Research Article
BibTex RIS Cite

The Role of Stable Bicarbonate Formation on the Loss of Photocatalytic Activity of TiO2 in Grout Media

Year 2022, Volume: 5 Issue: 1, 1 - 8, 31.05.2022

Abstract

In this study, we report the photocatalytic activity of TiO2 monitored by benzene oxidation in the grout medium. The results of the batch reaction tests indicated that the activity of TiO2 coated on grout was substantially less than TiO2 coated on a glass substrate. CO2 adsorption on these samples monitored by DRIFTS indicated that the loss of activity in the grout medium was due to formation of stable carbonates-bicarbonates in highly alkaline grout media.

Supporting Institution

Turkish Ministry of Science, Industry and Technology and KALEKİM

Project Number

00336.STZ.2008-2

Thanks

Financial support from SANTEZ program in collaboration with Kalekim A.Ş. and Turkish Ministry of Science, Industry and Technology under grant no 00336.STZ.2008-2 is kindly appreciated.

References

  • 1. M Oymak M, Uner D. Patents on photocatalyst incorporated cement based materials. Recent Patents on Catalysis (Discontinued). 2013;2(2):116–29.
  • 2. Ramirez AM, Demeestere K, De Belie N, Mäntylä T, Levänen E. Titanium dioxide coated cementitious materials for air purifying purposes: Preparation, characterization and toluene removal potential. Building and Environment. 2010 Apr;45(4):832–8.
  • 3. Aïssa AH, Puzenat E, Plassais A, Herrmann J-M, Haehnel C, Guillard C. Characterization and photocatalytic performance in air of cementitious materials containing TiO2. Case study of formaldehyde removal. Applied Catalysis B: Environmental. 2011 Aug;107(1–2):1–8.
  • 4. Jimenez-Relinque E, Llorente I, Castellote M. TiO 2 cement-based materials: Understanding optical properties and electronic band structure of complex matrices. Catalysis Today. 2017 Jun;287:203–9.
  • 5. Demeestere K, Dewulf J, De Witte B, Beeldens A, Van Langenhove H. Heterogeneous photocatalytic removal of toluene from air on building materials enriched with TiO2. Building and Environment. 2008 Apr;43(4):406–14.
  • 6. Boonen E, Beeldens A, Dirkx I, Bams V. Durability of Cementitious Photocatalytic Building Materials. Catalysis Today. 2017 Jun;287:196–202.
  • 7. Xi F, Davis SJ, Ciais P, Crawford-Brown D, Guan D, Pade C, et al. Substantial global carbon uptake by cement carbonation. Nature Geosci. 2016 Dec;9(12):880–3.
  • 8. Kapica-Kozar J, Kusiak-Nejman E, Wanag A, Kowalczyk Ł, Wrobel RJ, Mozia S, et al. Alkali-treated titanium dioxide as adsorbent for CO2 capture from air. Microporous and Mesoporous Materials. 2015 Jan;202:241–9.
  • 9. Kozlov D, Bavykin D, Savinov E. Effect of the Acidity of TiO2 Surface on Its Photocatalytic Activity in Acetone Gas-Phase Oxidation. Catalysis Letters. 2003;86(4):169–72.
  • 10. Kozlov DV, Panchenko AA, Bavykin DV, Savinov EN, Smirniotis PG. Influence of humidity and acidity of the titanium dioxide surface on the kinetics of photocatalytic oxidation of volatile organic compounds. Russian Chemical Bulletin. 2003;52(5):1100–5.
  • 11. Strini A, Cassese S, Schiavi L. Measurement of benzene, toluene, ethylbenzene and o-xylene gas phase photodegradation by titanium dioxide dispersed in cementitious materials using a mixed flow reactor. Applied Catalysis B: Environmental. 2005 Oct;61(1–2):90–7.
  • 12. Yates D. Infrared studies of the surface hydroxyl groups on titanium dioxide, and of the chemisorption of carbon monoxide and carbon dioxide. The Journal of Physical Chemistry. 1961;65(5):746–53.
  • 13. Primet M, Pichat P, Mathieu MV. Infrared study of the surface of titanium dioxides. I. Hydroxyl groups. The Journal of Physical Chemistry. 1971;75(9):1216–20.
  • 14. Busca G, Saussey H, Saur O, Lavalley JC, Lorenzelli V. FT-IR characterization of the surface acidity of different titanium dioxide anatase preparations. Applied Catalysis. 1985 Jan;14:245–60.
  • 15. Martra G. Lewis acid and base sites at the surface of microcrystalline TiO2 anatase: relationships between surface morphology and chemical behaviour. Applied Catalysis A: General. 2000 Aug;200(1–2):275–85.
  • 16. Mathieu MV, Primet M, Pichat P. Infrared study of the surface of titanium dioxides. II. Acidic and basic properties. The Journal of Physical Chemistry. 1971;75(9):1221–6.
  • 17. Busca G, Lorenzelli V. Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces. Materials Chemistry. 1982 Jan;7(1):89–126.
  • 18. Morterra C, Chiorino A, Boccuzzi F, Fisicaro E. A Spectroscopic Study of Anatase Properties. Zeitschrift für Physikalische Chemie. 1981 Feb 1;124(2):211–22.
  • 19. Tanaka K, White J. Characterization of species adsorbed on oxidized and reduced anatase. The Journal of Physical Chemistry. 1982;86(24):4708–14.
  • 20. Ramis G, Busca G, Lorenzelli V. Low-temperature CO2 adsorption on metal oxides: spectroscopic characterization of some weakly adsorbed species. Materials Chemistry and Physics. 1991 Sep;29(1–4):425–35.
  • 21. Bhattacharyya K, Danon A, K.Vijayan B, Gray KA, Stair PC, Weitz E. Role of the Surface Lewis Acid and Base Sites in the Adsorption of CO 2 on Titania Nanotubes and Platinized Titania Nanotubes: An in Situ FT-IR Study. J Phys Chem C. 2013 Jun 20;117(24):12661–78.
  • 22. Uner D, Oymak MM. On the mechanism of photocatalytic CO2 reduction with water in the gas phase. Catalysis Today. 2012 Feb;181(1):82–8.
  • 23. Wu W, Bhattacharyya K, Gray K, Weitz E. Photoinduced Reactions of Surface-Bound Species on Titania Nanotubes and Platinized Titania Nanotubes: An in Situ FTIR Study. J Phys Chem C. 2013 Oct 10;117(40):20643–55.
  • 24. Jacoby WA, Blake DM, Penned JA, Boulter JE, Vargo LM, George MC, et al. Heterogeneous Photocatalysis for Control of Volatile Organic Compounds in Indoor Air. Journal of the Air & Waste Management Association. 1996 Sep;46(9):891–8.
  • 25. d’Hennezel O, Pichat P, Ollis DF. Benzene and toluene gas-phase photocatalytic degradation over H2O and HCL pretreated TiO2: by-products and mechanisms. Journal of Photochemistry and Photobiology A: Chemistry. 1998 Nov;118(3):197–204.
  • 26. Wu W-C, Liao L-F, Lien C-F, Lin J-L. FTIR study of adsorption, thermal reactions and photochemistry of benzene on powdered TiO2. Phys Chem Chem Phys. 2001;3(19):4456–61.
  • 27. Zhong J, Wang J, Tao L, Gong M, Zhimin L, Chen Y. Photocatalytic degradation of gaseous benzene over TiO2/Sr2CeO4: Kinetic model and degradation mechanisms. Journal of Hazardous Materials. 2007 Jan;139(2):323–31.
  • 28. Lachheb H, Puzenat E, Houas A, Ksibi M, Elaloui E, Guillard C, et al. Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Applied Catalysis B: Environmental. 2002 Nov;39(1):75–90.
  • 29. Stylidi M, Kondarides D, Verykios X. Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions. Applied Catalysis B: Environmental. 2003 Feb 28;40(4):271–86.
  • 30. Uner DO, Ozbek S. The deactivation behavior of the TiO2 used as a photo-catalyst for benzene oxidation. In: Studies in Surface Science and Catalysis [Internet]. Elsevier; 1999 [cited 2021 Dec 6]. p. 411–4.
  • 31. Song A, Skibinski ES, DeBenedetti WJI, Ortoll-Bloch AG, Hines MA. Nanoscale Solvation Leads to Spontaneous Formation of a Bicarbonate Monolayer on Rutile (110) under Ambient Conditions: Implications for CO 2 Photoreduction. J Phys Chem C. 2016 May 5;120(17):9326–33.
  • 32. Yin W-J, Krack M, Wen B, Ma S-Y, Liu L-M. CO 2 Capture and Conversion on Rutile TiO 2 (110) in the Water Environment: Insight by First-Principles Calculations. J Phys Chem Lett. 2015 Jul 2;6(13):2538–45.
Year 2022, Volume: 5 Issue: 1, 1 - 8, 31.05.2022

Abstract

Project Number

00336.STZ.2008-2

References

  • 1. M Oymak M, Uner D. Patents on photocatalyst incorporated cement based materials. Recent Patents on Catalysis (Discontinued). 2013;2(2):116–29.
  • 2. Ramirez AM, Demeestere K, De Belie N, Mäntylä T, Levänen E. Titanium dioxide coated cementitious materials for air purifying purposes: Preparation, characterization and toluene removal potential. Building and Environment. 2010 Apr;45(4):832–8.
  • 3. Aïssa AH, Puzenat E, Plassais A, Herrmann J-M, Haehnel C, Guillard C. Characterization and photocatalytic performance in air of cementitious materials containing TiO2. Case study of formaldehyde removal. Applied Catalysis B: Environmental. 2011 Aug;107(1–2):1–8.
  • 4. Jimenez-Relinque E, Llorente I, Castellote M. TiO 2 cement-based materials: Understanding optical properties and electronic band structure of complex matrices. Catalysis Today. 2017 Jun;287:203–9.
  • 5. Demeestere K, Dewulf J, De Witte B, Beeldens A, Van Langenhove H. Heterogeneous photocatalytic removal of toluene from air on building materials enriched with TiO2. Building and Environment. 2008 Apr;43(4):406–14.
  • 6. Boonen E, Beeldens A, Dirkx I, Bams V. Durability of Cementitious Photocatalytic Building Materials. Catalysis Today. 2017 Jun;287:196–202.
  • 7. Xi F, Davis SJ, Ciais P, Crawford-Brown D, Guan D, Pade C, et al. Substantial global carbon uptake by cement carbonation. Nature Geosci. 2016 Dec;9(12):880–3.
  • 8. Kapica-Kozar J, Kusiak-Nejman E, Wanag A, Kowalczyk Ł, Wrobel RJ, Mozia S, et al. Alkali-treated titanium dioxide as adsorbent for CO2 capture from air. Microporous and Mesoporous Materials. 2015 Jan;202:241–9.
  • 9. Kozlov D, Bavykin D, Savinov E. Effect of the Acidity of TiO2 Surface on Its Photocatalytic Activity in Acetone Gas-Phase Oxidation. Catalysis Letters. 2003;86(4):169–72.
  • 10. Kozlov DV, Panchenko AA, Bavykin DV, Savinov EN, Smirniotis PG. Influence of humidity and acidity of the titanium dioxide surface on the kinetics of photocatalytic oxidation of volatile organic compounds. Russian Chemical Bulletin. 2003;52(5):1100–5.
  • 11. Strini A, Cassese S, Schiavi L. Measurement of benzene, toluene, ethylbenzene and o-xylene gas phase photodegradation by titanium dioxide dispersed in cementitious materials using a mixed flow reactor. Applied Catalysis B: Environmental. 2005 Oct;61(1–2):90–7.
  • 12. Yates D. Infrared studies of the surface hydroxyl groups on titanium dioxide, and of the chemisorption of carbon monoxide and carbon dioxide. The Journal of Physical Chemistry. 1961;65(5):746–53.
  • 13. Primet M, Pichat P, Mathieu MV. Infrared study of the surface of titanium dioxides. I. Hydroxyl groups. The Journal of Physical Chemistry. 1971;75(9):1216–20.
  • 14. Busca G, Saussey H, Saur O, Lavalley JC, Lorenzelli V. FT-IR characterization of the surface acidity of different titanium dioxide anatase preparations. Applied Catalysis. 1985 Jan;14:245–60.
  • 15. Martra G. Lewis acid and base sites at the surface of microcrystalline TiO2 anatase: relationships between surface morphology and chemical behaviour. Applied Catalysis A: General. 2000 Aug;200(1–2):275–85.
  • 16. Mathieu MV, Primet M, Pichat P. Infrared study of the surface of titanium dioxides. II. Acidic and basic properties. The Journal of Physical Chemistry. 1971;75(9):1221–6.
  • 17. Busca G, Lorenzelli V. Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces. Materials Chemistry. 1982 Jan;7(1):89–126.
  • 18. Morterra C, Chiorino A, Boccuzzi F, Fisicaro E. A Spectroscopic Study of Anatase Properties. Zeitschrift für Physikalische Chemie. 1981 Feb 1;124(2):211–22.
  • 19. Tanaka K, White J. Characterization of species adsorbed on oxidized and reduced anatase. The Journal of Physical Chemistry. 1982;86(24):4708–14.
  • 20. Ramis G, Busca G, Lorenzelli V. Low-temperature CO2 adsorption on metal oxides: spectroscopic characterization of some weakly adsorbed species. Materials Chemistry and Physics. 1991 Sep;29(1–4):425–35.
  • 21. Bhattacharyya K, Danon A, K.Vijayan B, Gray KA, Stair PC, Weitz E. Role of the Surface Lewis Acid and Base Sites in the Adsorption of CO 2 on Titania Nanotubes and Platinized Titania Nanotubes: An in Situ FT-IR Study. J Phys Chem C. 2013 Jun 20;117(24):12661–78.
  • 22. Uner D, Oymak MM. On the mechanism of photocatalytic CO2 reduction with water in the gas phase. Catalysis Today. 2012 Feb;181(1):82–8.
  • 23. Wu W, Bhattacharyya K, Gray K, Weitz E. Photoinduced Reactions of Surface-Bound Species on Titania Nanotubes and Platinized Titania Nanotubes: An in Situ FTIR Study. J Phys Chem C. 2013 Oct 10;117(40):20643–55.
  • 24. Jacoby WA, Blake DM, Penned JA, Boulter JE, Vargo LM, George MC, et al. Heterogeneous Photocatalysis for Control of Volatile Organic Compounds in Indoor Air. Journal of the Air & Waste Management Association. 1996 Sep;46(9):891–8.
  • 25. d’Hennezel O, Pichat P, Ollis DF. Benzene and toluene gas-phase photocatalytic degradation over H2O and HCL pretreated TiO2: by-products and mechanisms. Journal of Photochemistry and Photobiology A: Chemistry. 1998 Nov;118(3):197–204.
  • 26. Wu W-C, Liao L-F, Lien C-F, Lin J-L. FTIR study of adsorption, thermal reactions and photochemistry of benzene on powdered TiO2. Phys Chem Chem Phys. 2001;3(19):4456–61.
  • 27. Zhong J, Wang J, Tao L, Gong M, Zhimin L, Chen Y. Photocatalytic degradation of gaseous benzene over TiO2/Sr2CeO4: Kinetic model and degradation mechanisms. Journal of Hazardous Materials. 2007 Jan;139(2):323–31.
  • 28. Lachheb H, Puzenat E, Houas A, Ksibi M, Elaloui E, Guillard C, et al. Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Applied Catalysis B: Environmental. 2002 Nov;39(1):75–90.
  • 29. Stylidi M, Kondarides D, Verykios X. Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions. Applied Catalysis B: Environmental. 2003 Feb 28;40(4):271–86.
  • 30. Uner DO, Ozbek S. The deactivation behavior of the TiO2 used as a photo-catalyst for benzene oxidation. In: Studies in Surface Science and Catalysis [Internet]. Elsevier; 1999 [cited 2021 Dec 6]. p. 411–4.
  • 31. Song A, Skibinski ES, DeBenedetti WJI, Ortoll-Bloch AG, Hines MA. Nanoscale Solvation Leads to Spontaneous Formation of a Bicarbonate Monolayer on Rutile (110) under Ambient Conditions: Implications for CO 2 Photoreduction. J Phys Chem C. 2016 May 5;120(17):9326–33.
  • 32. Yin W-J, Krack M, Wen B, Ma S-Y, Liu L-M. CO 2 Capture and Conversion on Rutile TiO 2 (110) in the Water Environment: Insight by First-Principles Calculations. J Phys Chem Lett. 2015 Jul 2;6(13):2538–45.
There are 32 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Full-length articles
Authors

Mert Oymak 0000-0002-4046-0912

Deniz Uner 0000-0001-8585-3691

Project Number 00336.STZ.2008-2
Publication Date May 31, 2022
Submission Date August 3, 2021
Acceptance Date December 3, 2021
Published in Issue Year 2022 Volume: 5 Issue: 1

Cite

APA Oymak, M., & Uner, D. (2022). The Role of Stable Bicarbonate Formation on the Loss of Photocatalytic Activity of TiO2 in Grout Media. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 5(1), 1-8.

Creative Commons Lisansı
This piece of scholarly information is licensed under Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı.

J. Turk. Chem. Soc., Sect. B: Chem. Eng. (JOTCSB)