;30;9(5):264. DOI: https://doi.org/10.3390/min9050264.
  • 14. Boukoussa B, Hamacha R, Morsli A, Bengueddach A. Adsorption of yellow dye on calcined or uncalcined Al-MCM-41 mesoporous materials. Arabian Journal of Chemistry. 2017;10:S2160–9. DOI: https://doi.org/10.1016/j.arabjc.2013.07.049.
  • 15. Mangrulkar PA, Kamble SP, Meshram J, Rayalu SS. Adsorption of phenol and o-chlorophenol by mesoporous MCM-41. Journal of Hazardous Materials. 2008;160(2–3):414–21. DOI: https://doi.org/10.1016/j.jhazmat.2008.03.013.
  • 16. Lu D, Xu S, Qiu W, Sun Y, Liu X, Yang J, et al. Adsorption and desorption behaviors of antibiotic ciprofloxacin on functionalized spherical MCM-41 for water treatment. Journal of Cleaner Production. 2020;264:121644. DOI: https://doi.org/10.1016/j.jclepro.2020.121644.
  • 17. Kunchakara S, Ratan A, Dutt M, Shah J, Kotnala RK, Singh V. Impedimetric humidity sensing studies of Ag doped MCM-41 mesoporous silica coated on silver sputtered interdigitated electrodes. Journal of Physics and Chemistry of Solids. 2020;145:109531. DOI: https://doi.org/10.1016/j.jpcs.2020.109531.
  • 18. Martínez-Edo G, Balmori A, Pontón I, Martí del Rio A, Sánchez-García D. Functionalized Ordered Mesoporous Silicas (MCM-41): Synthesis and Applications in Catalysis. Catalysts. 2018;8(12):617. DOI: https://doi.org/10.3390/catal8120617.
  • 19. Wu Y-H, Ma Y-L, Sun Y, Xue K, Ma Q-L, Ma T, et al. Graded synthesis of highly ordered MCM-41 and carbon/zeolite composite from coal gasification fine residue for crystal violet removal. Journal of Cleaner Production. 2020;277:123186. DOI: https://doi.org/10.1016/j.jclepro.2020.123186. 20. A. Mannaa M, Altass HM, Salama RS. MCM-41 grafted with citric acid: The role of carboxylic groups in enhancing the synthesis of xanthenes and removal of heavy metal ions. Environmental Nanotechnology, Monitoring & Management. 2021;15:100410. DOI: https://doi.org/10.1016/j.enmm.2020.100410.
  • 21. Gedikli Ü, Mısırlıoğlu Z, Acar Bozkurt P, Canel AM. SYNTHESIS AND CHARACTERIZATION OF MCM-41 AND METAL-SUPPORTED MCM-41 MATERIALS USING DIFFERENT METHODS. Commun Fac Sci Univ Ankara Ser B: Chem Chem Eng. 2020;62(2):23–39.
  • 22. Laghaei M, Sadeghi M, Ghalei B, Dinari M. The effect of various types of post-synthetic modifications on the structure and properties of MCM-41 mesoporous silica. Progress in Organic Coatings. 2016;90:163–70. DOI: https://doi.org/10.1016/j.porgcoat.2015.10.007.
  • 23. Hui KS, Chao CYH. Synthesis of MCM-41 from coal fly ash by a green approach: Influence of synthesis pH. Journal of Hazardous Materials. 2006;137(2):1135–48. DOI: https://doi.org/10.1016/j.jhazmat.2006.03.050.
  • 24. Lensveld DJ, Gerbrand Mesu J, Jos van Dillen A, de Jong KP. Synthesis and characterisation of MCM-41 supported nickel oxide catalysts. Microporous and Mesoporous Materials. 2001;44–45:401–7. DOI: https://doi.org/10.1016/S1387-1811(01)00214-1.
  • 25. Li Q, Brown SE, Broadbelt LJ, Zheng J-G, Wu NQ. Synthesis and characterization of MCM-41-supported Ba2SiO4 base catalyst. Microporous and Mesoporous Materials. 2003;59(2–3):105–11. DOI: https://doi.org/10.1016/S1387-1811(03)00290-7.

Understanding the Effect of Calcination Process on the Mesoporous MCM-41 Material Morphology

Year 2021, Volume: 4 Issue: 2, 27 - 34, 30.11.2021

Abstract

The pore structure, which is known to be affected by calcination, is one of the desired features for materials especially when considered to be catalysts. The improvement in the structure occurs after removing all template ions during the calcination process. This study attempts to evaluate the impact of the calcination process on properties of mesoporous MCM-41 (Mobile Composition of Matter 41) obtained via sol-gel method. Characterization of calcined and untreated samples was performed by N2 adsorption-desorption, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) analysis. The results showed that the calcination process displayed a significant impact on the MCM-41 materials. After calcination, the MCM-41 sample possessed higher surface area and smaller pore diameter, compared to the untreated one. Finally, the calcination acted as an effective pore modulating procedure, thus giving a significant impact on the morphology of the studies of MCM-41. Therefore, the calcination step in MCM-41 material preparation is explained in detail ensuring valuable characterization information to the literature.

References

  • 1. Logar N, Kaučič V. Nanoporous materials: From catalysis and hydrogen storage to wastewater treatment. Acta Chim Slov. 2006;53(2):117–35.
  • 2. Dhal JP, Dash T, Hota G. Iron oxide impregnated mesoporous MCM-41: synthesis, characterization and adsorption studies. J Porous Mater. 2020;27(1):205–16. DOI: https://doi.org/10.1007/s10934-019-00803-0.
  • 3. Galacho C, Carrott M, Carrott P. Effect of calcination parameters on structural properties of Ti-MCM-41 materials synthesized at room temperature. In: Actas do XX Encontro Nacional da Sociedade Portuguesa de Química Campus da Caparica [Internet]. 2006. p. 209. Available from: https://dspace.uevora.pt/rdpc/handle/10174/6338.
  • 4. Wang G, Xu L, Zhang J, Yin T, Han D. Enhanced Photocatalytic Activity of Powders (P25) via Calcination Treatment. International Journal of Photoenergy. 2012;2012:1–9. DOI: https://doi.org/10.1155/2012/265760.
  • 5. Garcı́a-Labiano F, Abad A, de Diego LF, Gayán P, Adánez J. Calcination of calcium-based sorbents at pressure in a broad range of CO2 concentrations. Chemical Engineering Science. 2002;57(13):2381–93. DOI. https://doi.org/10.1016/S0009-2509(02)00137-9.
  • 6. Lourenço JP, Fernandes A, Henriques C, Ribeiro MF. Al-containing MCM-41 type materials prepared by different synthesis methods: Hydrothermal stability and catalytic properties. Microporous and Mesoporous Materials. 2006;94(1–3):56–65. DOI: https://doi.org/10.1016/j.micromeso.2006.03.020.
  • 7. Sohrabnezhad Sh, Jafarzadeh A, Pourahmad A. Synthesis and characterization of MCM-41 ropes. Materials Letters. 2018;212:16–9. DOI: https://doi.org/10.1016/j.matlet.2017.10.059.
  • 8. Laghaei M, Sadeghi M, Ghalei B, Dinari M. The effect of various types of post-synthetic modifications on the structure and properties of MCM-41 mesoporous silica. Progress in Organic Coatings. 2016;90:163–70. DOI: https://doi.org/10.1016/j.porgcoat.2015.10.007.
  • 9. He N, Lu Z, Yuan C, Hong J, Yang C, Bao S, et al. Effect of trivalent elements on the thermal and hydrothermal stability of MCM-41 mesoporous molecular materials. Supramolecular Science. 1998;5(5–6):553–8. DOI: https://doi.org/10.1016/S0968-5677(98)00073-X.
  • 10. Fellenz NA, Bengoa JF, Marchetti SG, Gervasini A. Influence of the Brönsted and Lewis acid sites on the catalytic activity and selectivity of Fe/MCM-41 system. Applied Catalysis A: General. 2012;435–436:187–96. DOI: https://doi.org/10.1016/j.apcata.2012.06.003.
  • 11. Yin A, Wen C, Dai W-L, Fan K. Ag/MCM-41 as a highly efficient mesostructured catalyst for the chemoselective synthesis of methyl glycolate and ethylene glycol. Applied Catalysis B: Environmental. 2011;108–109:90–9. DOI: https://doi.org/10.1016/j.apcatb.2011.08.013.
  • 12. Martin P, Rafti M, Marchetti S, Fellenz N. MCM-41-based composite with enhanced stability for Cr(VI) removal from aqueous media. Solid State Sciences. 2020;106:106300. DOI: https://doi.org/10.1016/j.solidstatesciences.2020.106300.
  • 13. Chen H, Fu S, Fu L, Yang H, Chen D. Simple Synthesis and Characterization of Hexagonal and Ordered Al–MCM–41 from Natural Perlite. Minerals. 2019;30;9(5):264. DOI: https://doi.org/10.3390/min9050264.
  • 14. Boukoussa B, Hamacha R, Morsli A, Bengueddach A. Adsorption of yellow dye on calcined or uncalcined Al-MCM-41 mesoporous materials. Arabian Journal of Chemistry. 2017;10:S2160–9. DOI: https://doi.org/10.1016/j.arabjc.2013.07.049.
  • 15. Mangrulkar PA, Kamble SP, Meshram J, Rayalu SS. Adsorption of phenol and o-chlorophenol by mesoporous MCM-41. Journal of Hazardous Materials. 2008;160(2–3):414–21. DOI: https://doi.org/10.1016/j.jhazmat.2008.03.013.
  • 16. Lu D, Xu S, Qiu W, Sun Y, Liu X, Yang J, et al. Adsorption and desorption behaviors of antibiotic ciprofloxacin on functionalized spherical MCM-41 for water treatment. Journal of Cleaner Production. 2020;264:121644. DOI: https://doi.org/10.1016/j.jclepro.2020.121644.
  • 17. Kunchakara S, Ratan A, Dutt M, Shah J, Kotnala RK, Singh V. Impedimetric humidity sensing studies of Ag doped MCM-41 mesoporous silica coated on silver sputtered interdigitated electrodes. Journal of Physics and Chemistry of Solids. 2020;145:109531. DOI: https://doi.org/10.1016/j.jpcs.2020.109531.
  • 18. Martínez-Edo G, Balmori A, Pontón I, Martí del Rio A, Sánchez-García D. Functionalized Ordered Mesoporous Silicas (MCM-41): Synthesis and Applications in Catalysis. Catalysts. 2018;8(12):617. DOI: https://doi.org/10.3390/catal8120617.
  • 19. Wu Y-H, Ma Y-L, Sun Y, Xue K, Ma Q-L, Ma T, et al. Graded synthesis of highly ordered MCM-41 and carbon/zeolite composite from coal gasification fine residue for crystal violet removal. Journal of Cleaner Production. 2020;277:123186. DOI: https://doi.org/10.1016/j.jclepro.2020.123186. 20. A. Mannaa M, Altass HM, Salama RS. MCM-41 grafted with citric acid: The role of carboxylic groups in enhancing the synthesis of xanthenes and removal of heavy metal ions. Environmental Nanotechnology, Monitoring & Management. 2021;15:100410. DOI: https://doi.org/10.1016/j.enmm.2020.100410.
  • 21. Gedikli Ü, Mısırlıoğlu Z, Acar Bozkurt P, Canel AM. SYNTHESIS AND CHARACTERIZATION OF MCM-41 AND METAL-SUPPORTED MCM-41 MATERIALS USING DIFFERENT METHODS. Commun Fac Sci Univ Ankara Ser B: Chem Chem Eng. 2020;62(2):23–39.
  • 22. Laghaei M, Sadeghi M, Ghalei B, Dinari M. The effect of various types of post-synthetic modifications on the structure and properties of MCM-41 mesoporous silica. Progress in Organic Coatings. 2016;90:163–70. DOI: https://doi.org/10.1016/j.porgcoat.2015.10.007.
  • 23. Hui KS, Chao CYH. Synthesis of MCM-41 from coal fly ash by a green approach: Influence of synthesis pH. Journal of Hazardous Materials. 2006;137(2):1135–48. DOI: https://doi.org/10.1016/j.jhazmat.2006.03.050.
  • 24. Lensveld DJ, Gerbrand Mesu J, Jos van Dillen A, de Jong KP. Synthesis and characterisation of MCM-41 supported nickel oxide catalysts. Microporous and Mesoporous Materials. 2001;44–45:401–7. DOI: https://doi.org/10.1016/S1387-1811(01)00214-1.
  • 25. Li Q, Brown SE, Broadbelt LJ, Zheng J-G, Wu NQ. Synthesis and characterization of MCM-41-supported Ba2SiO4 base catalyst. Microporous and Mesoporous Materials. 2003;59(2–3):105–11. DOI: https://doi.org/10.1016/S1387-1811(03)00290-7.
There are 24 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Full-length articles
Authors

Rahmiye Zerrin Yarbay Şahin 0000-0002-4926-044X

Publication Date November 30, 2021
Submission Date June 8, 2021
Acceptance Date July 12, 2021
Published in Issue Year 2021 Volume: 4 Issue: 2

Cite

APA Yarbay Şahin, R. Z. (2021). Understanding the Effect of Calcination Process on the Mesoporous MCM-41 Material Morphology. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 4(2), 27-34.

Creative Commons Lisansı
This piece of scholarly information is licensed under Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı.

J. Turk. Chem. Soc., Sect. B: Chem. Eng. (JOTCSB)