Research Article
BibTex RIS Cite
Year 2025, Volume: 8 Issue: 1, 29 - 40, 11.03.2025
https://doi.org/10.58692/jotcsb.1580910

Abstract

References

  • Akhtar, M. S., Wejrzanowski, T., Komorowska, G., Adamczyk-Cieślak, B., & Choinska, E. (2024). Microwave-assisted hydrothermal synthesis of αβ-Ni(OH)2 nanoflowers on nickel foam for ultra-stable electrodes of supercapacitors. Electrochimica Acta, 508, 145284. https://doi.org/https://doi.org/10.1016/j.electacta.2024.145284
  • Al-Ghouti, M. A., & Da’ana, D. A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials, 393, 122383.
  • Al-Khaldi, F. A., Abu-Sharkh, B., Abulkibash, A. M., & Atieh, M. A. (2015). Cadmium removal by activated carbon, carbon nanotubes, carbon nanofibers, and carbon fly ash: a comparative study. Desalination and Water Treatment, 53(5), 1417–1429.
  • Anfar, Z., Ait Ahsaine, H., Zbair, M., Amedlous, A., Ait El Fakir, A., Jada, A., & El Alem, N. (2020). Recent trends on numerical investigations of response surface methodology for pollutants adsorption onto activated carbon materials: A review. Critical Reviews in Environmental Science and Technology, 50(10), 1043–1084.
  • Bian, Y., Bian, Z.-Y., Zhang, J.-X., Ding, A.-Z., Liu, S.-L., & Wang, H. (2015). Effect of the oxygen-containing functional group of graphene oxide on the aqueous cadmium ions removal. Applied Surface Science, 329, 269–275.
  • Charkiewicz, A. E., Omeljaniuk, W. J., Nowak, K., Garley, M., & Nikliński, J. (2023). Cadmium Toxicity and Health Effects—A Brief Summary. In Molecules (Vol. 28, Issue 18). https://doi.org/10.3390/molecules28186620
  • Cheng, Z., Xu, J., Zhong, H., Li, D., Zhu, P., & Yang, Y. (2010). A facile and novel synthetic route to Ni(OH)2 nanoflowers. Superlattices and Microstructures, 48(2), 154–161. https://doi.org/https://doi.org/10.1016/j.spmi.2010.05.013
  • Dayana Priyadharshini, S., Manikandan, S., Kiruthiga, R., Rednam, U., Babu, P. S., Subbaiya, R., Karmegam, N., Kim, W., & Govarthanan, M. (2022). Graphene oxide-based nanomaterials for the treatment of pollutants in the aquatic environment: Recent trends and perspectives – A review. Environmental Pollution, 306, 119377. https://doi.org/https://doi.org/10.1016/j.envpol.2022.119377
  • Dean, A., Voss, D., Draguljić, D., Dean, A., Voss, D., & Draguljić, D. (2017). Response surface methodology. Design and Analysis of Experiments, 565–614.
  • Deng, J.-H., Zhang, X.-R., Zeng, G.-M., Gong, J.-L., Niu, Q.-Y., & Liang, J. (2013). Simultaneous removal of Cd(II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent. Chemical Engineering Journal, 226, 189–200. https://doi.org/https://doi.org/10.1016/j.cej.2013.04.045
  • Emiru, T. F., & Ayele, D. W. (2017). Controlled synthesis, characterization and reduction of graphene oxide: A convenient method for large scale production. Egyptian Journal of Basic and Applied Sciences, 4(1), 74–79.
  • Goyal, P., Tiwary, C. S., & Misra, S. K. (2021). Ion exchange based approach for rapid and selective Pb (II) removal using iron oxide decorated metal organic framework hybrid. Journal of Environmental Management, 277, 111469.
  • Gulisano, M., Pacini, S., Punzi, T., Morucci, G., Quagliata, S., Delfino, G., Sarchielli, E., Marini, M., & Vannelli, G. B. (2009). Cadmium modulates proliferation and differentiation of human neuroblasts. Journal of Neuroscience Research, 87(1), 228–237. https://doi.org/https://doi.org/10.1002/jnr.21830
  • Guo, S., Wu, K., Gao, Y., Liu, L., Zhu, X., Li, X., & Zhang, F. (2018). Efficient removal of Zn (II), Pb (II), and Cd (II) in waste water based on magnetic graphitic carbon nitride materials with enhanced adsorption capacity. Journal of Chemical & Engineering Data, 63(10), 3902–3912.
  • Gupta, K., Joshi, P., Gusain, R., & Khatri, O. P. (2021). Recent advances in adsorptive removal of heavy metal and metalloid ions by metal oxide-based nanomaterials. Coordination Chemistry Reviews, 445, 214100. https://doi.org/https://doi.org/10.1016/j.ccr.2021.214100
  • Gusain, D., Sahani, S., Sharma, Y. C., & Han, S. S. (2024). Adsorption of cadmium ion from water by using non-toxic iron oxide adsorbent; experimental and statistical modelling analysis. International Journal of Environmental Science and Technology, 1–16.
  • Hayat, M. T., Nauman, M., Nazir, N., Ali, S., & Bangash, N. (2019). Environmental Hazards of Cadmium: Past, Present, and Future. Cadmium Toxicity and Tolerance in Plants: From Physiology to Remediation, 163–183. https://doi.org/10.1016/B978-0-12-814864-8.00007-3
  • Hosseini, S. M., Alibakhshi, H., Jashni, E., Parvizian, F., Shen, J. N., Taheri, M., Ebrahimi, M., & Rafiei, N. (2020). A novel layer-by-layer heterogeneous cation exchange membrane for heavy metal ions removal from water. Journal of Hazardous Materials, 381, 120884.
  • Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., & Zhang, Q. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: A review. Journal of Hazardous Materials, 211–212, 317–331. https://doi.org/10.1016/j.jhazmat.2011.10.016
  • Huang, Q., Chen, Y., Yu, H., Yan, L., Zhang, J., Wang, B., Du, B., & Xing, L. (2018). Magnetic graphene oxide/MgAl-layered double hydroxide nanocomposite: One-pot solvothermal synthesis, adsorption performance and mechanisms for Pb2+, Cd2+, and Cu2+. Chemical Engineering Journal, 341, 1–9. https://doi.org/https://doi.org/10.1016/j.cej.2018.01.156
  • Kim, J. G., Ku, J., Jung, J., Park, Y. S., Choi, G. H., Hwang, S. S., Lee, J.-H., & Lee, A. S. (2024). Ion-exchangeable and sorptive reinforced membranes for efficient electrochemical removal of heavy metal ions in wastewater. Journal of Cleaner Production, 438, 140779.
  • Kumar, K. Y., Muralidhara, H. B., Nayaka, Y. A., Balasubramanyam, J., & Hanumanthappa, H. (2013). Low-cost synthesis of metal oxide nanoparticles and their application in adsorption of commercial dye and heavy metal ion in aqueous solution. Powder Technology, 246, 125–136. https://doi.org/https://doi.org/10.1016/j.powtec.2013.05.017
  • Lin, J., Su, B., Sun, M., Chen, B., & Chen, Z. (2018). Biosynthesized iron oxide nanoparticles used for optimized removal of cadmium with response surface methodology. Science of The Total Environment, 627, 314–321. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.01.170
  • Liu, J., Ge, X., Ye, X., Wang, G., Zhang, H., Zhou, H., Zhang, Y., & Zhao, H. (2016). 3D graphene/δ-MnO 2 aerogels for highly efficient and reversible removal of heavy metal ions. Journal of Materials Chemistry A, 4(5), 1970–1979.
  • Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS Nano, 4(8), 4806–4814. https://doi.org/10.1021/nn1006368
  • Motitswe, M. G., Badmus, K. O., & Khotseng, L. (2024). Application of Reduced Graphene Oxide-Zinc Oxide Nanocomposite in the Removal of Pb(II) and Cd(II) Contaminated Wastewater. In Applied Nano (Vol. 5, Issue 3, pp. 162–189). https://doi.org/10.3390/applnano5030012
  • Ncibi, M. C. (2008). Applicability of some statistical tools to predict optimum adsorption isotherm after linear and non-linear regression analysis. Journal of Hazardous Materials, 153(1), 207–212. https://doi.org/https://doi.org/10.1016/j.jhazmat.2007.08.038
  • Ogata, F., Imai, D., Toda, M., Otani, M., & Kawasaki, N. (2016). Properties of a novel adsorbent produced by calcination of nickel hydroxide and its capability for phosphate ion adsorption. Journal of Industrial and Engineering Chemistry, 34, 172–179.
  • Peana, M., Pelucelli, A., Chasapis, C. T., Perlepes, S. P., Bekiari, V., Medici, S., & Zoroddu, M. A. (2023). Biological Effects of Human Exposure to Environmental Cadmium. In Biomolecules (Vol. 13, Issue 1). https://doi.org/10.3390/biom13010036
  • Peng, L., Zeng, Q., Tie, B., Lei, M., Yang, J., Luo, S., & Song, Z. (2015). Manganese dioxide nanosheet suspension: a novel absorbent for cadmium (II) contamination in waterbody. Journal of Colloid and Interface Science, 456, 108–115.
  • Pohl, A. (2020). Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents. Water, Air, & Soil Pollution, 231(10), 503.
  • Roy, P., Mondal, N. K., & Das, K. (2014). Modeling of the adsorptive removal of arsenic: A statistical approach. Journal of Environmental Chemical Engineering, 2(1), 585–597. https://doi.org/https://doi.org/10.1016/j.jece.2013.10.014
  • Saleem, J., Shahid, U. Bin, Hijab, M., Mackey, H., & McKay, G. (2019). Production and applications of activated carbons as adsorbents from olive stones. Biomass Conversion and Biorefinery, 9(4), 775–802. https://doi.org/10.1007/s13399-019-00473-7
  • Şaylan, M., Demirel, R., Ayyıldız, M. F., Chormey, D. S., Çetin, G., & Bakırdere, S. (2022). Nickel hydroxide nanoflower–based dispersive solid-phase extraction of copper from water matrix. Environmental Monitoring and Assessment, 195(1), 133. https://doi.org/10.1007/s10661-022-10653-0
  • Sen, T. K., & Sarzali, M. V. (2008). Removal of cadmium metal ion (Cd2+) from its aqueous solution by aluminium oxide (Al2O3): A kinetic and equilibrium study. Chemical Engineering Journal, 142(3), 256–262.
  • Sharma, M., Singh, J., Hazra, S., & Basu, S. (2019). Adsorption of heavy metal ions by mesoporous ZnO and TiO2@ZnO monoliths: Adsorption and kinetic studies. Microchemical Journal, 145, 105–112. https://doi.org/https://doi.org/10.1016/j.microc.2018.10.026
  • Sreeprasad, T. S., Maliyekkal, S. M., Lisha, K. P., & Pradeep, T. (2011). Reduced graphene oxide–metal/metal oxide composites: Facile synthesis and application in water purification. Journal of Hazardous Materials, 186(1), 921–931. https://doi.org/https://doi.org/10.1016/j.jhazmat.2010.11.100
  • Sun, J., Liu, L., & Yang, F. (2020). A WO3/PPy/ACF modified electrode in electrochemical system for simultaneous removal of heavy metal ion Cu2+ and organic acid. Journal of Hazardous Materials, 394, 122534.
  • Suwannahong, K., Wongcharee, S., Kreetachart, T., Sirilamduan, C., Rioyo, J., & Wongphat, A. (2021). Evaluation of the Microsoft Excel Solver Spreadsheet-Based Program for nonlinear expressions of adsorption Isotherm models onto magnetic nanosorbent. Applied Sciences, 11(16), 7432.
  • Thy, L. T. M., Thuong, N. H., Tu, T. H., Nam, H. M., Hieu, N. H., & Phong, M. T. (2019). Synthesis of magnetic iron oxide/graphene oxide nanocomposites for removal of cadmium ions from water. Advances in Natural Sciences: Nanoscience and Nanotechnology, 10(2), 25006.
  • Vivek, P., Sivakumar, R., Selva Esakki, E., & Deivanayaki, S. (2023). Fabrication of NiO/RGO nanocomposite for enhancing photocatalytic performance through degradation of RhB. Journal of Physics and Chemistry of Solids, 176, 111255. https://doi.org/https://doi.org/10.1016/j.jpcs.2023.111255
  • Wan, S., Ding, W., Wang, Y., Wu, J., Gu, Y., & He, F. (2018). Manganese oxide nanoparticles impregnated graphene oxide aggregates for cadmium and copper remediation. Chemical Engineering Journal, 350, 1135–1143.
  • Zhang, Y., & Duan, X. (2020). Chemical precipitation of heavy metals from wastewater by using the synthetical magnesium hydroxy carbonate. Water Science and Technology, 81(6), 1130–1136.
  • Zheng, Y., Cheng, B., Fan, J., Yu, J., & Ho, W. (2021). Review on nickel-based adsorption materials for Congo red. Journal of Hazardous Materials, 403, 123559

Removal of Cadmium from Aqueous Solutions using Nickel Hydroxide/Reduced Graphene Oxide Composite: Response Surface Methodology Optimization and Nonlinear Isotherm Modeling

Year 2025, Volume: 8 Issue: 1, 29 - 40, 11.03.2025
https://doi.org/10.58692/jotcsb.1580910

Abstract

Removal of Cd(II) ions from aqueous solutions was investigated using a nickel hydroxide/reduced graphene oxide composite as the adsorbent material. Influential parameters of the batch adsorption process were optimized using the Box-Behnken design, which enabled a systematic evaluation of the effects of various factors. An analysis of variance was performed to develop a quadratic regression model for predicting the percentage of Cd(II) removal. The optimal conditions for achieving maximum removal efficiency were identified as an adsorbent dosage of 60 mg, a pH of 8.0, and a mixing period of 40 minutes. Isotherm analysis was conducted using nonlinear regression, with the sum of squared errors serving as the error function. The results indicated that the Langmuir model provided a better fit to the experimental data compared to the Freundlich model, as evidenced by higher determination coefficients (0.9684) and lower error values. This suggested that the adsorption process is characterized by a monolayer adsorption mechanism on a homogeneous surface. The maximum adsorption capacity was found to be 218 mg/g, indicating the effectiveness of the nickel hydroxide/reduced graphene oxide composite in removing Cd(II) ions from solution.

References

  • Akhtar, M. S., Wejrzanowski, T., Komorowska, G., Adamczyk-Cieślak, B., & Choinska, E. (2024). Microwave-assisted hydrothermal synthesis of αβ-Ni(OH)2 nanoflowers on nickel foam for ultra-stable electrodes of supercapacitors. Electrochimica Acta, 508, 145284. https://doi.org/https://doi.org/10.1016/j.electacta.2024.145284
  • Al-Ghouti, M. A., & Da’ana, D. A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials, 393, 122383.
  • Al-Khaldi, F. A., Abu-Sharkh, B., Abulkibash, A. M., & Atieh, M. A. (2015). Cadmium removal by activated carbon, carbon nanotubes, carbon nanofibers, and carbon fly ash: a comparative study. Desalination and Water Treatment, 53(5), 1417–1429.
  • Anfar, Z., Ait Ahsaine, H., Zbair, M., Amedlous, A., Ait El Fakir, A., Jada, A., & El Alem, N. (2020). Recent trends on numerical investigations of response surface methodology for pollutants adsorption onto activated carbon materials: A review. Critical Reviews in Environmental Science and Technology, 50(10), 1043–1084.
  • Bian, Y., Bian, Z.-Y., Zhang, J.-X., Ding, A.-Z., Liu, S.-L., & Wang, H. (2015). Effect of the oxygen-containing functional group of graphene oxide on the aqueous cadmium ions removal. Applied Surface Science, 329, 269–275.
  • Charkiewicz, A. E., Omeljaniuk, W. J., Nowak, K., Garley, M., & Nikliński, J. (2023). Cadmium Toxicity and Health Effects—A Brief Summary. In Molecules (Vol. 28, Issue 18). https://doi.org/10.3390/molecules28186620
  • Cheng, Z., Xu, J., Zhong, H., Li, D., Zhu, P., & Yang, Y. (2010). A facile and novel synthetic route to Ni(OH)2 nanoflowers. Superlattices and Microstructures, 48(2), 154–161. https://doi.org/https://doi.org/10.1016/j.spmi.2010.05.013
  • Dayana Priyadharshini, S., Manikandan, S., Kiruthiga, R., Rednam, U., Babu, P. S., Subbaiya, R., Karmegam, N., Kim, W., & Govarthanan, M. (2022). Graphene oxide-based nanomaterials for the treatment of pollutants in the aquatic environment: Recent trends and perspectives – A review. Environmental Pollution, 306, 119377. https://doi.org/https://doi.org/10.1016/j.envpol.2022.119377
  • Dean, A., Voss, D., Draguljić, D., Dean, A., Voss, D., & Draguljić, D. (2017). Response surface methodology. Design and Analysis of Experiments, 565–614.
  • Deng, J.-H., Zhang, X.-R., Zeng, G.-M., Gong, J.-L., Niu, Q.-Y., & Liang, J. (2013). Simultaneous removal of Cd(II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent. Chemical Engineering Journal, 226, 189–200. https://doi.org/https://doi.org/10.1016/j.cej.2013.04.045
  • Emiru, T. F., & Ayele, D. W. (2017). Controlled synthesis, characterization and reduction of graphene oxide: A convenient method for large scale production. Egyptian Journal of Basic and Applied Sciences, 4(1), 74–79.
  • Goyal, P., Tiwary, C. S., & Misra, S. K. (2021). Ion exchange based approach for rapid and selective Pb (II) removal using iron oxide decorated metal organic framework hybrid. Journal of Environmental Management, 277, 111469.
  • Gulisano, M., Pacini, S., Punzi, T., Morucci, G., Quagliata, S., Delfino, G., Sarchielli, E., Marini, M., & Vannelli, G. B. (2009). Cadmium modulates proliferation and differentiation of human neuroblasts. Journal of Neuroscience Research, 87(1), 228–237. https://doi.org/https://doi.org/10.1002/jnr.21830
  • Guo, S., Wu, K., Gao, Y., Liu, L., Zhu, X., Li, X., & Zhang, F. (2018). Efficient removal of Zn (II), Pb (II), and Cd (II) in waste water based on magnetic graphitic carbon nitride materials with enhanced adsorption capacity. Journal of Chemical & Engineering Data, 63(10), 3902–3912.
  • Gupta, K., Joshi, P., Gusain, R., & Khatri, O. P. (2021). Recent advances in adsorptive removal of heavy metal and metalloid ions by metal oxide-based nanomaterials. Coordination Chemistry Reviews, 445, 214100. https://doi.org/https://doi.org/10.1016/j.ccr.2021.214100
  • Gusain, D., Sahani, S., Sharma, Y. C., & Han, S. S. (2024). Adsorption of cadmium ion from water by using non-toxic iron oxide adsorbent; experimental and statistical modelling analysis. International Journal of Environmental Science and Technology, 1–16.
  • Hayat, M. T., Nauman, M., Nazir, N., Ali, S., & Bangash, N. (2019). Environmental Hazards of Cadmium: Past, Present, and Future. Cadmium Toxicity and Tolerance in Plants: From Physiology to Remediation, 163–183. https://doi.org/10.1016/B978-0-12-814864-8.00007-3
  • Hosseini, S. M., Alibakhshi, H., Jashni, E., Parvizian, F., Shen, J. N., Taheri, M., Ebrahimi, M., & Rafiei, N. (2020). A novel layer-by-layer heterogeneous cation exchange membrane for heavy metal ions removal from water. Journal of Hazardous Materials, 381, 120884.
  • Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., & Zhang, Q. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: A review. Journal of Hazardous Materials, 211–212, 317–331. https://doi.org/10.1016/j.jhazmat.2011.10.016
  • Huang, Q., Chen, Y., Yu, H., Yan, L., Zhang, J., Wang, B., Du, B., & Xing, L. (2018). Magnetic graphene oxide/MgAl-layered double hydroxide nanocomposite: One-pot solvothermal synthesis, adsorption performance and mechanisms for Pb2+, Cd2+, and Cu2+. Chemical Engineering Journal, 341, 1–9. https://doi.org/https://doi.org/10.1016/j.cej.2018.01.156
  • Kim, J. G., Ku, J., Jung, J., Park, Y. S., Choi, G. H., Hwang, S. S., Lee, J.-H., & Lee, A. S. (2024). Ion-exchangeable and sorptive reinforced membranes for efficient electrochemical removal of heavy metal ions in wastewater. Journal of Cleaner Production, 438, 140779.
  • Kumar, K. Y., Muralidhara, H. B., Nayaka, Y. A., Balasubramanyam, J., & Hanumanthappa, H. (2013). Low-cost synthesis of metal oxide nanoparticles and their application in adsorption of commercial dye and heavy metal ion in aqueous solution. Powder Technology, 246, 125–136. https://doi.org/https://doi.org/10.1016/j.powtec.2013.05.017
  • Lin, J., Su, B., Sun, M., Chen, B., & Chen, Z. (2018). Biosynthesized iron oxide nanoparticles used for optimized removal of cadmium with response surface methodology. Science of The Total Environment, 627, 314–321. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.01.170
  • Liu, J., Ge, X., Ye, X., Wang, G., Zhang, H., Zhou, H., Zhang, Y., & Zhao, H. (2016). 3D graphene/δ-MnO 2 aerogels for highly efficient and reversible removal of heavy metal ions. Journal of Materials Chemistry A, 4(5), 1970–1979.
  • Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS Nano, 4(8), 4806–4814. https://doi.org/10.1021/nn1006368
  • Motitswe, M. G., Badmus, K. O., & Khotseng, L. (2024). Application of Reduced Graphene Oxide-Zinc Oxide Nanocomposite in the Removal of Pb(II) and Cd(II) Contaminated Wastewater. In Applied Nano (Vol. 5, Issue 3, pp. 162–189). https://doi.org/10.3390/applnano5030012
  • Ncibi, M. C. (2008). Applicability of some statistical tools to predict optimum adsorption isotherm after linear and non-linear regression analysis. Journal of Hazardous Materials, 153(1), 207–212. https://doi.org/https://doi.org/10.1016/j.jhazmat.2007.08.038
  • Ogata, F., Imai, D., Toda, M., Otani, M., & Kawasaki, N. (2016). Properties of a novel adsorbent produced by calcination of nickel hydroxide and its capability for phosphate ion adsorption. Journal of Industrial and Engineering Chemistry, 34, 172–179.
  • Peana, M., Pelucelli, A., Chasapis, C. T., Perlepes, S. P., Bekiari, V., Medici, S., & Zoroddu, M. A. (2023). Biological Effects of Human Exposure to Environmental Cadmium. In Biomolecules (Vol. 13, Issue 1). https://doi.org/10.3390/biom13010036
  • Peng, L., Zeng, Q., Tie, B., Lei, M., Yang, J., Luo, S., & Song, Z. (2015). Manganese dioxide nanosheet suspension: a novel absorbent for cadmium (II) contamination in waterbody. Journal of Colloid and Interface Science, 456, 108–115.
  • Pohl, A. (2020). Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents. Water, Air, & Soil Pollution, 231(10), 503.
  • Roy, P., Mondal, N. K., & Das, K. (2014). Modeling of the adsorptive removal of arsenic: A statistical approach. Journal of Environmental Chemical Engineering, 2(1), 585–597. https://doi.org/https://doi.org/10.1016/j.jece.2013.10.014
  • Saleem, J., Shahid, U. Bin, Hijab, M., Mackey, H., & McKay, G. (2019). Production and applications of activated carbons as adsorbents from olive stones. Biomass Conversion and Biorefinery, 9(4), 775–802. https://doi.org/10.1007/s13399-019-00473-7
  • Şaylan, M., Demirel, R., Ayyıldız, M. F., Chormey, D. S., Çetin, G., & Bakırdere, S. (2022). Nickel hydroxide nanoflower–based dispersive solid-phase extraction of copper from water matrix. Environmental Monitoring and Assessment, 195(1), 133. https://doi.org/10.1007/s10661-022-10653-0
  • Sen, T. K., & Sarzali, M. V. (2008). Removal of cadmium metal ion (Cd2+) from its aqueous solution by aluminium oxide (Al2O3): A kinetic and equilibrium study. Chemical Engineering Journal, 142(3), 256–262.
  • Sharma, M., Singh, J., Hazra, S., & Basu, S. (2019). Adsorption of heavy metal ions by mesoporous ZnO and TiO2@ZnO monoliths: Adsorption and kinetic studies. Microchemical Journal, 145, 105–112. https://doi.org/https://doi.org/10.1016/j.microc.2018.10.026
  • Sreeprasad, T. S., Maliyekkal, S. M., Lisha, K. P., & Pradeep, T. (2011). Reduced graphene oxide–metal/metal oxide composites: Facile synthesis and application in water purification. Journal of Hazardous Materials, 186(1), 921–931. https://doi.org/https://doi.org/10.1016/j.jhazmat.2010.11.100
  • Sun, J., Liu, L., & Yang, F. (2020). A WO3/PPy/ACF modified electrode in electrochemical system for simultaneous removal of heavy metal ion Cu2+ and organic acid. Journal of Hazardous Materials, 394, 122534.
  • Suwannahong, K., Wongcharee, S., Kreetachart, T., Sirilamduan, C., Rioyo, J., & Wongphat, A. (2021). Evaluation of the Microsoft Excel Solver Spreadsheet-Based Program for nonlinear expressions of adsorption Isotherm models onto magnetic nanosorbent. Applied Sciences, 11(16), 7432.
  • Thy, L. T. M., Thuong, N. H., Tu, T. H., Nam, H. M., Hieu, N. H., & Phong, M. T. (2019). Synthesis of magnetic iron oxide/graphene oxide nanocomposites for removal of cadmium ions from water. Advances in Natural Sciences: Nanoscience and Nanotechnology, 10(2), 25006.
  • Vivek, P., Sivakumar, R., Selva Esakki, E., & Deivanayaki, S. (2023). Fabrication of NiO/RGO nanocomposite for enhancing photocatalytic performance through degradation of RhB. Journal of Physics and Chemistry of Solids, 176, 111255. https://doi.org/https://doi.org/10.1016/j.jpcs.2023.111255
  • Wan, S., Ding, W., Wang, Y., Wu, J., Gu, Y., & He, F. (2018). Manganese oxide nanoparticles impregnated graphene oxide aggregates for cadmium and copper remediation. Chemical Engineering Journal, 350, 1135–1143.
  • Zhang, Y., & Duan, X. (2020). Chemical precipitation of heavy metals from wastewater by using the synthetical magnesium hydroxy carbonate. Water Science and Technology, 81(6), 1130–1136.
  • Zheng, Y., Cheng, B., Fan, J., Yu, J., & Ho, W. (2021). Review on nickel-based adsorption materials for Congo red. Journal of Hazardous Materials, 403, 123559
There are 44 citations in total.

Details

Primary Language English
Subjects Chemical Engineering Design, Water Treatment Processes
Journal Section Full-length articles
Authors

Elif Öztürk Er 0000-0002-4877-2662

Publication Date March 11, 2025
Submission Date November 7, 2024
Acceptance Date February 7, 2025
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Öztürk Er, E. (2025). Removal of Cadmium from Aqueous Solutions using Nickel Hydroxide/Reduced Graphene Oxide Composite: Response Surface Methodology Optimization and Nonlinear Isotherm Modeling. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 8(1), 29-40. https://doi.org/10.58692/jotcsb.1580910

Creative Commons Lisansı
This piece of scholarly information is licensed under Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı.

J. Turk. Chem. Soc., Sect. B: Chem. Eng. (JOTCSB)