Research Article
BibTex RIS Cite

Kinetics Analysis of Crystal Violet Adsorption from Aqueous Solution onto Flamboyant Pod Biochar

Year 2024, Volume: 7 Issue: 2, 105 - 122, 04.10.2024
https://doi.org/10.58692/jotcsb.1414940

Abstract

The increasing presence of presistent synthetic dyes, like crystal violet (CV), in wastewater poses a significant threat to aquatic ecosystems and human health due to its genotoxicity and carcinogenicity. Biochar derived from agricultural waste offers a promising, cost-effective, and eco-friendly approach for dye removal. This study explores the potential of flamboyant pod biochar (FPB) as a novel and sustainable adsorbent for CV removal. FPB offers a unique advantage as it utilizes readily available flamboyant pod waste, promoting waste valorization and a cost-effective approach. FPB was synthesized through a simple process involving milling, sun-drying, and pyrolyzing flamboyant pod waste at 300 °C. Batch adsorption experiments were conducted to evaluate the influence of contact time and initial dye concentration on removal efficiency. Kinetic modeling using pseudo-first-order and pseudo-second-order models explored the underlying mechanisms governing the adsorption process. The pseudo-second-order kinetic model exhibited a superior fit (R² > 0.87) compared to the pseudo-first-order model, suggesting a chemisorption mechanism governing the adsorption process. These findings demonstrate the potential of FPB as a low-cost, sustainable adsorbent for CV removal from wastewater.

Ethical Statement

The authors uphold that there are no conflicts of interest related with the publication of this article.

Supporting Institution

Ladoke Akintola University of Technology, Ogbomso Nigeria

Thanks

The authors acknowledge the Bioenvironmental Water Engineering Research Group (BEWERG) and the “Departments of Chemical Engineering Ladoke Akintola University of Technology (LAUTECH)” for the usage of their laboratories.

References

  • Abbasi, F., Tavakkoli Yaraki, M., Farrokhnia, A., & Bamdad, M. (2020). Keratin nanoparticles obtained from human hair for removal of crystal violet from aqueous solution: Optimized by Taguchi method. International Journal of Biological Macromolecules, 143, 492–500. https://doi.org/10.1016/j.ijbiomac.2019.12.065
  • Adekunbi, E. A., Babajide, J. O., Oloyede, H. O., Amoko, J. S., Obijole, O. A., & Oke, I. A. (2020). Evaluation of Microsoft Excel solver as a tool for adsorption kinetics determination. Ife Journal of Science, 21(3), 169. https://doi.org/10.4314/ijs.v21i3.14
  • Barber, S. T., Yin, J., Draper, K., & Trabold, T. A. (2018). Closing nutrient cycles with biochar- from filtration to fertilizer. Journal of Cleaner Production, 197, 1597–1606. https://doi.org/10.1016/j.jclepro.2018.06.136
  • Batool, F., Akbar, J., Iqbal, S., Noreen, S., & Bukhari, S. N. A. (2018). Study of Isothermal, Kinetic, and Thermodynamic Parameters for Adsorption of Cadmium: An Overview of Linear and Nonlinear Approach and Error Analysis. Bioinorganic Chemistry and Applications, 2018, 1–11. https://doi.org/10.1155/2018/3463724
  • Benmaamar et al. (2017). A batch study of adsorption equilibrium and kinetic for methylene blue onto synthesized zeolite. Http://Www.Jmaterenvironsci.Com/, 8(2), 539–550.
  • Chahinez, H.-O., Abdelkader, O., Leila, Y., & Tran, H. N. (2020). One-stage preparation of palm petiole-derived biochar: Characterization and application for adsorption of crystal violet dye in water. Environmental Technology & Innovation, 19, 100872. https://doi.org/10.1016/j.eti.2020.100872
  • Çoruh, S., & Geyikçi, F. (2012). Adsorption of copper (II) ions on montmorillonite and sepiolite clays: Equilibrium and kinetic studies. Desalination and Water Treatment, 45(1–3), 351–360. https://doi.org/10.1080/19443994.2012.692058
  • Elmorsi, R. R., Abou-El-Sherbini, K. S., Shehab El-Dein, W. A., & Lotfy, H. R. (2022). Activated eco-waste of Posidonia oceanica rhizome as a potential adsorbent of methylene blue from saline water. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-02709-5
  • Hami, H., Abbas, R., Jasim, A., Abdul Abass, D., Abed, M. A., & Maryoosh, A. A. (2019). Kinetics study of Removal Doxycycline drug from aqueous solution using Aluminum Oxide surface. Egyptian Journal of Chemistry, 0(0), 0–0. https://doi.org/10.21608/ejchem.2019.5499.1483
  • Lairini, S.E, Mahtal, K, Miyah, Y, Tanji, K, Guissi, S, Boumchita, S, & Zerrouq F. (n.d.). Adsorption of Crystal violet from aqueous solution by using potato peels (Solanum tuberosum): Equilibrium and kinetic studies. Journal of Materials and Environmental Sciences, 8(9), 3252–3261.
  • Loulidi, I., Boukhlifi, F., Ouchabi, M., Amar, A., Jabri, M., Kali, A., Chraibi, S., Hadey, C., & Aziz, F. (2020). Adsorption of Crystal Violet onto an Agricultural Waste Residue: Kinetics, Isotherm, Thermodynamics, and Mechanism of Adsorption. The Scientific World Journal, 2020, 1–9. https://doi.org/10.1155/2020/5873521
  • Olafadehan, O.A., (2021). Fundamentals of Adsorption Processes, ISBN: 978-620-3-30705-4, LAP Lambert Academic Publishing, Omni-Scriptum DUE GmbH.
  • Olaosebikan, A. O., Victor, E. B., Kehinde, O. A., & Adebukola, M. B. (2022). Isotherms, kinetic and thermodynamic studies of methylene blue adsorption on chitosan flakes derived from African giant snail shell. African Journal of Environmental Science and Technology, 16(1), 37–70. https://doi.org/10.5897/AJEST2021.3065
  • Patil, S. R., Sutar, S. S., & Jadhav, J. P. (2020). Sorption of crystal violet from aqueous solution using live roots of Eichhornia crassipes: Kinetic, isotherm, phyto and cyto-genotoxicity studies. Environmental Technology & Innovation, 18, 100648. https://doi.org/10.1016/j.eti.2020.100648
  • Popoola, L. T. (2019). Characterization and adsorptive behaviour of snail shell-rice husk (SS-RH) calcined particles (CPs) towards cationic dye. Heliyon, 5(1), e01153. https://doi.org/10.1016/j.heliyon.2019.e01153
  • Rosly, N. Z., Abdullah, A. H., Ahmad Kamarudin, M., Ashari, S. E., & Alang Ahmad, S. A. (2021). Adsorption of Methylene Blue Dye by Calix[6]Arene-Modified Lead Sulphide (Pbs): Optimisation Using Response Surface Methodology. International Journal of Environmental Research and Public Health, 18(2), 397. https://doi.org/10.3390/ijerph18020397
  • Shojaei, S., Ahmadi, J., Davoodabadi Farahani, M., Mehdizadeh, B. and Pirkamali, M.R. (2019). Removal of crystal violet using nanozeolite-x from aqueous solution: Central composite design optimization study. Journal of Water and Environmental Nanotechnology, 4(1). https://doi.org/10.22090/jwent.2019.01.004
  • Sivarajasekar, N., & Baskar, R. (2019). Adsorption of Basic Magenta II onto H2SO4 activated immature Gossypium hirsutum seeds: Kinetics, isotherms, mass transfer, thermodynamics and process design. Arabian Journal of Chemistry, 12(7), 1322–1337. https://doi.org/10.1016/j.arabjc.2014.10.040
  • Vyavahare, G., Jadhav, P., Jadhav, J., Patil, R., Aware, C., Patil, D., Gophane, A., Yang, Y.-H., & Gurav, R. (2019). Strategies for crystal violet dye sorption on biochar derived from mango leaves and evaluation of residual dye toxicity. Journal of Cleaner Production, 207, 296–305. https://doi.org/10.1016/j.jclepro.2018.09.193
  • Zamouche, M., Habib, A., Saaidia, K., & Bencheikh Lehocine, M. (2020). Batch mode for adsorption of crystal violet by cedar cone forest waste. SN Applied Sciences, 2(2), 198. https://doi.org/10.1007/s42452-020-1976-0
  • Zarei, M., A., Niaei D., Salari A., & Khataee A. (2010). Application of Response Surface Methodology for Optimisation of Peroxi-Coagulation of Textile Dye Solution Using Carbon Nanotube–PTFE Cathode. Journal Hazard Material, 173, 544–551.
Year 2024, Volume: 7 Issue: 2, 105 - 122, 04.10.2024
https://doi.org/10.58692/jotcsb.1414940

Abstract

References

  • Abbasi, F., Tavakkoli Yaraki, M., Farrokhnia, A., & Bamdad, M. (2020). Keratin nanoparticles obtained from human hair for removal of crystal violet from aqueous solution: Optimized by Taguchi method. International Journal of Biological Macromolecules, 143, 492–500. https://doi.org/10.1016/j.ijbiomac.2019.12.065
  • Adekunbi, E. A., Babajide, J. O., Oloyede, H. O., Amoko, J. S., Obijole, O. A., & Oke, I. A. (2020). Evaluation of Microsoft Excel solver as a tool for adsorption kinetics determination. Ife Journal of Science, 21(3), 169. https://doi.org/10.4314/ijs.v21i3.14
  • Barber, S. T., Yin, J., Draper, K., & Trabold, T. A. (2018). Closing nutrient cycles with biochar- from filtration to fertilizer. Journal of Cleaner Production, 197, 1597–1606. https://doi.org/10.1016/j.jclepro.2018.06.136
  • Batool, F., Akbar, J., Iqbal, S., Noreen, S., & Bukhari, S. N. A. (2018). Study of Isothermal, Kinetic, and Thermodynamic Parameters for Adsorption of Cadmium: An Overview of Linear and Nonlinear Approach and Error Analysis. Bioinorganic Chemistry and Applications, 2018, 1–11. https://doi.org/10.1155/2018/3463724
  • Benmaamar et al. (2017). A batch study of adsorption equilibrium and kinetic for methylene blue onto synthesized zeolite. Http://Www.Jmaterenvironsci.Com/, 8(2), 539–550.
  • Chahinez, H.-O., Abdelkader, O., Leila, Y., & Tran, H. N. (2020). One-stage preparation of palm petiole-derived biochar: Characterization and application for adsorption of crystal violet dye in water. Environmental Technology & Innovation, 19, 100872. https://doi.org/10.1016/j.eti.2020.100872
  • Çoruh, S., & Geyikçi, F. (2012). Adsorption of copper (II) ions on montmorillonite and sepiolite clays: Equilibrium and kinetic studies. Desalination and Water Treatment, 45(1–3), 351–360. https://doi.org/10.1080/19443994.2012.692058
  • Elmorsi, R. R., Abou-El-Sherbini, K. S., Shehab El-Dein, W. A., & Lotfy, H. R. (2022). Activated eco-waste of Posidonia oceanica rhizome as a potential adsorbent of methylene blue from saline water. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-02709-5
  • Hami, H., Abbas, R., Jasim, A., Abdul Abass, D., Abed, M. A., & Maryoosh, A. A. (2019). Kinetics study of Removal Doxycycline drug from aqueous solution using Aluminum Oxide surface. Egyptian Journal of Chemistry, 0(0), 0–0. https://doi.org/10.21608/ejchem.2019.5499.1483
  • Lairini, S.E, Mahtal, K, Miyah, Y, Tanji, K, Guissi, S, Boumchita, S, & Zerrouq F. (n.d.). Adsorption of Crystal violet from aqueous solution by using potato peels (Solanum tuberosum): Equilibrium and kinetic studies. Journal of Materials and Environmental Sciences, 8(9), 3252–3261.
  • Loulidi, I., Boukhlifi, F., Ouchabi, M., Amar, A., Jabri, M., Kali, A., Chraibi, S., Hadey, C., & Aziz, F. (2020). Adsorption of Crystal Violet onto an Agricultural Waste Residue: Kinetics, Isotherm, Thermodynamics, and Mechanism of Adsorption. The Scientific World Journal, 2020, 1–9. https://doi.org/10.1155/2020/5873521
  • Olafadehan, O.A., (2021). Fundamentals of Adsorption Processes, ISBN: 978-620-3-30705-4, LAP Lambert Academic Publishing, Omni-Scriptum DUE GmbH.
  • Olaosebikan, A. O., Victor, E. B., Kehinde, O. A., & Adebukola, M. B. (2022). Isotherms, kinetic and thermodynamic studies of methylene blue adsorption on chitosan flakes derived from African giant snail shell. African Journal of Environmental Science and Technology, 16(1), 37–70. https://doi.org/10.5897/AJEST2021.3065
  • Patil, S. R., Sutar, S. S., & Jadhav, J. P. (2020). Sorption of crystal violet from aqueous solution using live roots of Eichhornia crassipes: Kinetic, isotherm, phyto and cyto-genotoxicity studies. Environmental Technology & Innovation, 18, 100648. https://doi.org/10.1016/j.eti.2020.100648
  • Popoola, L. T. (2019). Characterization and adsorptive behaviour of snail shell-rice husk (SS-RH) calcined particles (CPs) towards cationic dye. Heliyon, 5(1), e01153. https://doi.org/10.1016/j.heliyon.2019.e01153
  • Rosly, N. Z., Abdullah, A. H., Ahmad Kamarudin, M., Ashari, S. E., & Alang Ahmad, S. A. (2021). Adsorption of Methylene Blue Dye by Calix[6]Arene-Modified Lead Sulphide (Pbs): Optimisation Using Response Surface Methodology. International Journal of Environmental Research and Public Health, 18(2), 397. https://doi.org/10.3390/ijerph18020397
  • Shojaei, S., Ahmadi, J., Davoodabadi Farahani, M., Mehdizadeh, B. and Pirkamali, M.R. (2019). Removal of crystal violet using nanozeolite-x from aqueous solution: Central composite design optimization study. Journal of Water and Environmental Nanotechnology, 4(1). https://doi.org/10.22090/jwent.2019.01.004
  • Sivarajasekar, N., & Baskar, R. (2019). Adsorption of Basic Magenta II onto H2SO4 activated immature Gossypium hirsutum seeds: Kinetics, isotherms, mass transfer, thermodynamics and process design. Arabian Journal of Chemistry, 12(7), 1322–1337. https://doi.org/10.1016/j.arabjc.2014.10.040
  • Vyavahare, G., Jadhav, P., Jadhav, J., Patil, R., Aware, C., Patil, D., Gophane, A., Yang, Y.-H., & Gurav, R. (2019). Strategies for crystal violet dye sorption on biochar derived from mango leaves and evaluation of residual dye toxicity. Journal of Cleaner Production, 207, 296–305. https://doi.org/10.1016/j.jclepro.2018.09.193
  • Zamouche, M., Habib, A., Saaidia, K., & Bencheikh Lehocine, M. (2020). Batch mode for adsorption of crystal violet by cedar cone forest waste. SN Applied Sciences, 2(2), 198. https://doi.org/10.1007/s42452-020-1976-0
  • Zarei, M., A., Niaei D., Salari A., & Khataee A. (2010). Application of Response Surface Methodology for Optimisation of Peroxi-Coagulation of Textile Dye Solution Using Carbon Nanotube–PTFE Cathode. Journal Hazard Material, 173, 544–551.
There are 21 citations in total.

Details

Primary Language English
Subjects Water Treatment Processes
Journal Section Full-length articles
Authors

Azeez Akinyemi 0009-0007-2785-8348

Abass Alade 0000-0003-4837-3685

Akeem Olatunde Arinkoola 0000-0002-8510-7661

Bisola Olabiyi This is me 0009-0008-2760-1427

Publication Date October 4, 2024
Submission Date January 14, 2024
Acceptance Date May 6, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Akinyemi, A., Alade, A., Arinkoola, A. O., Olabiyi, B. (2024). Kinetics Analysis of Crystal Violet Adsorption from Aqueous Solution onto Flamboyant Pod Biochar. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 7(2), 105-122. https://doi.org/10.58692/jotcsb.1414940

Creative Commons Lisansı
This piece of scholarly information is licensed under Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı.

J. Turk. Chem. Soc., Sect. B: Chem. Eng. (JOTCSB)