Research Article
BibTex RIS Cite

Hydrochar and Value-Added Chemical Production Through Hydrothermal Carbonisation of Woody Biomass

Year 2024, Volume: 7 Issue: 2, 139 - 152, 04.10.2024
https://doi.org/10.58692/jotcsb.1484204

Abstract

This study investigates the optimisation of hydrothermal carbonisation (HTC) parameters for transforming Whitewood biomass into hydrochar, focusing on bioenergy production and valuable chemical extraction as by-products. The optimal carbonisation was achieved at a process temperature of 240 -260 °C, which optimised the higher heating value of the hydrochar to 27-30 kJ/g and ensured a structural integrity similar to lignite coal. Increasing the temperature beyond 260 °C did not significantly enhance the energy content or quality of the hydrochar, establishing 260 °C as the practical upper limit for the HTC process. Residence times between 30 to 60 min were found to have minimal impact on the yield and quality of hydrochar, suggesting significant operational flexibility and the potential to double throughput without increasing energy consumption. The study also revealed that the process water by-product is rich in furan compounds, particularly furfural and hydroxymethyl furfural, with their highest concentration (125 mg/g of feedstock) occurring at 220 °C. The implementation of these findings could facilitate the development of a large-scale HTC facility, significantly reducing reliance on fossil fuels and enhancing economic viability by producing high-energy-density biofuels and high-value chemical by-products.

Ethical Statement

N.A.

Supporting Institution

EPSRC, BBSRC and UK Supergen Bioenergy Hub

Project Number

EP/S000771/1

Thanks

This research was partially funded and supported by the EPSRC, BBSRC and UK Supergen Bioenergy Hub [Grant number EP/S000771/1], the University of Nottingham FPVC Research Acceleration Fund (Dr Fatih Gulec).

References

  • Agency, E. (2016). Material comparators for end-of-waste decisions.
  • Basso, D., Weiss-Hortala, E., Patuzzi, F., Baratieri, M., & Fiori, L. (2018). In deep analysis on the behavior of grape marc constituents during hydrothermal carbonization. Energies, 11(6), 1379.
  • Bevan, E., Fu, J., Luberti, M., & Zheng, Y. (2021). Challenges and opportunities of hydrothermal carbonisation in the UK; case study in Chirnside. RSC advances, 11(55), 34870-34897.
  • Brown, A. E., Finnerty, G. L., Camargo-Valero, M. A., & Ross, A. B. (2020). Valorisation of macroalgae via the integration of hydrothermal carbonisation and anaerobic digestion. Bioresource Technology, 312, 123539.
  • Callejón-Ferre, A., Velázquez-Martí, B., López-Martínez, J., & Manzano-Agugliaro, F. (2011). Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value. Renewable and Sustainable Energy Reviews, 15(2), 948-955.
  • Cao, Z., Hülsemann, B., Wüst, D., Oechsner, H., Lautenbach, A., & Kruse, A. (2021). Effect of residence time during hydrothermal carbonization of biogas digestate on the combustion characteristics of hydrochar and the biogas production of process water. Bioresource technology, 333, 125110.
  • Cicchetti, E., Merle, P., & Chaintreau, A. (2008). Quantitation in gas chromatography: usual practices and performances of a response factor database. Flavour and fragrance journal, 23(6), 450-459.
  • Daskin, M., Erdoğan, A., Güleç, F., & Okolie, J. A. (2024). Generalizability of empirical correlations for predicting higher heating values of biomass. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 5434-5450.
  • Diaz Perez, N., Lindfors, C., A. M. van den Broek, L., van der Putten, J., Meredith, W., & Robinson, J. (2023). Comparison of bio-oils derived from crop digestate treated through conventional and microwave pyrolysis as an alternative route for further waste valorization. Biomass Conversion and Biorefinery, pp.1-16.
  • Funke, A., & Ziegler, F. (2010). Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining, 4(2), 160-177.
  • Ghanim, B. M., Pandey, D. S., Kwapinski, W., & Leahy, J. J. (2016). Hydrothermal carbonisation of poultry litter: Effects of treatment temperature and residence time on yields and chemical properties of hydrochars. Bioresource technology, 216, 373-380.
  • Global CCS Institute. (2018). The global status of CCS. https://www.globalccsinstitute.com/resources/global-status-report/
  • Güleç, F., Parthiban, A., Umenweke, G. C., Musa, U., Williams, O., Mortezaei, Y., Suk‐Oh, H., Lester, E., Ogbaga, C. C., & Gunes, B. (2023). Progress in lignocellulosic biomass valorization for biofuels and value‐added chemical production in the EU: A focus on thermochemical conversion processes. Biofuels, Bioproducts and Biorefining, 18(3), 755-781.
  • Güleç, F., Riesco, L. M. G., Williams, O., Kostas, E. T., Samson, A., & Lester, E. (2021). Hydrothermal conversion of different lignocellulosic biomass feedstocks–Effect of the process conditions on hydrochar structures. Fuel, 302, 121166.
  • Güleç, F., Samson, A., Williams, O., Kostas, E. T., & Lester, E. (2022). Biofuel characteristics of chars produced from rapeseed, whitewood, and seaweed via thermal conversion technologies–Impacts of feedstocks and process conditions. Fuel Processing Technology, 238, 107492.
  • Güleç, F., Williams, O., Kostas, E. T., Samson, A., & Lester, E. (2022). A comprehensive comparative study on the energy application of chars produced from different biomass feedstocks via hydrothermal conversion, pyrolysis, and torrefaction. Energy Conversion and Management, 270, 116260.
  • Güleç, F., Williams, O., Kostas, E. T., Smson, A., & Lester, E. (2022). A comprehensive comparative study on the energy application of chars produced from different biomass feedstocks via hydrothermal conversion, pyrolysis, and torrefaction. Energy Conversion and Management, 270, 116260.
  • Hansen, L. J., Fendt, S., & Spliethoff, H. (2020). Impact of hydrothermal carbonization on combustion properties of residual biomass. Biomass Conversion and Biorefinery, 12(7), 2541-2552.
  • Koechermann, J., Goersch, K., Wirth, B., Muehlenberg, J., & Klemm, M. (2018). Hydrothermal carbonization: Temperature influence on hydrochar and aqueous phase composition during process water recirculation. Journal of Environmental Chemical Engineering, 6(4), 5481-5487.
  • Kumar, S., & Ankaram, S. (2019). Waste-to-energy model/tool presentation. In Current developments in biotechnology and bioengineering (pp. 239-258). Elsevier.
  • Lester, E., Gong, M., & Thompson, A. (2007). A method for source apportionment in biomass/coal blends using thermogravimetric analysis. Journal of Analytical and Applied Pyrolysis, 80(1), 111-117.
  • Musa, U., Castro-Díaz, M., Uguna, C. N., & Snape, C. E. (2022). Effect of process variables on producing biocoals by hydrothermal carbonisation of pine Kraft lignin at low temperatures. Fuel, 325, 124784.
  • Oumabady, S., Kamaludeen, S., Ramasamy, M., Kalaiselvi, P., & Parameswari, E. (2020). Preparation and Characterization of Optimized Hydrochar from Paper Board Mill Sludge. Scientific reports, 10(1), 773.
  • Phang, F. J. F., Soh, M., Khaerudini, D. S., Timuda, G. E., Chew, J. J., How, B. S., Loh, S. K., Yusup, S., & Sunarso, J. (2023). Catalytic wet torrefaction of lignocellulosic biomass: An overview with emphasis on fuel application. South African Journal of Chemical Engineering, 43(1), 162-189.
  • Poirier, S., & Chapleur, O. (2018). Inhibition of anaerobic digestion by phenol and ammonia: Effect on degradation performances and microbial dynamics. Data in brief, 19, 2235-2239.
  • Powell, H. (2022). Biofuels market size to surpass $201.21 billion by 2030. Connectd Energy Solutions. https://connectedenergysolutions.co.uk/biofuels-market-size-to-surpass-201-21-billion-by-2030/
  • Reza, M. T., Mumme, J., & Ebert, A. (2015). Characterization of hydrochar obtained from hydrothermal carbonization of wheat straw digestate. Biomass Conversion and Biorefinery, 5, 425-435.
  • Sharma, R., Jasrotia, K., Singh, N., Ghosh, P., Sharma, N. R., Singh, J., Kanwar, R., & Kumar, A. (2020). A comprehensive review on hydrothermal carbonization of biomass and its applications. Chemistry Africa, 3(1), 1-19.
  • Shen, Y. (2020). A review on hydrothermal carbonization of biomass and plastic wastes to energy products. Biomass and Bioenergy, 134, 105479.
  • Siddarth H. Krishna, K. H., Kevin J. Barnett, Jiayue He, Christos T. Maravelias, James A. Dumesic, George W. Huber, Mario De bruyn, Bert M. Weckhuysen. (2018). Oxygenated commodity chemicals from chemo-catalytic conversion of biomass derived heterocycles. Department of Chemical and Biological Engineering, University of Wisconsin-Madison.
  • Singh, A., Gill, A., Lim, D. L. K., Kasmaruddin, A., Miri, T., Chakrabarty, A., Chai, H. H., Selvarajoo, A., Massawe, F., Abakr, Y. A., & al., e. (2022). Feasibility of Bio-Coal Production from Hydrothermal Carbonization (HTC) Technology Using Food Waste in Malaysia. Sustainability, 14(8), 4534.
  • Smith, A. M., & Ross, A. B. (2019). The influence of residence time during hydrothermal carbonisation of miscanthus on bio-coal combustion chemistry. Energies, 12(3), 523.
  • Smith, P., Beaumont, L., Bernacchi, C. J., Byrne, M., Cheung, W., Conant, R. T., Cotrufo, F., Feng, X., Janssens, I., & Jones, H. (2022). Essential outcomes for COP26.
  • St Gelais, A. (2014). GC Analysis – Part V. FID or MS for Essential Oils? Laboratoire PhytoChemia. https://phytochemia.com/en/2014/09/02/gc-analysis-part-v-fid-or-ms-for-essential-oils/#:~:text=In%20general%2C%20the%20MS%20should,compound%20in%20an%20essential%20oil).
  • Statista. (2023). Market value of furfural worldwide from 2015 to 2021, with a forecast for 2022 to 2029. https://www.statista.com/statistics/1310467/furfural-market-value-worldwide/#:~:text=In%202021%2C%20the%20market%20of,566%20million%20U.S.%20dollars%20worldwide.
  • Stirling, R. J., Snape, C. E., & Meredith, W. (2018). The impact of hydrothermal carbonisation on the char reactivity of biomass. Fuel processing technology, 177, 152-158.
  • Tiseo, I. (2024). Annual carbon dioxide (CO₂) emissions worldwide from 1940 to 2023. Retrieved 13/05/2024 from https://www.statista.com/statistics/276629/global-co2-emissions/
  • UK-Government. (2021). Net Zero Strategy: Build Back Greener.
  • Welfle, A. J., Almena, A., Arshad, M. N., Banks, S. W., Butnar, I., Chong, K. J., Cooper, S. G., Daly, H., Freites, S. G., & Güleç, F. (2023). Sustainability of bioenergy–Mapping the risks & benefits to inform future bioenergy systems. Biomass and Bioenergy, 177, 106919.
  • WHO. (2021). COP26 special report on climate change and health: the health argument for climate action. World Health Organization.
  • Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12-13), 1781-1788.
  • Zhang, X., Zhu, P., Li, Q., & Xia, H. (2022). Recent Advances in the Catalytic Conversion of Biomass to Furfural in Deep Eutectic Solvents. Frontiers in Chemistry, 10, 911674.
Year 2024, Volume: 7 Issue: 2, 139 - 152, 04.10.2024
https://doi.org/10.58692/jotcsb.1484204

Abstract

Project Number

EP/S000771/1

References

  • Agency, E. (2016). Material comparators for end-of-waste decisions.
  • Basso, D., Weiss-Hortala, E., Patuzzi, F., Baratieri, M., & Fiori, L. (2018). In deep analysis on the behavior of grape marc constituents during hydrothermal carbonization. Energies, 11(6), 1379.
  • Bevan, E., Fu, J., Luberti, M., & Zheng, Y. (2021). Challenges and opportunities of hydrothermal carbonisation in the UK; case study in Chirnside. RSC advances, 11(55), 34870-34897.
  • Brown, A. E., Finnerty, G. L., Camargo-Valero, M. A., & Ross, A. B. (2020). Valorisation of macroalgae via the integration of hydrothermal carbonisation and anaerobic digestion. Bioresource Technology, 312, 123539.
  • Callejón-Ferre, A., Velázquez-Martí, B., López-Martínez, J., & Manzano-Agugliaro, F. (2011). Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value. Renewable and Sustainable Energy Reviews, 15(2), 948-955.
  • Cao, Z., Hülsemann, B., Wüst, D., Oechsner, H., Lautenbach, A., & Kruse, A. (2021). Effect of residence time during hydrothermal carbonization of biogas digestate on the combustion characteristics of hydrochar and the biogas production of process water. Bioresource technology, 333, 125110.
  • Cicchetti, E., Merle, P., & Chaintreau, A. (2008). Quantitation in gas chromatography: usual practices and performances of a response factor database. Flavour and fragrance journal, 23(6), 450-459.
  • Daskin, M., Erdoğan, A., Güleç, F., & Okolie, J. A. (2024). Generalizability of empirical correlations for predicting higher heating values of biomass. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 5434-5450.
  • Diaz Perez, N., Lindfors, C., A. M. van den Broek, L., van der Putten, J., Meredith, W., & Robinson, J. (2023). Comparison of bio-oils derived from crop digestate treated through conventional and microwave pyrolysis as an alternative route for further waste valorization. Biomass Conversion and Biorefinery, pp.1-16.
  • Funke, A., & Ziegler, F. (2010). Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining, 4(2), 160-177.
  • Ghanim, B. M., Pandey, D. S., Kwapinski, W., & Leahy, J. J. (2016). Hydrothermal carbonisation of poultry litter: Effects of treatment temperature and residence time on yields and chemical properties of hydrochars. Bioresource technology, 216, 373-380.
  • Global CCS Institute. (2018). The global status of CCS. https://www.globalccsinstitute.com/resources/global-status-report/
  • Güleç, F., Parthiban, A., Umenweke, G. C., Musa, U., Williams, O., Mortezaei, Y., Suk‐Oh, H., Lester, E., Ogbaga, C. C., & Gunes, B. (2023). Progress in lignocellulosic biomass valorization for biofuels and value‐added chemical production in the EU: A focus on thermochemical conversion processes. Biofuels, Bioproducts and Biorefining, 18(3), 755-781.
  • Güleç, F., Riesco, L. M. G., Williams, O., Kostas, E. T., Samson, A., & Lester, E. (2021). Hydrothermal conversion of different lignocellulosic biomass feedstocks–Effect of the process conditions on hydrochar structures. Fuel, 302, 121166.
  • Güleç, F., Samson, A., Williams, O., Kostas, E. T., & Lester, E. (2022). Biofuel characteristics of chars produced from rapeseed, whitewood, and seaweed via thermal conversion technologies–Impacts of feedstocks and process conditions. Fuel Processing Technology, 238, 107492.
  • Güleç, F., Williams, O., Kostas, E. T., Samson, A., & Lester, E. (2022). A comprehensive comparative study on the energy application of chars produced from different biomass feedstocks via hydrothermal conversion, pyrolysis, and torrefaction. Energy Conversion and Management, 270, 116260.
  • Güleç, F., Williams, O., Kostas, E. T., Smson, A., & Lester, E. (2022). A comprehensive comparative study on the energy application of chars produced from different biomass feedstocks via hydrothermal conversion, pyrolysis, and torrefaction. Energy Conversion and Management, 270, 116260.
  • Hansen, L. J., Fendt, S., & Spliethoff, H. (2020). Impact of hydrothermal carbonization on combustion properties of residual biomass. Biomass Conversion and Biorefinery, 12(7), 2541-2552.
  • Koechermann, J., Goersch, K., Wirth, B., Muehlenberg, J., & Klemm, M. (2018). Hydrothermal carbonization: Temperature influence on hydrochar and aqueous phase composition during process water recirculation. Journal of Environmental Chemical Engineering, 6(4), 5481-5487.
  • Kumar, S., & Ankaram, S. (2019). Waste-to-energy model/tool presentation. In Current developments in biotechnology and bioengineering (pp. 239-258). Elsevier.
  • Lester, E., Gong, M., & Thompson, A. (2007). A method for source apportionment in biomass/coal blends using thermogravimetric analysis. Journal of Analytical and Applied Pyrolysis, 80(1), 111-117.
  • Musa, U., Castro-Díaz, M., Uguna, C. N., & Snape, C. E. (2022). Effect of process variables on producing biocoals by hydrothermal carbonisation of pine Kraft lignin at low temperatures. Fuel, 325, 124784.
  • Oumabady, S., Kamaludeen, S., Ramasamy, M., Kalaiselvi, P., & Parameswari, E. (2020). Preparation and Characterization of Optimized Hydrochar from Paper Board Mill Sludge. Scientific reports, 10(1), 773.
  • Phang, F. J. F., Soh, M., Khaerudini, D. S., Timuda, G. E., Chew, J. J., How, B. S., Loh, S. K., Yusup, S., & Sunarso, J. (2023). Catalytic wet torrefaction of lignocellulosic biomass: An overview with emphasis on fuel application. South African Journal of Chemical Engineering, 43(1), 162-189.
  • Poirier, S., & Chapleur, O. (2018). Inhibition of anaerobic digestion by phenol and ammonia: Effect on degradation performances and microbial dynamics. Data in brief, 19, 2235-2239.
  • Powell, H. (2022). Biofuels market size to surpass $201.21 billion by 2030. Connectd Energy Solutions. https://connectedenergysolutions.co.uk/biofuels-market-size-to-surpass-201-21-billion-by-2030/
  • Reza, M. T., Mumme, J., & Ebert, A. (2015). Characterization of hydrochar obtained from hydrothermal carbonization of wheat straw digestate. Biomass Conversion and Biorefinery, 5, 425-435.
  • Sharma, R., Jasrotia, K., Singh, N., Ghosh, P., Sharma, N. R., Singh, J., Kanwar, R., & Kumar, A. (2020). A comprehensive review on hydrothermal carbonization of biomass and its applications. Chemistry Africa, 3(1), 1-19.
  • Shen, Y. (2020). A review on hydrothermal carbonization of biomass and plastic wastes to energy products. Biomass and Bioenergy, 134, 105479.
  • Siddarth H. Krishna, K. H., Kevin J. Barnett, Jiayue He, Christos T. Maravelias, James A. Dumesic, George W. Huber, Mario De bruyn, Bert M. Weckhuysen. (2018). Oxygenated commodity chemicals from chemo-catalytic conversion of biomass derived heterocycles. Department of Chemical and Biological Engineering, University of Wisconsin-Madison.
  • Singh, A., Gill, A., Lim, D. L. K., Kasmaruddin, A., Miri, T., Chakrabarty, A., Chai, H. H., Selvarajoo, A., Massawe, F., Abakr, Y. A., & al., e. (2022). Feasibility of Bio-Coal Production from Hydrothermal Carbonization (HTC) Technology Using Food Waste in Malaysia. Sustainability, 14(8), 4534.
  • Smith, A. M., & Ross, A. B. (2019). The influence of residence time during hydrothermal carbonisation of miscanthus on bio-coal combustion chemistry. Energies, 12(3), 523.
  • Smith, P., Beaumont, L., Bernacchi, C. J., Byrne, M., Cheung, W., Conant, R. T., Cotrufo, F., Feng, X., Janssens, I., & Jones, H. (2022). Essential outcomes for COP26.
  • St Gelais, A. (2014). GC Analysis – Part V. FID or MS for Essential Oils? Laboratoire PhytoChemia. https://phytochemia.com/en/2014/09/02/gc-analysis-part-v-fid-or-ms-for-essential-oils/#:~:text=In%20general%2C%20the%20MS%20should,compound%20in%20an%20essential%20oil).
  • Statista. (2023). Market value of furfural worldwide from 2015 to 2021, with a forecast for 2022 to 2029. https://www.statista.com/statistics/1310467/furfural-market-value-worldwide/#:~:text=In%202021%2C%20the%20market%20of,566%20million%20U.S.%20dollars%20worldwide.
  • Stirling, R. J., Snape, C. E., & Meredith, W. (2018). The impact of hydrothermal carbonisation on the char reactivity of biomass. Fuel processing technology, 177, 152-158.
  • Tiseo, I. (2024). Annual carbon dioxide (CO₂) emissions worldwide from 1940 to 2023. Retrieved 13/05/2024 from https://www.statista.com/statistics/276629/global-co2-emissions/
  • UK-Government. (2021). Net Zero Strategy: Build Back Greener.
  • Welfle, A. J., Almena, A., Arshad, M. N., Banks, S. W., Butnar, I., Chong, K. J., Cooper, S. G., Daly, H., Freites, S. G., & Güleç, F. (2023). Sustainability of bioenergy–Mapping the risks & benefits to inform future bioenergy systems. Biomass and Bioenergy, 177, 106919.
  • WHO. (2021). COP26 special report on climate change and health: the health argument for climate action. World Health Organization.
  • Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12-13), 1781-1788.
  • Zhang, X., Zhu, P., Li, Q., & Xia, H. (2022). Recent Advances in the Catalytic Conversion of Biomass to Furfural in Deep Eutectic Solvents. Frontiers in Chemistry, 10, 911674.
There are 42 citations in total.

Details

Primary Language English
Subjects Chemical and Thermal Processes in Energy and Combustion
Journal Section Full-length articles
Authors

Fatih Gulec 0000-0001-9045-4281

Project Number EP/S000771/1
Publication Date October 4, 2024
Submission Date May 15, 2024
Acceptance Date June 22, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Gulec, F. (2024). Hydrochar and Value-Added Chemical Production Through Hydrothermal Carbonisation of Woody Biomass. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 7(2), 139-152. https://doi.org/10.58692/jotcsb.1484204

Creative Commons Lisansı
This piece of scholarly information is licensed under Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı.

J. Turk. Chem. Soc., Sect. B: Chem. Eng. (JOTCSB)