Research Article
BibTex RIS Cite

Evaluation and Comparative Analysis of Heavy Metal Leaching Efficiency by Nitric Acid, Perchloric Acid and Sulfuric Acid from Moroccan Phosphate Solid Waste

Year 2025, Volume: 8 Issue: 1, 47 - 58, 11.03.2025
https://doi.org/10.58692/jotcsb.1553183

Abstract

This article presents a comprehensive study into the leaching of heavy metals such as Al, As, Cd, Cu, Zn, Ni, Fe and Cr from Moroccan phosphate solid waste. Sulfuric acid, perchloric acid and nitric acid were used as leaching agents at various concentrations (0.5 M, 1 M, 2 M, 3 M and 4 M) under ambient temperature conditions, maintaining a particle size of 160 µm and a stirring time of 1 hour. To optimize the efficiency of metal extraction, research focused on the subtle interplay between acid selection and concentration. Nitric acid appears as the front runner, consistently showing excellent leaching results for all metals, especially at higher concentrations. Although perchloric acid does not exceed the efficiency of nitric acid, its performance is competitive and position it as a viable alternative, with encouraging results, especially at moderate concentrations. Sulfuric acid shows different trends in metal leaching efficiency, highlighting the need for separate and customized approaches. At lower concentrations it shows moderate effectiveness, with leaching efficiency varying depending on the metal. As acid concentration increases, extraction efficiency changes, requiring careful consideration of specific metal properties. In the hierarchy of leaching agents, the position studied is nitric acid > perchloric acid > sulfuric acid, indicating the superior performance of nitric acid, followed by perchloric acid, compared to sulfuric acid during metal leaching.

References

  • Ajiboye, E. A., Panda, P. K., Adebayo, A. O., Ajayi, O. O., Tripathy, B. C., Ghosh, M. K., & Basu, S. (2019). Leaching kinetics of Cu, Ni and Zn from waste silica rich integrated circuits using mild nitric acid. Hydrometallurgy, 188, 161–168. https://doi.org/10.1016/j.hydromet.2019.06.016
  • Amari, T., Ghnaya, T., & Abdelly, C. (2017). Nickel, cadmium and lead phytotoxicity and potential of halophytic plants in heavy metal extraction. In South African Journal of Botany (Vol. 111, pp. 99–110). Elsevier B.V. https://doi.org/10.1016/j.sajb.2017.03.011
  • Chen, Y., Wang, J., Gao, Z., Cui, M., & Huang, R. (2024). Preparation and Application of Stabilizing Agents for Solidification of Heavy Metal-Contaminated Soil under Low-Temperature Conditions. ChemEngineering, 8(5), 89. https://doi.org/10.3390/chemengineering8050089
  • Choong, T. S. Y., Chuah, T. G., Robiah, Y., Koay, F. L. G., & Azni, I. (2007). Arsenic toxicity, health hazards and removal techniques from water: an overview. In Desalination (Vol. 217). http://www.epa.gov/
  • Dupont, C. L., Grass, G., & Rensing, C. (2011). Copper toxicity and the origin of bacterial resistance - New insights and applications. In Metallomics (Vol. 3, Issue 11, pp. 1109–1118). https://doi.org/10.1039/c1mt00107h
  • Fatima, S., Khosa, M. K., Noor, A., Qayyum, S., & el Oirdi, M. (2024). Hydrometallurgical Extraction of Valuable Metals by Mixed Acid Leaching System for Used Lithium-Ion Batteries. Sustainability (Switzerland), 16(16). https://doi.org/10.3390/su16166817
  • Fuoco, R., Ceccarini, A., Tassone, P., Wei, Y., Brongo, A., & Francesconi, S. (2005). Innovative stabilization/solidification processes of fly ash from an incinerator plant of urban solid waste. Microchemical Journal, 79(1–2), 29–35. https://doi.org/10.1016/j.microc.2004.10.011
  • Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. In International Journal of Environmental Research and Public Health (Vol. 17, Issue 11). MDPI AG. https://doi.org/10.3390/ijerph17113782
  • Guha Mazumder. (2008). Chronic arsenic toxicity & human health. http://journals.lww.com/ijmr
  • Huang, K., Inoue, K., Harada, H., Kawakita, H., & Ohto, K. (2011). Leaching of heavy metals by citric acid from fly ash generated in municipal waste incineration plants. Journal of Material Cycles and Waste Management, 13(2), 118–126. https://doi.org/10.1007/s10163-011-0001-5
  • Hussaini, S., Kursunoglu, S., Top, S., Ichlas, Z. T., & Kaya, M. (2021). Testing of 17-different leaching agents for the recovery of zinc from a carbonate-type Pb-Zn ore flotation tailing. Minerals Engineering, 168. https://doi.org/10.1016/j.mineng.2021.106935
  • Hussaini, S., Tita, A. M., Kursunoglu, S., Kaya, M., & Chu, P. (2024). Leaching of Nickel and Cobalt from a Mixed Nickel-Cobalt Hydroxide Precipitate Using Organic Acids. Minerals, 14(3). https://doi.org/10.3390/min14030314
  • Ishigaki, T., Nakanishi, A., Tateda, M., Ike, M., & Fujita, M. (2005). Bioleaching of metal from municipal waste incineration fly ash using a mixed culture of sulfur-oxidizing and iron-oxidizing bacteria. Chemosphere, 60(8), 1087–1094. https://doi.org/10.1016/j.chemosphere.2004.12.060
  • Kiran, Bharti, R., & Sharma, R. (2021). Effect of heavy metals: An overview. Materials Today: Proceedings, 51, 880–885. https://doi.org/10.1016/j.matpr.2021.06.278
  • Kumar Sharma, R., & Agrawal, M. (2004). Biological effects of heavy metals: An overview. Journal of Environmental Biology. http://www.geocities.com/Lenviron_biol/J.Environ.BioI.26
  • Ling, H., Malfliet, A., Blanpain, B., & Guo, M. (2022). Selective removal of arsenic from crude antimony trioxide by leaching with nitric acid. Separation and Purification Technology, 281. https://doi.org/10.1016/j.seppur.2021.119976
  • Mukherjee, K., Saha, R., Ghosh, A., & Saha, B. (2013). Chromium removal technologies. Research on Chemical Intermediates, 39(6), 2267–2286. https://doi.org/10.1007/s11164-012-0779-3
  • Ntumba Malenga, E., Mulaba-Bafubiandi, A. F., & Nheta, W. (2015). Alkaline leaching of nickel bearing ammonium jarosite precipitate using KOH, NaOH and NH4OH in the presence of EDTA and Na2S. Hydrometallurgy, 155, 69–78. https://doi.org/10.1016/j.hydromet.2015.04.004
  • Nugteren, H. W., Janssen-Jurkovícová, M., & Scarlett, B. (2001). Improvement of Environmental Quality of Coal Fly Ash by Applying Forced Leaching. http://www.flyash.info
  • Opi, N. P., Tambouris, S., & Kontopoulos, A. (1999). REMOVAL OF HEAVY METALS FROM CALCAREOUS CONTAMINATED SOILS BY EDTA LEACHING.
  • Pepper, R. A., Couperthwaite, S. J., & Millar, G. J. (2016). Comprehensive examination of acid leaching behaviour of mineral phases from red mud: Recovery of Fe, Al, Ti, and Si. Minerals Engineering, 99, 8–18. https://doi.org/10.1016/j.mineng.2016.09.012
  • Safarzadeh, M. S., Moradkhani, D., & Ojaghi-Ilkhchi, M. (2009). Kinetics of sulfuric acid leaching of cadmium from Cd-Ni zinc plant residues. Journal of Hazardous Materials, 163(2–3), 880–890. https://doi.org/10.1016/j.jhazmat.2008.07.082
  • Silva, J. E., Soares, D., Paiva, A. P., Labrincha, J. A., & Castro, F. (2005). Leaching behaviour of a galvanic sludge in sulphuric acid and ammoniacal media. Journal of Hazardous Materials, 121(1–3), 195–202. https://doi.org/10.1016/j.jhazmat.2005.02.008
  • Singh, J. (2013). Bioavailability and Leachability of Heavy Metals during Composting-A Review. www.isca.in
  • Smichowski, P., & Marrero, J. (1998). Comparative study to evaluate the effect of different acids on the determination of germanium by hydride generation±inductively coupled plasma atomic emission spectrometry.
  • Stanković, J. D., Sabovljević, A. D., & Sabovljević, M. S. (2018). Bryophytes and heavy metals: A review. In Acta Botanica Croatica (Vol. 77, Issue 2, pp. 109–118). Sciendo. https://doi.org/10.2478/botcro-2018-0014
  • Sulaymon, A. H., Abbas, S. H., Ismail, I. M., Mostafa, T. M., & Sulaymon, A. H. (2014). Biosorption of Heavy Metals: A Review Some of the authors of this publication are also working on these related projects: electrochemical prrojects View project both of them View project Biosorption of Heavy Metals: A Review (Vol. 3, Issue 4). https://www.researchgate.net/publication/266795209
  • Wang, F., Yang, M., Yang, Y., & Tian, Y. (2024). Synergistic leaching of lithium from clay-type lithium ore using sulfuric acid and oxalic acid. Applied Clay Science, 262. https://doi.org/10.1016/j.clay.2024.107623
  • Wang, P., Liu, H., Zheng, F., Liu, Y., Kuang, G., Deng, R., & Li, H. (2021). Extraction of Aluminum from Coal Fly Ash Using Pressurized Sulfuric Acid Leaching with Emphasis on Optimization and Mechanism. JOM, 73(9), 2643–2651. https://doi.org/10.1007/s11837-021-04801-z
  • Wu, H. Y., & Ting, Y. P. (2006). Metal extraction from municipal solid waste (MSW) incinerator fly ash - Chemical leaching and fungal bioleaching. Enzyme and Microbial Technology, 38(6), 839–847. https://doi.org/10.1016/j.enzmictec.2005.08.012
  • Wu, Y., Wang, X., Zhang, X., Lu, Y., Chen, M., Sun, Y., & Ye, P. (2022). Experimental study on remediation of low permeability Cu–Zn contaminated clay by vacuum enhanced leaching combined with EDTA and hydrochloric acid. Chemosphere, 298. https://doi.org/10.1016/j.chemosphere.2022.134332
  • Yuliusman, Fajaryanto, R., Nurqomariah, A., & Silvia. (2018). Acid leaching and kinetics study of cobalt recovery from spent lithium-ion batteries with nitric acid. E3S Web of Conferences, 67. https://doi.org/10.1051/e3sconf/20186703025
  • Zhang, F. S., & Itoh, H. (2006). A novel process utilizing subcritical water and nitrilotriacetic acid to extract hazardous elements from MSW incinerator fly ash. Science of the Total Environment, 369(1–3), 273–279. https://doi.org/10.1016/j.scitotenv.2006.04.015
  • Zhang, F. S., & Itoh, H. (2006). Extraction of metals from municipal solid waste incinerator fly ash by hydrothermal process. Journal of Hazardous Materials, 136(3), 663–670. https://doi.org/10.1016/j.jhazmat.2005.12.052
  • Zhang, Y., Jin, B., Huang, Y., Song, Q., & Wang, C. (2019). Two-stage leaching of zinc and copper from arsenic-rich copper smelting hazardous dusts after alkali leaching of arsenic. Separation and Purification Technology, 220, 250–258. https://doi.org/10.1016/j.seppur.2019.03.067
Year 2025, Volume: 8 Issue: 1, 47 - 58, 11.03.2025
https://doi.org/10.58692/jotcsb.1553183

Abstract

References

  • Ajiboye, E. A., Panda, P. K., Adebayo, A. O., Ajayi, O. O., Tripathy, B. C., Ghosh, M. K., & Basu, S. (2019). Leaching kinetics of Cu, Ni and Zn from waste silica rich integrated circuits using mild nitric acid. Hydrometallurgy, 188, 161–168. https://doi.org/10.1016/j.hydromet.2019.06.016
  • Amari, T., Ghnaya, T., & Abdelly, C. (2017). Nickel, cadmium and lead phytotoxicity and potential of halophytic plants in heavy metal extraction. In South African Journal of Botany (Vol. 111, pp. 99–110). Elsevier B.V. https://doi.org/10.1016/j.sajb.2017.03.011
  • Chen, Y., Wang, J., Gao, Z., Cui, M., & Huang, R. (2024). Preparation and Application of Stabilizing Agents for Solidification of Heavy Metal-Contaminated Soil under Low-Temperature Conditions. ChemEngineering, 8(5), 89. https://doi.org/10.3390/chemengineering8050089
  • Choong, T. S. Y., Chuah, T. G., Robiah, Y., Koay, F. L. G., & Azni, I. (2007). Arsenic toxicity, health hazards and removal techniques from water: an overview. In Desalination (Vol. 217). http://www.epa.gov/
  • Dupont, C. L., Grass, G., & Rensing, C. (2011). Copper toxicity and the origin of bacterial resistance - New insights and applications. In Metallomics (Vol. 3, Issue 11, pp. 1109–1118). https://doi.org/10.1039/c1mt00107h
  • Fatima, S., Khosa, M. K., Noor, A., Qayyum, S., & el Oirdi, M. (2024). Hydrometallurgical Extraction of Valuable Metals by Mixed Acid Leaching System for Used Lithium-Ion Batteries. Sustainability (Switzerland), 16(16). https://doi.org/10.3390/su16166817
  • Fuoco, R., Ceccarini, A., Tassone, P., Wei, Y., Brongo, A., & Francesconi, S. (2005). Innovative stabilization/solidification processes of fly ash from an incinerator plant of urban solid waste. Microchemical Journal, 79(1–2), 29–35. https://doi.org/10.1016/j.microc.2004.10.011
  • Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. In International Journal of Environmental Research and Public Health (Vol. 17, Issue 11). MDPI AG. https://doi.org/10.3390/ijerph17113782
  • Guha Mazumder. (2008). Chronic arsenic toxicity & human health. http://journals.lww.com/ijmr
  • Huang, K., Inoue, K., Harada, H., Kawakita, H., & Ohto, K. (2011). Leaching of heavy metals by citric acid from fly ash generated in municipal waste incineration plants. Journal of Material Cycles and Waste Management, 13(2), 118–126. https://doi.org/10.1007/s10163-011-0001-5
  • Hussaini, S., Kursunoglu, S., Top, S., Ichlas, Z. T., & Kaya, M. (2021). Testing of 17-different leaching agents for the recovery of zinc from a carbonate-type Pb-Zn ore flotation tailing. Minerals Engineering, 168. https://doi.org/10.1016/j.mineng.2021.106935
  • Hussaini, S., Tita, A. M., Kursunoglu, S., Kaya, M., & Chu, P. (2024). Leaching of Nickel and Cobalt from a Mixed Nickel-Cobalt Hydroxide Precipitate Using Organic Acids. Minerals, 14(3). https://doi.org/10.3390/min14030314
  • Ishigaki, T., Nakanishi, A., Tateda, M., Ike, M., & Fujita, M. (2005). Bioleaching of metal from municipal waste incineration fly ash using a mixed culture of sulfur-oxidizing and iron-oxidizing bacteria. Chemosphere, 60(8), 1087–1094. https://doi.org/10.1016/j.chemosphere.2004.12.060
  • Kiran, Bharti, R., & Sharma, R. (2021). Effect of heavy metals: An overview. Materials Today: Proceedings, 51, 880–885. https://doi.org/10.1016/j.matpr.2021.06.278
  • Kumar Sharma, R., & Agrawal, M. (2004). Biological effects of heavy metals: An overview. Journal of Environmental Biology. http://www.geocities.com/Lenviron_biol/J.Environ.BioI.26
  • Ling, H., Malfliet, A., Blanpain, B., & Guo, M. (2022). Selective removal of arsenic from crude antimony trioxide by leaching with nitric acid. Separation and Purification Technology, 281. https://doi.org/10.1016/j.seppur.2021.119976
  • Mukherjee, K., Saha, R., Ghosh, A., & Saha, B. (2013). Chromium removal technologies. Research on Chemical Intermediates, 39(6), 2267–2286. https://doi.org/10.1007/s11164-012-0779-3
  • Ntumba Malenga, E., Mulaba-Bafubiandi, A. F., & Nheta, W. (2015). Alkaline leaching of nickel bearing ammonium jarosite precipitate using KOH, NaOH and NH4OH in the presence of EDTA and Na2S. Hydrometallurgy, 155, 69–78. https://doi.org/10.1016/j.hydromet.2015.04.004
  • Nugteren, H. W., Janssen-Jurkovícová, M., & Scarlett, B. (2001). Improvement of Environmental Quality of Coal Fly Ash by Applying Forced Leaching. http://www.flyash.info
  • Opi, N. P., Tambouris, S., & Kontopoulos, A. (1999). REMOVAL OF HEAVY METALS FROM CALCAREOUS CONTAMINATED SOILS BY EDTA LEACHING.
  • Pepper, R. A., Couperthwaite, S. J., & Millar, G. J. (2016). Comprehensive examination of acid leaching behaviour of mineral phases from red mud: Recovery of Fe, Al, Ti, and Si. Minerals Engineering, 99, 8–18. https://doi.org/10.1016/j.mineng.2016.09.012
  • Safarzadeh, M. S., Moradkhani, D., & Ojaghi-Ilkhchi, M. (2009). Kinetics of sulfuric acid leaching of cadmium from Cd-Ni zinc plant residues. Journal of Hazardous Materials, 163(2–3), 880–890. https://doi.org/10.1016/j.jhazmat.2008.07.082
  • Silva, J. E., Soares, D., Paiva, A. P., Labrincha, J. A., & Castro, F. (2005). Leaching behaviour of a galvanic sludge in sulphuric acid and ammoniacal media. Journal of Hazardous Materials, 121(1–3), 195–202. https://doi.org/10.1016/j.jhazmat.2005.02.008
  • Singh, J. (2013). Bioavailability and Leachability of Heavy Metals during Composting-A Review. www.isca.in
  • Smichowski, P., & Marrero, J. (1998). Comparative study to evaluate the effect of different acids on the determination of germanium by hydride generation±inductively coupled plasma atomic emission spectrometry.
  • Stanković, J. D., Sabovljević, A. D., & Sabovljević, M. S. (2018). Bryophytes and heavy metals: A review. In Acta Botanica Croatica (Vol. 77, Issue 2, pp. 109–118). Sciendo. https://doi.org/10.2478/botcro-2018-0014
  • Sulaymon, A. H., Abbas, S. H., Ismail, I. M., Mostafa, T. M., & Sulaymon, A. H. (2014). Biosorption of Heavy Metals: A Review Some of the authors of this publication are also working on these related projects: electrochemical prrojects View project both of them View project Biosorption of Heavy Metals: A Review (Vol. 3, Issue 4). https://www.researchgate.net/publication/266795209
  • Wang, F., Yang, M., Yang, Y., & Tian, Y. (2024). Synergistic leaching of lithium from clay-type lithium ore using sulfuric acid and oxalic acid. Applied Clay Science, 262. https://doi.org/10.1016/j.clay.2024.107623
  • Wang, P., Liu, H., Zheng, F., Liu, Y., Kuang, G., Deng, R., & Li, H. (2021). Extraction of Aluminum from Coal Fly Ash Using Pressurized Sulfuric Acid Leaching with Emphasis on Optimization and Mechanism. JOM, 73(9), 2643–2651. https://doi.org/10.1007/s11837-021-04801-z
  • Wu, H. Y., & Ting, Y. P. (2006). Metal extraction from municipal solid waste (MSW) incinerator fly ash - Chemical leaching and fungal bioleaching. Enzyme and Microbial Technology, 38(6), 839–847. https://doi.org/10.1016/j.enzmictec.2005.08.012
  • Wu, Y., Wang, X., Zhang, X., Lu, Y., Chen, M., Sun, Y., & Ye, P. (2022). Experimental study on remediation of low permeability Cu–Zn contaminated clay by vacuum enhanced leaching combined with EDTA and hydrochloric acid. Chemosphere, 298. https://doi.org/10.1016/j.chemosphere.2022.134332
  • Yuliusman, Fajaryanto, R., Nurqomariah, A., & Silvia. (2018). Acid leaching and kinetics study of cobalt recovery from spent lithium-ion batteries with nitric acid. E3S Web of Conferences, 67. https://doi.org/10.1051/e3sconf/20186703025
  • Zhang, F. S., & Itoh, H. (2006). A novel process utilizing subcritical water and nitrilotriacetic acid to extract hazardous elements from MSW incinerator fly ash. Science of the Total Environment, 369(1–3), 273–279. https://doi.org/10.1016/j.scitotenv.2006.04.015
  • Zhang, F. S., & Itoh, H. (2006). Extraction of metals from municipal solid waste incinerator fly ash by hydrothermal process. Journal of Hazardous Materials, 136(3), 663–670. https://doi.org/10.1016/j.jhazmat.2005.12.052
  • Zhang, Y., Jin, B., Huang, Y., Song, Q., & Wang, C. (2019). Two-stage leaching of zinc and copper from arsenic-rich copper smelting hazardous dusts after alkali leaching of arsenic. Separation and Purification Technology, 220, 250–258. https://doi.org/10.1016/j.seppur.2019.03.067
There are 35 citations in total.

Details

Primary Language English
Subjects Environmental and Sustainable Processes
Journal Section Full-length articles
Authors

Intıssar Loughlaımı 0009-0005-5233-8956

Zineelabidine Bakher 0000-0003-1628-0337

Mohamed Toukhmi 0009-0001-0099-3407

Abdeljalil Zouhri 0000-0003-4301-3824

Publication Date March 11, 2025
Submission Date September 19, 2024
Acceptance Date January 24, 2025
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Loughlaımı, I., Bakher, Z., Toukhmi, M., Zouhri, A. (2025). Evaluation and Comparative Analysis of Heavy Metal Leaching Efficiency by Nitric Acid, Perchloric Acid and Sulfuric Acid from Moroccan Phosphate Solid Waste. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 8(1), 47-58. https://doi.org/10.58692/jotcsb.1553183

Creative Commons Lisansı
This piece of scholarly information is licensed under Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı.

J. Turk. Chem. Soc., Sect. B: Chem. Eng. (JOTCSB)