Novel Solid Contact Ion Selective Sensor for Potentiometric Analysis of Barium Ions
Year 2025,
Volume: 8 Issue: 1, 1 - 10
Oğuz Özbek
,
Onur Cem Altunoluk
,
Ömer Işıldak
Abstract
Barium as an alkaline earth metal is widely used in multiple industries. Due to its widespread use, it is toxic to living things in high concentrations. In this study, polymer membrane barium–selective potentiometric sensors were prepared in which 4-aminobenzoic acid 2-diethylaminoethyl ester was used as an ionophore. The prepared sensors exhibited selective and stable behavior towards barium ions. The novel barium–selective potentiometric sensor had a low detection limit of 4.23×10-6 M over a wide linear concentration range from 1.0×10-5 to 1.0×10-1 M. The sensor proposed in the present study had good repeatability, short response time (8s) and could work over a wide range of pH. The sensors prepared simply and economically were able to determine barium ions in various samples with very high recoveries.
References
- Abedi, M. R., & Zamani, H. A. (2008). Barium (II)-PVC membrane sensor based on 4-4′-methylenediantipyrine as a neutral carrier. Analytical Letters, 41(12), 2251-2266. https://doi.org/10.1080/00032710802238077
- Abu-Shawish, H. M., Ghalwa, N. A., Al-Kashef, I. D., Saadeh, S. M., & Almonem, K. I. A. (2020). Extraordinary enhancement of a 5-fluorouracil electrode by praepagen HY micellar solutions. Microchemical Journal, 152, 104316. https://doi.org/10.1016/j.microc.2019.104316
- Abu-Shawish, H. M., Almonem, K. I. A., Saadeh, S. M., & Al-lham, W. S. (2016). Determination of haloperidol drug in ampoules and in urine samples using a potentiometric modified carbon paste electrode. Measurement, 78, 180-186. https://doi.org/10.1016/j.measurement.2015.10.008
- Altunoluk, O. C., Özbek, O., Kalay, E., Tokalı, F. S., & Aslan, O. N. Surface characterization of barium (II)‐selective potentiometric sensor based on a newly synthesized derivative molecule. Electroanalysis, e202300407. https://doi.org/10.1002/elan.202300407
- Ardianrama, A. D., Pradyasti, A., Woo, H. C., & Kim, M. H. (2020). Colorimetric sensing of barium ion in water based on polyelectrolyte-induced chemical etching of silver nanoprisms. Dyes and Pigments, 181, 108578. https://doi.org/10.1016/j.dyepig.2020.108578
- Berkel, C., & Özbek, O. (2024). Green electrochemical sensors, their applications and greenness metrics used: A review. Electroanalysis, 36(11) e202400286. https://doi.org/10.1002/elan.202400286
- Bisergaeva, R. A., & Sirieva, Y. N. (2020, November). Determination of calcium and magnesium by atomic absorption spectroscopy and flame photometry. In Journal of Physics: Conference Series, 1691, 012055. https://doi.org/10.1088/1742-6596/1691/1/012055
- Buck, R. P., & Lindner, E. (1994). Recommendations for nomenclature of ion-selective electrodes. Pure and Applied Chemistry, 66(12), 2527-2536. https://doi.org/10.1351/pac199466122527
- de Oliveira, W., de Carvalho, M. D. F. B., de Almeida, E., Menegario, A. A., Domingos, R. N., Brossi-Garcia, A. L., ... & Santelli, R. E. (2012). Determination of labile barium in petroleum-produced formation water using paper-based DGT samplers. Talanta, 100, 425-431. https://doi.org/10.1016/j.talanta.2012.08.013
- Erol, S., Özel, A. D., Yilmaz, M., & Κiliç, E. (2009). New Silver Ion-selective PVC Membrane and Coated-Graphite Electrodes based on a Novel Calix|4| arene Derivative. Reviews in Analytical Chemistry, 28(1), 27-50. https://doi.org/10.1515/REVAC.2009.28.1.27
- Gad, S.C. (2014). Barium, Encyclopedia of Toxicology (3th Editon), 368–370. https://doi.org/10.1016/B978-0-12-386454-3.00819-8
- Grajeda, B. A. G., Acosta, S. G. S., Aguila, S. A., Guevara, H. P., Díaz-García, M. E., Enríquez, A. C., & Campos-Gaxiola, J. J. (2017). Selective and colorimetric detection of Ba 2+ ions in aqueous solutions using 11-mercaptoundecylphosphonic acid functionalized gold nanoparticles. RSC Advances, 7(50), 31611-31618. https://doi.org/10.1039/c7ra03861e
- Huelga-Suarez, G., Fernández, B., Moldovan, M., & Alonso, J. I. G. (2013). Detection of transgenerational barium dual-isotope marks in salmon otoliths by means of LA-ICP-MS. Analytical and Bioanalytical Chemistry, 405, 2901-2909. https://doi.org/10.1007/s00216-012-6452-2
- Isildak, Ö., & Özbek, O. (2021). Application of potentiometric sensors in real samples. Critical Reviews in Analytical Chemistry, 51(3), 218-231. https://doi.org/10.1080/10408347.2019.1711013
- Kravchenko, J., Darrah, T. H., Miller, R. K., Lyerly, H. K., & Vengosh, A. (2014). A review of the health impacts of barium from natural and anthropogenic exposure. Environmental geochemistry and health, 36, 797-814. https://doi.org/10.1007/s10653-014-9622-7
- Llugany, M., Poschenrieder, C., & Barceló, J. (2000). Assessment of barium toxicity in bush beans. Archives of Environmental Contamination and Toxicology, 39, 440-444. https://doi.org/10.1007/s002440010125
- Modi, R. P., Mehta, V. N., & Kailasa, S. K. (2014). Bifunctionalization of silver nanoparticles with 6-mercaptonicotinic acid and melamine for simultaneous colorimetric sensing of Cr3+ and Ba2+ ions. Sensors and Actuators B: Chemical, 195, 562-571. https://doi.org/10.1016/j.snb.2014.01.059
- Othman, A. M., El-Shahawi, M. S., & Abdel-Azeem, M. (2006). A novel barium polymeric membrane sensor for selective determination of barium and sulphate ions based on the complex ion associate barium (II)–Rose Bengal as neutral ionophore. Analytica Chimica Acta, 555(2), 322-328. https://doi.org/10.1016/j.aca.2005.09.016
- Ören, S., Özbek, O., & Isildak, Ö. (2024). The use of thiazole derivative molecules as sensor materials: Potentiometric determination of Cu (II) ions. Vietnam Journal of Chemistry, 62(4), 486-492. https://doi.org/10.1002/vjch.202300295
- Özbek, O., & Isildak, Ö. (2022). Potentiometric PVC membrane sensor for the determination of anti‐epileptic drug levetiracetam in pharmaceutical formulations. ChemistrySelect, 7(3), e202103988. https://doi.org/10.1002/slct.202103988
- Özbek, O., Çetin, A., Koç, E., & Isildak, Ö. (2022a). Synthesis and sensor properties of a phenol derivative molecule: potentiometric determination of silver (I) ions. Electrocatalysis, 13(4), 486-493.
- Özbek, O., Gezegen, H., Cetin, A., & Isildak, Ö. (2022b). A potentiometric sensor for the determination of Pb (II) ions in different environmental samples. ChemistrySelect, 7(33), e202202494. https://doi.org/10.1002/slct.202202494
- Özbek, O. (2023). A potentiometric sensor for the determination of potassium in different baby follow–on milk, water, juice and pharmaceutical samples. Journal of Food Composition and Analysis, 115, 104937. https://doi.org/10.1016/j.jfca.2022.104937
- Özbek, O., & Altunoluk, O. C. (2023). Recent advances in nanoparticle–based potentiometric sensors. Advanced Sensor and Energy Materials, 3, 100087. https://doi.org/10.1016/j.asems.2023.100087
- Özbek, O., & Altunoluk, O. C. (2024). Potentiometric determination of the local anesthetic procaine in pharmaceutical samples. Analytical Biochemistry, 695, 115657. https://doi.org/10.1016/j.ab.2024.115657
- Özbek, O., Ugur, Ö. B., Ören, S., Gürdere, M. B., & Kocabas, S. (2024a). New solid state contact potentiometric sensor based on a thiosemicarbazone derivative molecule for determination of copper (II) ions in environmental samples. Polyhedron, 252, 116878. https://doi.org/10.1016/j.poly.2024.116878
- Özbek, O., Altunoluk, O. C., & Isildak, Ö. (2024b). Surface characterization and electroanalytical applications of the newly developed copper (II)-selective potentiometric sensor. Analytical Sciences, 40(1), 141-149. https://doi.org/10.1007/s44211-023-00436-z
- Saleh, M. B. (2000). Neutral bidentate organophosphorus compounds as novel ionophores for potentiometric membrane sensors for barium (II). Fresenius Journal of Analytical Chemistry, 367, 530-534. https://doi.org/10.1007/s002160000374
- Singh, A. K., Singh, R., Singh, R. P., & Saxena, P. (2005). Novel potentiometric sensor for monitoring barium (II) based on 2, 3, 4-pyridine-1, 3, 5, 7, 12-pentaazacyclopentadeca-3-ene. Sensors and Actuators B: Chemical, 106(2), 779-783. https://doi.org/10.1016/j.snb.2004.09.030
- Umezawa, Y., Buhlmann, P., Umezawa, K., Tohda, K., & Amemiya, S. (2000). Potentiometric Selectivity Coefficients of Ion-Selective Electrodes. Part I. Inorganic Cations. Pure Appl. Chem, 72, 1851-2082. https://doi.org/10.1351/pac200072101851
- Verma, S., Sharma, A. K., & Shukla, S. K. (2023). Self-fuelled nickel oxide encapsulated sodium alginate-grafted-polypyrrole for potentiometric sensing of lead ions. Materials Science and Engineering: B, 293, 116469. https://doi.org/10.1016/j.mseb.2023.116469
- Wu, Y., Qileng, A., & Bakker, E. (2023). Self-powered optical ion sensor array based on potentiometric probes coupled to electronic paper. Sensors and Actuators B: Chemical, 396, 134561. https://doi.org/10.1016/j.snb.2023.134561
- Zamani, H. A., Hamed-Mosavian, M. T., Aminzadeh, E., Ganjali, M. R., Ghaemy, M., Behmadi, H., & Faridbod, F. (2010). Construction of barium (II) PVC membrane electrochemical sensor based on 3-deoxy-d-erythro-hexos-2-ulose bis (thiosemicarbazone) as a novel ionophore. Desalination, 250(1), 56-61. https://doi.org/10.1016/j.desal.2009.09.014
Year 2025,
Volume: 8 Issue: 1, 1 - 10
Oğuz Özbek
,
Onur Cem Altunoluk
,
Ömer Işıldak
References
- Abedi, M. R., & Zamani, H. A. (2008). Barium (II)-PVC membrane sensor based on 4-4′-methylenediantipyrine as a neutral carrier. Analytical Letters, 41(12), 2251-2266. https://doi.org/10.1080/00032710802238077
- Abu-Shawish, H. M., Ghalwa, N. A., Al-Kashef, I. D., Saadeh, S. M., & Almonem, K. I. A. (2020). Extraordinary enhancement of a 5-fluorouracil electrode by praepagen HY micellar solutions. Microchemical Journal, 152, 104316. https://doi.org/10.1016/j.microc.2019.104316
- Abu-Shawish, H. M., Almonem, K. I. A., Saadeh, S. M., & Al-lham, W. S. (2016). Determination of haloperidol drug in ampoules and in urine samples using a potentiometric modified carbon paste electrode. Measurement, 78, 180-186. https://doi.org/10.1016/j.measurement.2015.10.008
- Altunoluk, O. C., Özbek, O., Kalay, E., Tokalı, F. S., & Aslan, O. N. Surface characterization of barium (II)‐selective potentiometric sensor based on a newly synthesized derivative molecule. Electroanalysis, e202300407. https://doi.org/10.1002/elan.202300407
- Ardianrama, A. D., Pradyasti, A., Woo, H. C., & Kim, M. H. (2020). Colorimetric sensing of barium ion in water based on polyelectrolyte-induced chemical etching of silver nanoprisms. Dyes and Pigments, 181, 108578. https://doi.org/10.1016/j.dyepig.2020.108578
- Berkel, C., & Özbek, O. (2024). Green electrochemical sensors, their applications and greenness metrics used: A review. Electroanalysis, 36(11) e202400286. https://doi.org/10.1002/elan.202400286
- Bisergaeva, R. A., & Sirieva, Y. N. (2020, November). Determination of calcium and magnesium by atomic absorption spectroscopy and flame photometry. In Journal of Physics: Conference Series, 1691, 012055. https://doi.org/10.1088/1742-6596/1691/1/012055
- Buck, R. P., & Lindner, E. (1994). Recommendations for nomenclature of ion-selective electrodes. Pure and Applied Chemistry, 66(12), 2527-2536. https://doi.org/10.1351/pac199466122527
- de Oliveira, W., de Carvalho, M. D. F. B., de Almeida, E., Menegario, A. A., Domingos, R. N., Brossi-Garcia, A. L., ... & Santelli, R. E. (2012). Determination of labile barium in petroleum-produced formation water using paper-based DGT samplers. Talanta, 100, 425-431. https://doi.org/10.1016/j.talanta.2012.08.013
- Erol, S., Özel, A. D., Yilmaz, M., & Κiliç, E. (2009). New Silver Ion-selective PVC Membrane and Coated-Graphite Electrodes based on a Novel Calix|4| arene Derivative. Reviews in Analytical Chemistry, 28(1), 27-50. https://doi.org/10.1515/REVAC.2009.28.1.27
- Gad, S.C. (2014). Barium, Encyclopedia of Toxicology (3th Editon), 368–370. https://doi.org/10.1016/B978-0-12-386454-3.00819-8
- Grajeda, B. A. G., Acosta, S. G. S., Aguila, S. A., Guevara, H. P., Díaz-García, M. E., Enríquez, A. C., & Campos-Gaxiola, J. J. (2017). Selective and colorimetric detection of Ba 2+ ions in aqueous solutions using 11-mercaptoundecylphosphonic acid functionalized gold nanoparticles. RSC Advances, 7(50), 31611-31618. https://doi.org/10.1039/c7ra03861e
- Huelga-Suarez, G., Fernández, B., Moldovan, M., & Alonso, J. I. G. (2013). Detection of transgenerational barium dual-isotope marks in salmon otoliths by means of LA-ICP-MS. Analytical and Bioanalytical Chemistry, 405, 2901-2909. https://doi.org/10.1007/s00216-012-6452-2
- Isildak, Ö., & Özbek, O. (2021). Application of potentiometric sensors in real samples. Critical Reviews in Analytical Chemistry, 51(3), 218-231. https://doi.org/10.1080/10408347.2019.1711013
- Kravchenko, J., Darrah, T. H., Miller, R. K., Lyerly, H. K., & Vengosh, A. (2014). A review of the health impacts of barium from natural and anthropogenic exposure. Environmental geochemistry and health, 36, 797-814. https://doi.org/10.1007/s10653-014-9622-7
- Llugany, M., Poschenrieder, C., & Barceló, J. (2000). Assessment of barium toxicity in bush beans. Archives of Environmental Contamination and Toxicology, 39, 440-444. https://doi.org/10.1007/s002440010125
- Modi, R. P., Mehta, V. N., & Kailasa, S. K. (2014). Bifunctionalization of silver nanoparticles with 6-mercaptonicotinic acid and melamine for simultaneous colorimetric sensing of Cr3+ and Ba2+ ions. Sensors and Actuators B: Chemical, 195, 562-571. https://doi.org/10.1016/j.snb.2014.01.059
- Othman, A. M., El-Shahawi, M. S., & Abdel-Azeem, M. (2006). A novel barium polymeric membrane sensor for selective determination of barium and sulphate ions based on the complex ion associate barium (II)–Rose Bengal as neutral ionophore. Analytica Chimica Acta, 555(2), 322-328. https://doi.org/10.1016/j.aca.2005.09.016
- Ören, S., Özbek, O., & Isildak, Ö. (2024). The use of thiazole derivative molecules as sensor materials: Potentiometric determination of Cu (II) ions. Vietnam Journal of Chemistry, 62(4), 486-492. https://doi.org/10.1002/vjch.202300295
- Özbek, O., & Isildak, Ö. (2022). Potentiometric PVC membrane sensor for the determination of anti‐epileptic drug levetiracetam in pharmaceutical formulations. ChemistrySelect, 7(3), e202103988. https://doi.org/10.1002/slct.202103988
- Özbek, O., Çetin, A., Koç, E., & Isildak, Ö. (2022a). Synthesis and sensor properties of a phenol derivative molecule: potentiometric determination of silver (I) ions. Electrocatalysis, 13(4), 486-493.
- Özbek, O., Gezegen, H., Cetin, A., & Isildak, Ö. (2022b). A potentiometric sensor for the determination of Pb (II) ions in different environmental samples. ChemistrySelect, 7(33), e202202494. https://doi.org/10.1002/slct.202202494
- Özbek, O. (2023). A potentiometric sensor for the determination of potassium in different baby follow–on milk, water, juice and pharmaceutical samples. Journal of Food Composition and Analysis, 115, 104937. https://doi.org/10.1016/j.jfca.2022.104937
- Özbek, O., & Altunoluk, O. C. (2023). Recent advances in nanoparticle–based potentiometric sensors. Advanced Sensor and Energy Materials, 3, 100087. https://doi.org/10.1016/j.asems.2023.100087
- Özbek, O., & Altunoluk, O. C. (2024). Potentiometric determination of the local anesthetic procaine in pharmaceutical samples. Analytical Biochemistry, 695, 115657. https://doi.org/10.1016/j.ab.2024.115657
- Özbek, O., Ugur, Ö. B., Ören, S., Gürdere, M. B., & Kocabas, S. (2024a). New solid state contact potentiometric sensor based on a thiosemicarbazone derivative molecule for determination of copper (II) ions in environmental samples. Polyhedron, 252, 116878. https://doi.org/10.1016/j.poly.2024.116878
- Özbek, O., Altunoluk, O. C., & Isildak, Ö. (2024b). Surface characterization and electroanalytical applications of the newly developed copper (II)-selective potentiometric sensor. Analytical Sciences, 40(1), 141-149. https://doi.org/10.1007/s44211-023-00436-z
- Saleh, M. B. (2000). Neutral bidentate organophosphorus compounds as novel ionophores for potentiometric membrane sensors for barium (II). Fresenius Journal of Analytical Chemistry, 367, 530-534. https://doi.org/10.1007/s002160000374
- Singh, A. K., Singh, R., Singh, R. P., & Saxena, P. (2005). Novel potentiometric sensor for monitoring barium (II) based on 2, 3, 4-pyridine-1, 3, 5, 7, 12-pentaazacyclopentadeca-3-ene. Sensors and Actuators B: Chemical, 106(2), 779-783. https://doi.org/10.1016/j.snb.2004.09.030
- Umezawa, Y., Buhlmann, P., Umezawa, K., Tohda, K., & Amemiya, S. (2000). Potentiometric Selectivity Coefficients of Ion-Selective Electrodes. Part I. Inorganic Cations. Pure Appl. Chem, 72, 1851-2082. https://doi.org/10.1351/pac200072101851
- Verma, S., Sharma, A. K., & Shukla, S. K. (2023). Self-fuelled nickel oxide encapsulated sodium alginate-grafted-polypyrrole for potentiometric sensing of lead ions. Materials Science and Engineering: B, 293, 116469. https://doi.org/10.1016/j.mseb.2023.116469
- Wu, Y., Qileng, A., & Bakker, E. (2023). Self-powered optical ion sensor array based on potentiometric probes coupled to electronic paper. Sensors and Actuators B: Chemical, 396, 134561. https://doi.org/10.1016/j.snb.2023.134561
- Zamani, H. A., Hamed-Mosavian, M. T., Aminzadeh, E., Ganjali, M. R., Ghaemy, M., Behmadi, H., & Faridbod, F. (2010). Construction of barium (II) PVC membrane electrochemical sensor based on 3-deoxy-d-erythro-hexos-2-ulose bis (thiosemicarbazone) as a novel ionophore. Desalination, 250(1), 56-61. https://doi.org/10.1016/j.desal.2009.09.014