Research Article
BibTex RIS Cite
Year 2023, Volume: 6 Issue: 2, 85 - 94, 01.10.2023
https://doi.org/10.58692/jotcsb.1355600

Abstract

References

  • Ambashta, R. D., & Sillanpää, M. (2010). Water purification using magnetic assistance: A review. Journal of Hazardous Materials, 180(1–3), 38–49. https://doi.org/10.1016/j.jhazmat.2010.04.105
  • Avcı, A., İnci, İ., & Baylan, N. (2020). Adsorption of ciprofloxacin hydrochloride on multiwall carbon nanotube. Journal of Molecular Structure, 1206, 127711. https://doi.org/10.1016/j.molstruc.2020.127711
  • Ayranpınar, İ., Duyar, A., Göçer, S., Kozak, M., Köroğlu, E. O., & Cırık, K. (2023). Demir (II, III) Oksit (Fe3O4) Nanopartiküller Kullanılarak Tekstil Atıksularının Arıtılması. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 26(1), 1–7. https://doi.org/10.17780/ksujes.1142242
  • Barbero-Barrera, M. del M., Pombo, O., & Navacerrada, M. de los Á. (2016). Textile fibre waste bindered with natural hydraulic lime. Composites Part B: Engineering, 94, 26–33. https://doi.org/10.1016/j.compositesb.2016.03.013
  • Bentchikou, L., Mechelouf, F. Z., Neggaz, F., & Mellah, A. (2017). REMOVAL OF HEXAVALENT CHROMIUM FROM WATER BY USING NATURAL BROWN CLAY. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 2, 43–52.
  • Bushra, R., Mohamad, S., Alias, Y., Jin, Y., & Ahmad, M. (2021). Current approaches and methodologies to explore the perceptive adsorption mechanism of dyes on low-cost agricultural waste: A review. Microporous and Mesoporous Materials, 319, 111040. https://doi.org/10.1016/j.micromeso.2021.111040
  • Cao, H., Cobb, K., Yatvitskiy, M., Wolfe, M., & Shen, H. (2022). Textile and Product Development from End-of-Use Cotton Apparel: A Study to Reclaim Value from Waste. Sustainability, 14(14), 8553. https://doi.org/10.3390/su14148553
  • Chai, W. S., Cheun, J. Y., Kumar, P. S., Mubashir, M., Majeed, Z., Banat, F., Ho, S.-H., & Show, P. L. (2021). A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. Journal of Cleaner Production, 296, 126589. https://doi.org/10.1016/j.jclepro.2021.126589
  • Chalil Oglou, R., Gokce, Y., Yagmur, E., & Aktas, Z. (2023). Production of demineralised high quality hierarchical activated carbon from lignite and determination of adsorption performance using methylene blue and p-nitrophenol: The role of surface functionality, accessible pore size and surface area. Journal of Environmental Management, 345, 118812. https://doi.org/10.1016/j.jenvman.2023.118812
  • Darama, S. E., Mesci OktayY, B., & Çoruh, S. (2022). Investigation of the use of walnut shells as a natural biosorbent for zinc removal. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(4), 556–564. https://doi.org/10.17780/ksujes.1126719
  • Daud, W. M. A. W., & Ali, W. S. W. (2004). Comparison on pore development of activated carbon produced from palm shell and coconut shell. Bioresource Technology, 93(1), 63–69. https://doi.org/10.1016/j.biortech.2003.09.015
  • Eder, S., Müller, K., Azzari, P., Arcifa, A., Peydayesh, M., & Nyström, L. (2021). Mass Transfer Mechanism and Equilibrium Modelling of Hydroxytyrosol Adsorption on Olive Pit–Derived Activated Carbon. Chemical Engineering Journal, 404, 126519. https://doi.org/10.1016/j.cej.2020.126519
  • Freundlich, H. (1906). Adsorption in solution. Phys Chem Soc, 40, 1361–1368.
  • Gayathiri, M., Pulingam, T., Lee, K. T., & Sudesh, K. (2022). Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism. Chemosphere, 294, 133764. https://doi.org/10.1016/j.chemosphere.2022.133764
  • Gokce, Y., & Aktas, Z. (2014). Nitric acid modification of activated carbon produced from waste tea and adsorption of methylene blue and phenol. Applied Surface Science, 313, 352–359. https://doi.org/10.1016/j.apsusc.2014.05.214
  • Gokce, Y., Yaglikci, S., Yagmur, E., Banford, A., & Aktas, Z. (2021). Adsorption behaviour of high performance activated carbon from demineralised low rank coal (Rawdon) for methylene blue and phenol. Journal of Environmental Chemical Engineering, 9(2), 104819. https://doi.org/10.1016/j.jece.2020.104819
  • Gürten İnal, İ. I., Gökçe, Y., Yağmur, E., & Aktaş, Z. (2020). Nitrik asit ile modifiye edilmiş biyokütle temelli aktif karbonun süperkapasitör performansının incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(3), 1243–1256. https://doi.org/10.17341/gazimmfd.425990
  • Gurten Inal, I. I., Holmes, S. M., Yagmur, E., Ermumcu, N., Banford, A., & Aktas, Z. (2018). The supercapacitor performance of hierarchical porous activated carbon electrodes synthesised from demineralised (waste) cumin plant by microwave pretreatment. Journal of Industrial and Engineering Chemistry, 61, 124–132. https://doi.org/10.1016/j.jiec.2017.12.009
  • Jeihanipour, A., Aslanzadeh, S., Rajendran, K., Balasubramanian, G., & Taherzadeh, M. J. (2013). High-rate biogas production from waste textiles using a two-stage process. Renewable Energy, 52, 128–135. https://doi.org/10.1016/j.renene.2012.10.042
  • Juanga-Labayen, J. P., Labayen, I. V., & Yuan, Q. (2022). A Review on Textile Recycling Practices and Challenges. Textiles, 2(1), 174–188. https://doi.org/10.3390/textiles2010010
  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361–1403.
  • Li, M., Lu, J., Li, X., Ge, M., & Li, Y. (2020). Removal of disperse dye from alcoholysis products of waste PET fabrics by nitric acid-modified activated carbon as an adsorbent: Kinetic and thermodynamic studies. Textile Research Journal, 90(17–18), 2058–2069. https://doi.org/10.1177/0040517520909510
  • Liu, Q.-S., Zheng, T., Li, N., Wang, P., & Abulikemu, G. (2010). Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue. Applied Surface Science, 256(10), 3309–3315. https://doi.org/10.1016/j.apsusc.2009.12.025
  • Ozpinar, P., Dogan, C., Demiral, H., Morali, U., Erol, S., Samdan, C., Yildiz, D., & Demiral, I. (2022). Activated carbons prepared from hazelnut shell waste by phosphoric acid activation for supercapacitor electrode applications and comprehensive electrochemical analysis. Renewable Energy, 189, 535–548. https://doi.org/10.1016/j.renene.2022.02.126
  • Pais, J. C., Santos, C. R. G., & Lo Presti, D. (2022). Application of textile fibres from tire recycling in asphalt mixtures. Road Materials and Pavement Design, 23(10), 2353–2374. https://doi.org/10.1080/14680629.2021.1972034
  • Rápó, E., & Tonk, S. (2021). Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017–2021). Molecules, 26(17), 5419. https://doi.org/10.3390/molecules26175419
  • Reike, D., Hekkert, M. P., & Negro, S. O. (2023). Understanding circular economy transitions: The case of circular textiles. Business Strategy and the Environment, 32(3), 1032–1058. https://doi.org/10.1002/bse.3114
  • Shiklomanov, I. A. (2000). Appraisal and Assessment of World Water Resources. Water International, 25(1), 11–32. https://doi.org/10.1080/02508060008686794
  • Shukla, A., Zhang, Y.-H., Dubey, P., Margrave, J. L., & Shukla, S. S. (2002). The role of sawdust in the removal of unwanted materials from water. Journal of Hazardous Materials, 95(1–2), 137–152. https://doi.org/10.1016/S0304-3894(02)00089-4
  • Unnerstall, T. (2022). Factfulness Sustainability. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-65558-0
  • Ütebay, B., Çelik, P., & Çay, A. (2020). Waste in Textile and Leather Sectors (A. Körlü, Ed.). IntechOpen. https://doi.org/10.5772/intechopen.90014
  • Wang, C., Xiong, C., He, Y., Yang, C., Li, X., Zheng, J., & Wang, S. (2021). Facile preparation of magnetic Zr-MOF for adsorption of Pb(II) and Cr(VI) from water: Adsorption characteristics and mechanisms. Chemical Engineering Journal, 415, 128923. https://doi.org/10.1016/j.cej.2021.128923
  • Wróbel-Iwaniec, I., Díez, N., & Gryglewicz, G. (2015). Chitosan-based highly activated carbons for hydrogen storage. International Journal of Hydrogen Energy, 40(17), 5788–5796. https://doi.org/10.1016/j.ijhydene.2015.03.034
  • Xu, Z., Tian, D., Sun, Z., Zhang, D., Zhou, Y., Chen, W., & Deng, H. (2019). Highly porous activated carbon synthesized by pyrolysis of polyester fabric wastes with different iron salts: Pore development and adsorption behavior. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 565, 180–187. https://doi.org/10.1016/j.colsurfa.2019.01.007
  • Yaglikci, S., Gokce, Y., Yagmur, E., Banford, A., & Aktas, Z. (2021). Does high sulphur coal have the potential to produce high performance - low cost supercapacitors? Surfaces and Interfaces, 22, 100899. https://doi.org/10.1016/j.surfin.2020.100899
  • Yang, W., & Cao, M. (2022). Study on the difference in adsorption performance of graphene oxide and carboxylated graphene oxide for Cu(II), Pb(II) respectively and mechanism analysis. Diamond and Related Materials, 129, 109332. https://doi.org/10.1016/j.diamond.2022.109332
  • You, S. Y., Park, Y. H., & Park, C. R. (2000). Preparation and properties of activated carbon fabric from acrylic fabric waste. Carbon, 38(10), 1453–1460. https://doi.org/10.1016/S0008-6223(99)00278-X
  • Yu, X., Wang, S., & Zhang, J. (2018). Preparation of high adsorption performance activated carbon by pyrolysis of waste polyester fabric. Journal of Materials Science, 53(7), 5458–5466. https://doi.org/10.1007/s10853-017-1928-2

Preparation of Waste Fabric Based Activated Carbon and Determination of Adsorption Performance Using Methylene Blue

Year 2023, Volume: 6 Issue: 2, 85 - 94, 01.10.2023
https://doi.org/10.58692/jotcsb.1355600

Abstract

The acceleration of industrialisation and population growth throughout the world have caused the rapid depletion of water resources in the last century. Industrial wastes are one of the major factors causing water pollution. One of the most effective and well-known methods to prevent water pollution is adsorption process. In this study, highly porous activated carbons were produced using waste fabric samples and their adsorption performances were determined in the presence an adsorbate to prevent water pollution. Methylene blue (MB) as the adsorbate was used for the adsorption tests. The waste fabric samples were carbonised at 400 °C, 500 °C and 600 °C to determine the effect of pre-carbonisation temperature on the adsorption performance. The activated carbon surface properties varied depending on the pre-carbonisation temperature. The surface areas of the samples were 1385 m2/g, 1583 m2/g and 1276 m2/g, and the total pore volumes were 0.7688 cm3/g, 0.9545 cm3/g and 0.7394 cm3/g, respectively. The results showed that the pre-carbonisation temperature affected the adsorption performance. The adsorption capacities of the activated carbons calculated according to the Langmuir adsorption model were 531.46 mg/g, 630.26 mg/g and 655.40 mg/g, respectively.

Ethical Statement

This work is original and has not been published elsewhere, nor is it currently under consideration for publication elsewhere.

References

  • Ambashta, R. D., & Sillanpää, M. (2010). Water purification using magnetic assistance: A review. Journal of Hazardous Materials, 180(1–3), 38–49. https://doi.org/10.1016/j.jhazmat.2010.04.105
  • Avcı, A., İnci, İ., & Baylan, N. (2020). Adsorption of ciprofloxacin hydrochloride on multiwall carbon nanotube. Journal of Molecular Structure, 1206, 127711. https://doi.org/10.1016/j.molstruc.2020.127711
  • Ayranpınar, İ., Duyar, A., Göçer, S., Kozak, M., Köroğlu, E. O., & Cırık, K. (2023). Demir (II, III) Oksit (Fe3O4) Nanopartiküller Kullanılarak Tekstil Atıksularının Arıtılması. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 26(1), 1–7. https://doi.org/10.17780/ksujes.1142242
  • Barbero-Barrera, M. del M., Pombo, O., & Navacerrada, M. de los Á. (2016). Textile fibre waste bindered with natural hydraulic lime. Composites Part B: Engineering, 94, 26–33. https://doi.org/10.1016/j.compositesb.2016.03.013
  • Bentchikou, L., Mechelouf, F. Z., Neggaz, F., & Mellah, A. (2017). REMOVAL OF HEXAVALENT CHROMIUM FROM WATER BY USING NATURAL BROWN CLAY. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 2, 43–52.
  • Bushra, R., Mohamad, S., Alias, Y., Jin, Y., & Ahmad, M. (2021). Current approaches and methodologies to explore the perceptive adsorption mechanism of dyes on low-cost agricultural waste: A review. Microporous and Mesoporous Materials, 319, 111040. https://doi.org/10.1016/j.micromeso.2021.111040
  • Cao, H., Cobb, K., Yatvitskiy, M., Wolfe, M., & Shen, H. (2022). Textile and Product Development from End-of-Use Cotton Apparel: A Study to Reclaim Value from Waste. Sustainability, 14(14), 8553. https://doi.org/10.3390/su14148553
  • Chai, W. S., Cheun, J. Y., Kumar, P. S., Mubashir, M., Majeed, Z., Banat, F., Ho, S.-H., & Show, P. L. (2021). A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. Journal of Cleaner Production, 296, 126589. https://doi.org/10.1016/j.jclepro.2021.126589
  • Chalil Oglou, R., Gokce, Y., Yagmur, E., & Aktas, Z. (2023). Production of demineralised high quality hierarchical activated carbon from lignite and determination of adsorption performance using methylene blue and p-nitrophenol: The role of surface functionality, accessible pore size and surface area. Journal of Environmental Management, 345, 118812. https://doi.org/10.1016/j.jenvman.2023.118812
  • Darama, S. E., Mesci OktayY, B., & Çoruh, S. (2022). Investigation of the use of walnut shells as a natural biosorbent for zinc removal. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(4), 556–564. https://doi.org/10.17780/ksujes.1126719
  • Daud, W. M. A. W., & Ali, W. S. W. (2004). Comparison on pore development of activated carbon produced from palm shell and coconut shell. Bioresource Technology, 93(1), 63–69. https://doi.org/10.1016/j.biortech.2003.09.015
  • Eder, S., Müller, K., Azzari, P., Arcifa, A., Peydayesh, M., & Nyström, L. (2021). Mass Transfer Mechanism and Equilibrium Modelling of Hydroxytyrosol Adsorption on Olive Pit–Derived Activated Carbon. Chemical Engineering Journal, 404, 126519. https://doi.org/10.1016/j.cej.2020.126519
  • Freundlich, H. (1906). Adsorption in solution. Phys Chem Soc, 40, 1361–1368.
  • Gayathiri, M., Pulingam, T., Lee, K. T., & Sudesh, K. (2022). Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism. Chemosphere, 294, 133764. https://doi.org/10.1016/j.chemosphere.2022.133764
  • Gokce, Y., & Aktas, Z. (2014). Nitric acid modification of activated carbon produced from waste tea and adsorption of methylene blue and phenol. Applied Surface Science, 313, 352–359. https://doi.org/10.1016/j.apsusc.2014.05.214
  • Gokce, Y., Yaglikci, S., Yagmur, E., Banford, A., & Aktas, Z. (2021). Adsorption behaviour of high performance activated carbon from demineralised low rank coal (Rawdon) for methylene blue and phenol. Journal of Environmental Chemical Engineering, 9(2), 104819. https://doi.org/10.1016/j.jece.2020.104819
  • Gürten İnal, İ. I., Gökçe, Y., Yağmur, E., & Aktaş, Z. (2020). Nitrik asit ile modifiye edilmiş biyokütle temelli aktif karbonun süperkapasitör performansının incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(3), 1243–1256. https://doi.org/10.17341/gazimmfd.425990
  • Gurten Inal, I. I., Holmes, S. M., Yagmur, E., Ermumcu, N., Banford, A., & Aktas, Z. (2018). The supercapacitor performance of hierarchical porous activated carbon electrodes synthesised from demineralised (waste) cumin plant by microwave pretreatment. Journal of Industrial and Engineering Chemistry, 61, 124–132. https://doi.org/10.1016/j.jiec.2017.12.009
  • Jeihanipour, A., Aslanzadeh, S., Rajendran, K., Balasubramanian, G., & Taherzadeh, M. J. (2013). High-rate biogas production from waste textiles using a two-stage process. Renewable Energy, 52, 128–135. https://doi.org/10.1016/j.renene.2012.10.042
  • Juanga-Labayen, J. P., Labayen, I. V., & Yuan, Q. (2022). A Review on Textile Recycling Practices and Challenges. Textiles, 2(1), 174–188. https://doi.org/10.3390/textiles2010010
  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361–1403.
  • Li, M., Lu, J., Li, X., Ge, M., & Li, Y. (2020). Removal of disperse dye from alcoholysis products of waste PET fabrics by nitric acid-modified activated carbon as an adsorbent: Kinetic and thermodynamic studies. Textile Research Journal, 90(17–18), 2058–2069. https://doi.org/10.1177/0040517520909510
  • Liu, Q.-S., Zheng, T., Li, N., Wang, P., & Abulikemu, G. (2010). Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue. Applied Surface Science, 256(10), 3309–3315. https://doi.org/10.1016/j.apsusc.2009.12.025
  • Ozpinar, P., Dogan, C., Demiral, H., Morali, U., Erol, S., Samdan, C., Yildiz, D., & Demiral, I. (2022). Activated carbons prepared from hazelnut shell waste by phosphoric acid activation for supercapacitor electrode applications and comprehensive electrochemical analysis. Renewable Energy, 189, 535–548. https://doi.org/10.1016/j.renene.2022.02.126
  • Pais, J. C., Santos, C. R. G., & Lo Presti, D. (2022). Application of textile fibres from tire recycling in asphalt mixtures. Road Materials and Pavement Design, 23(10), 2353–2374. https://doi.org/10.1080/14680629.2021.1972034
  • Rápó, E., & Tonk, S. (2021). Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017–2021). Molecules, 26(17), 5419. https://doi.org/10.3390/molecules26175419
  • Reike, D., Hekkert, M. P., & Negro, S. O. (2023). Understanding circular economy transitions: The case of circular textiles. Business Strategy and the Environment, 32(3), 1032–1058. https://doi.org/10.1002/bse.3114
  • Shiklomanov, I. A. (2000). Appraisal and Assessment of World Water Resources. Water International, 25(1), 11–32. https://doi.org/10.1080/02508060008686794
  • Shukla, A., Zhang, Y.-H., Dubey, P., Margrave, J. L., & Shukla, S. S. (2002). The role of sawdust in the removal of unwanted materials from water. Journal of Hazardous Materials, 95(1–2), 137–152. https://doi.org/10.1016/S0304-3894(02)00089-4
  • Unnerstall, T. (2022). Factfulness Sustainability. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-65558-0
  • Ütebay, B., Çelik, P., & Çay, A. (2020). Waste in Textile and Leather Sectors (A. Körlü, Ed.). IntechOpen. https://doi.org/10.5772/intechopen.90014
  • Wang, C., Xiong, C., He, Y., Yang, C., Li, X., Zheng, J., & Wang, S. (2021). Facile preparation of magnetic Zr-MOF for adsorption of Pb(II) and Cr(VI) from water: Adsorption characteristics and mechanisms. Chemical Engineering Journal, 415, 128923. https://doi.org/10.1016/j.cej.2021.128923
  • Wróbel-Iwaniec, I., Díez, N., & Gryglewicz, G. (2015). Chitosan-based highly activated carbons for hydrogen storage. International Journal of Hydrogen Energy, 40(17), 5788–5796. https://doi.org/10.1016/j.ijhydene.2015.03.034
  • Xu, Z., Tian, D., Sun, Z., Zhang, D., Zhou, Y., Chen, W., & Deng, H. (2019). Highly porous activated carbon synthesized by pyrolysis of polyester fabric wastes with different iron salts: Pore development and adsorption behavior. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 565, 180–187. https://doi.org/10.1016/j.colsurfa.2019.01.007
  • Yaglikci, S., Gokce, Y., Yagmur, E., Banford, A., & Aktas, Z. (2021). Does high sulphur coal have the potential to produce high performance - low cost supercapacitors? Surfaces and Interfaces, 22, 100899. https://doi.org/10.1016/j.surfin.2020.100899
  • Yang, W., & Cao, M. (2022). Study on the difference in adsorption performance of graphene oxide and carboxylated graphene oxide for Cu(II), Pb(II) respectively and mechanism analysis. Diamond and Related Materials, 129, 109332. https://doi.org/10.1016/j.diamond.2022.109332
  • You, S. Y., Park, Y. H., & Park, C. R. (2000). Preparation and properties of activated carbon fabric from acrylic fabric waste. Carbon, 38(10), 1453–1460. https://doi.org/10.1016/S0008-6223(99)00278-X
  • Yu, X., Wang, S., & Zhang, J. (2018). Preparation of high adsorption performance activated carbon by pyrolysis of waste polyester fabric. Journal of Materials Science, 53(7), 5458–5466. https://doi.org/10.1007/s10853-017-1928-2
There are 38 citations in total.

Details

Primary Language English
Subjects Chemical and Thermal Processes in Energy and Combustion
Journal Section Full-length articles
Authors

Yavuz Gökçe 0000-0003-3476-2938

Publication Date October 1, 2023
Submission Date September 5, 2023
Acceptance Date September 27, 2023
Published in Issue Year 2023 Volume: 6 Issue: 2

Cite

APA Gökçe, Y. (2023). Preparation of Waste Fabric Based Activated Carbon and Determination of Adsorption Performance Using Methylene Blue. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 6(2), 85-94. https://doi.org/10.58692/jotcsb.1355600

Creative Commons Lisansı
This piece of scholarly information is licensed under Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı.

J. Turk. Chem. Soc., Sect. B: Chem. Eng. (JOTCSB)