Research Article
BibTex RIS Cite
Year 2025, Volume: 8 Issue: 1, 97 - 110, 11.03.2025

Abstract

References

  • Aydemir, C., & Ozsoy, S. A. (2020). Environmental impact of printing ink and printing process. Journal of Graphic Engineering and Design, 11, 11–17.
  • Akilarasan, M., Kogularasu, S., Chen, S.-M., Chen, T.-W., & Lou, B.-S. (2018). A novel approach to iron oxide separation from e-waste and bisphenol A detection in thermal paper receipts using recovered nanocomposites. RSC Advances, 8(70), 39870–39878. https://doi.org/10.1039/C8RA08017H
  • Arjunan, P., Kouthaman, M., Kannan, K., Diwakar, K., Priyanka, V., Subadevi, R., & Sivakumar, M. (2021). Study on efficient electrode from electronic waste renewed carbon material for sodium battery applications. Journal of Environmental Chemical Engineering, 9(2), 105024. https://doi.org/10.1016/j.jece.2021.105024
  • Babar, S., Gavade, N., Shinde, H., Gore, A., Mahajan, P., Lee, K. H., Bhuse, V., & Garadkar, K. (2019). An innovative transformation of waste toner powder into magnetic g-C3N4-Fe2O3 photocatalyst: Sustainable e-waste management. Journal of Environmental Chemical Engineering, 7(2), 103041. https://doi.org/10.1016/j.jece.2019.103041
  • Banks, S. W., Nowakowski, D. J., & Bridgwater, A. V. (2016). Impact of potassium and phosphorus in biomass on the properties of fast pyrolysis bio-oil. Energy & Fuels, 30(10), 8009–8018.
  • Bhongade, T., Gogaram, Gautam, D. M., & Vijayakumar, R. P. (2019). Synthesis of MWCNTs using waste toner powder as carbon source by chemical vapor deposition method. Fullerenes, Nanotubes and Carbon Nanostructures, 27(11), 864–872. https://doi.org/10.1080/1536383X.2019.1652169
  • Bhoi, V. N., & Shah, T. (2014). E-waste: A new environmental challenge. IJARCSSE, 4, 442–447.
  • Cui, J., & Forssberg, E. (2003). Mechanical recycling of waste electric and electronic equipment: A review. Journal of Hazardous Materials, 99, 243–263.
  • Daniel-Mkpume, C. C., Ahaiwe, R. C., Ifenatuorah, C. L., Ike-Eze, I. C. E., Aigbodion, V. S., Egoigwe, S. V., & Okonkwo, E. G. (2022). Potential end of life application of African star apple shell and waste toner powder as composite filler materials. Journal of Material Cycles and Waste Management, 24(2), 680-691.
  • Devin, N., Perkins, B. S., Brune Drisse, M. N., Nxele, T., & Sly, P. (2014). E-waste: A global hazard. Annals of Global Health, 80, 286–295.
  • Distler, T., & Sitzmann, W. (2018). An investigation on additives for pelletizing highly torrefied biomass. Biofuels, Bioproducts and Biorefining, 12(6), 958–965.
  • Dong, L., et al. (2017). Pyrolysis routine of organics and parameter optimization of vacuum gasification for recovering hazardous waste toner. ACS Sustainable Chemistry & Engineering, 5(11), 10038–10045. https://doi.org/10.1021/acssuschemeng.7b02024
  • Emadi, B., Iroba, K. L., & Tabil, L. G. (2017). Effect of polymer plastic binder on mechanical, storage, and combustion characteristics of torrefied and pelletized herbaceous biomass. Applied Energy, 198, 312–319.
  • Fernández, B., Ayala, J., Del Valle, E., Martínez-Blanco, D., Castañón, A. M., & Menéndez-Aguado, J. M. (2022). Recycling of waste toner powder as adsorbent to remove aqueous heavy metals. Materials, 15(12), 4150.
  • Forti, V., Balde, C. P., Kuehr, R., & Bel, G. (2020). The Global E-Waste Monitor 2020: Quantities, Flows, and the Circular Economy Potential. United Nations University.
  • Gaikwad, V., Ghose, A., Cholake, S., Rawal, A., Iwato, M., & Sahajwalla, V. (2018). Transformation of e-waste plastics into sustainable filaments for 3D printing. ACS Sustainable Chemistry & Engineering, 6(11), 14432–14440. https://doi.org/10.1021/acssuschemeng.8b03105
  • Habib, H., Atassi, Y., Salloum, A., Nasser Ali, N., & Jafarian, M. (2021). An eco-friendly, cost-effective, lightweight microwave absorber based on waste toner. Journal of Electronic Materials, 50(4), 2049–2056. https://doi.org/10.1007/s11664-020-08679-6
  • Huang, R., Yang, J., Cao, Y., Dionysiou, D. D., & Wang, C. (2022). Peroxymonosulfate catalytic degradation of persistent organic pollutants by engineered catalyst of self-doped iron/carbon nanocomposite derived from waste toner powder. Separation and Purification Technology, 291, 120963. https://doi.org/10.1016/j.seppur.2022.120963
  • Ivan, N. A. S., et al. (2022). Waste egg tray and toner-derived highly efficient 3D solar evaporator for freshwater generation. ACS Applied Materials & Interfaces, 14(6), 7936–7948. https://doi.org/10.1021/acsami.1c22215
  • Kemper, J. (2015). Biomass and carbon dioxide capture and storage: A review. International Journal of Greenhouse Gas Control, 40, 401–430.
  • Kyoseva, V., Todorova, E., & Dombalov, I. (2011). The most common questions on the use of municipal solid waste as raw material and energy resource. ISBN 978-954-92844-1-6.
  • Kumar, U., Gaikwad, V., & Sahajwalla, V. (2018). Transformation of waste toner to iron using e-waste plastics as a carbon resource. Journal of Cleaner Production, 192, 244–251. https://doi.org/10.1016/j.jclepro.2018.05.010
  • Li, J., Lu, H., Guo, J., Xu, Z., & Zhou, Y. (2007). Recycle technology for recovering resources and products from waste printed circuit boards. Environmental Science & Technology, 41, 1995–2000.
  • Ma, D., Sheng, J., Hao, Y., Zhong, Y., & Wu, W. (2021). Photovoltaic green application of waste toner carbon on fully printable mesoscopic perovskite solar cells. Solar Energy, 228, 439–446. https://doi.org/10.1016/j.solener.2021.09.051
  • Nakadate, T., Yamano, Y., Yamauchi, T., Okubo, S., & Nagashima, D. (2018). Assessing the chronic respiratory health risk associated with inhalation exposure to powdered toner for printing in actual working conditions: A cohort study on occupationally exposed workers over 10 years. BMJ Open, 8, e022049. https://doi.org/10.1136/bmjopen-2018-022049
  • NICNAS. (1991). Full public report: Styrene-acrylate copolymer. National Industrial Chemicals Notification and Assessment Scheme.
  • Nnorom, I. C., & Osibanjo, O. (2008). Overview of electronic waste (e-waste) management practices and legislations, and their poor applications in the developing countries. Resources, Conservation and Recycling, 52, 843–858.
  • Park, Y., & Fray, D. (2009). Recovery of high purity precious metals from printed circuit boards. Journal of Hazardous Materials, 164, 1152–1158.
  • Parthasarathy, M. (2021). Challenges and emerging trends in toner waste recycling: A review. Recycling, 6(3), 57. https://doi.org/10.3390/recycling6030057
  • Patronov, G., & Tonchev, D. (2011). Waste toners and cartridges—Utilization option. University of Plovdiv “Paisii Hilendarski”.
  • Pirela, S. V., Martin, J., Bello, D., & Demokritou, P. (2017). Nanoparticle exposures from nano-enabled toner-based printing equipment and human health: State of science and future research needs. Critical Reviews in Toxicology, 47, 678–704.
  • Robinson, B. (2009). E-waste: An assessment of global production and environmental impacts. Science of the Total Environment, 408, 183–191.
  • Saini, D., Aggarwal, R., Anand, S. R., & Sonkar, S. K. (2019). Sunlight-induced photodegradation of toxic azo dye by self-doped iron oxide nano-carbon from waste printer ink. Solar Energy, 193, 65–73. https://doi.org/10.1016/j.solener.2019.09.022
  • Saini, D., Aggarwal, R., Anand, S. R., Satrawala, N., & Joshi, R. K. (2020). Sustainable feasibility of waste printer ink to magnetically separable iron oxide–doped nanocarbons for styrene oxidation. Materials Today Chemistry, 16, 100256. https://doi.org/10.1016/j.mtchem.2020.100256
  • Salhofer, S., & Tesar, M. (2011). Assessment of removal of components containing hazardous substances from small WEEE in Austria. Journal of Hazardous Materials, 186, 1481–1488. https://doi.org/10.1016/j.jhazmat.2010.12.046
  • Subramani, K., Govindarajan, K., Sundaramoorthy, S., & Marappan, S. (2019). Waste toner-derived carbon/Fe3O4 nanocomposite for high-performance supercapacitor. ACS Omega, 4(14), 15798–15805. https://doi.org/10.1021/acsomega.9b01337
  • Takasuga, T., Makino, T., Umetsu, N., & Senthilkumar, K. (2003). Quantitative analysis of toxic compounds formed from combustion of some plastic materials and newspaper. Organohalogen Compounds, 63, 86–89.
  • Tian, Z., Cao, K., Bai, S., & He, G. (2019). One-pot transformation of waste toner powder into 3D graphene oxide hydrogel. ACS Sustainable Chemistry & Engineering, 7(1), 496–501. https://doi.org/10.1021/acssuschemeng.8b03997
  • Tian, Z., Sun, L., Tian, H., Cao, K., Bai, S., Li, J., & Zhu, Q. (2021). 3D graphene oxide hydrogel derived from waste toner as adsorbent. Journal of Nanoscience and Nanotechnology, 21(10), 5275–5281. https://doi.org/10.1166/jnn.2021.19339
  • Tomsej, T., Horak, J., Tomsejova, S., Krpec, K., Klanova, J., Dej, M., & Hopan, F. (2018). The impact of co-combustion of polyethylene plastics and wood in a small residential boiler on emissions of gaseous pollutants. Chemosphere, 196, 18–24. https://doi.org/10.1016/j.chemosphere.2017.12.027
  • Uttam, K., Goonetilleke, D., Gaikwad, V., Pramudita, J. C., Joshi, R. K., & Sahajwalla, V. (2019). Activated carbon from e-waste plastics as a promising anode for sodium-ion batteries. ACS Sustainable Chemistry & Engineering, 7(12), 10310–10322.
  • Veit, H. M., Bernardes, A. M., & others. (2006). Recovery of copper from printed circuit board scraps by mechanical processing and electrometallurgy. Journal of Hazardous Materials, 137(3), 1704–1709. https://doi.org/10.1016/j.jhazmat.2006.05.008
  • Verma, R., Vinoda, K. S., Papireddy, M., & Gowda, A. N. (2016). Toxic pollutants from plastic waste—a review. Procedia Environmental Sciences, 35, 701–708.
  • Vucinic, A. A., Vujevic, D., Mujkic, K., & Novak, M. (2013). Recycling of waste toner in the Republic of Croatia—An environmentally friendly approach. Chemical Engineering Transactions, 34, 121–126.
  • Werther, J. (2007). Gaseous emissions from waste combustion. Journal of Hazardous Materials, 144(3), 604–613. https://doi.org/10.1016/j.jhazmat.2007.02.017
  • Wu, J., Li, J., & Xu, Z. (2008). Electrostatic separation for recovering metals and nonmetals from waste printed circuit board: Problems and improvements. Environmental Science & Technology, 42(14), 5272–5276. https://doi.org/10.1021/es800324f
  • Xing, Y. F., Xu, Y. H., Shi, M. H., & Lian, Y. X. (2016). The impact of PM2.5 on the human respiratory system. Journal of Thoracic Disease, 8(1), E69. https://doi.org/10.21037/jtd.2016.01.14
  • Yordanova, D., & Dombalov, I. (2012). Hazardous household waste—Definition and choice of appropriate treatment method. Proceedings of the International Conference: Ecology – Interdisciplinary Science and Practice, ISBN 978-954-749-096-3, 365–367.
  • Yordanova, D., Angelova, S., & Dombalov, I. (2014). Utilisation options for waste toner powder. J. Environ. Sci, 3, 140-144.
  • Yordanova, D., Angelova, S., & Dombalov, I. (2019). Utilisation options for waste toner powder. International Scientific Journal Environmental Science, 8, 140–144.
  • Yu, X., Zhu, C., Wang, H., & Wu, Y. (2022). Waste toner-derived micro-materials as low-cost magnetic solid-phase extraction adsorbent for the analysis of trace Pb in environmental and biological samples. Analytical and Bioanalytical Chemistry, 414(7), 2409–2418. https://doi.org/10.1007/s00216-022-03879-x
  • Zhang, W., Guan, H., Hu, Y., Wang, W., Hao, L., Yang, X., & Tian, W. (2022). Visible-light-driven hydrogen evolution from waste toner powder activated by Ni species. Green Chemistry, 24(3), 1335–1341. https://doi.org/10.1039/D1GC03506A
  • Zhu, H., Zhou, Y., Wang, S., Wu, X., Hou, J., Yin, W., Feng, K., Wang, X., & Yang, J. (2018). Preparation and application synthesis of magnetic nanocomposite using waste toner for the removal of Cr(VI). RSC Advances, 8(49), 27654–27660.

Potential of Waste Toner Powder for Sustainable Energy Production: An Assessment of Its Suitability for Bio-Briquette Applications

Year 2025, Volume: 8 Issue: 1, 97 - 110, 11.03.2025

Abstract

This study investigates the feasibility of utilizing waste toner powder (WTP) in the energy sector, focusing on its application in bio-briquette production. The research comprised two main phases: the characterization of WTP’s structural, morphological, and fuel properties, followed by an evaluation of its potential as a biofuel component in direct combustion processes. WTP samples were collected from a recycling facility specifically established for toner cartridge recycling in the Elazığ Organized Industrial Zone. These samples were stored under appropriate conditions and analyzed using advanced techniques. The structural and morphological properties were examined using FTIR, SEM-EDX, and particle size distribution analyses. Particle size measurements revealed average diameters of 182.6 nm in toluene and 308.4 nm in benzene, with toluene providing a narrower and more uniform distribution. Fuel properties were assessed through proximate and ultimate analyses. The results indicated that WTP contains 88.38% volatile matter, 4.91% ash, and 2.67% moisture, with a higher heating value (HHV) of 35.56 MJ/kg. The ultimate analysis highlighted a significant carbon content (32.12%) and low nitrogen levels (1.98%), reinforcing its potential as a fuel. WTP’s dispersion behavior was also evaluated in both media, confirming better stability in toluene. These findings demonstrate that WTP possesses favorable fuel properties, such as a high calorific value and strong binding capabilities, making it a promising raw material for bio-briquette production when mixed with powdered biomass waste sources like furniture factory waste. Producing biofuel pellets with WTP could enhance energy efficiency, reduce emissions, and improve transport and storage convenience. Utilizing WTP as an energy source not only provides a high-value solution for waste management but also supports environmental sustainability and landfill preservation.

Thanks

We sincerely thank Filling Market Information Technology, Education, Electrical Electronics, E-Commerce, Security Systems, Import-Export, Marketing, Industry, and Trade Limited Company for their valuable support in our study and for providing the waste toner powder, which greatly contributed to the success of our research.

References

  • Aydemir, C., & Ozsoy, S. A. (2020). Environmental impact of printing ink and printing process. Journal of Graphic Engineering and Design, 11, 11–17.
  • Akilarasan, M., Kogularasu, S., Chen, S.-M., Chen, T.-W., & Lou, B.-S. (2018). A novel approach to iron oxide separation from e-waste and bisphenol A detection in thermal paper receipts using recovered nanocomposites. RSC Advances, 8(70), 39870–39878. https://doi.org/10.1039/C8RA08017H
  • Arjunan, P., Kouthaman, M., Kannan, K., Diwakar, K., Priyanka, V., Subadevi, R., & Sivakumar, M. (2021). Study on efficient electrode from electronic waste renewed carbon material for sodium battery applications. Journal of Environmental Chemical Engineering, 9(2), 105024. https://doi.org/10.1016/j.jece.2021.105024
  • Babar, S., Gavade, N., Shinde, H., Gore, A., Mahajan, P., Lee, K. H., Bhuse, V., & Garadkar, K. (2019). An innovative transformation of waste toner powder into magnetic g-C3N4-Fe2O3 photocatalyst: Sustainable e-waste management. Journal of Environmental Chemical Engineering, 7(2), 103041. https://doi.org/10.1016/j.jece.2019.103041
  • Banks, S. W., Nowakowski, D. J., & Bridgwater, A. V. (2016). Impact of potassium and phosphorus in biomass on the properties of fast pyrolysis bio-oil. Energy & Fuels, 30(10), 8009–8018.
  • Bhongade, T., Gogaram, Gautam, D. M., & Vijayakumar, R. P. (2019). Synthesis of MWCNTs using waste toner powder as carbon source by chemical vapor deposition method. Fullerenes, Nanotubes and Carbon Nanostructures, 27(11), 864–872. https://doi.org/10.1080/1536383X.2019.1652169
  • Bhoi, V. N., & Shah, T. (2014). E-waste: A new environmental challenge. IJARCSSE, 4, 442–447.
  • Cui, J., & Forssberg, E. (2003). Mechanical recycling of waste electric and electronic equipment: A review. Journal of Hazardous Materials, 99, 243–263.
  • Daniel-Mkpume, C. C., Ahaiwe, R. C., Ifenatuorah, C. L., Ike-Eze, I. C. E., Aigbodion, V. S., Egoigwe, S. V., & Okonkwo, E. G. (2022). Potential end of life application of African star apple shell and waste toner powder as composite filler materials. Journal of Material Cycles and Waste Management, 24(2), 680-691.
  • Devin, N., Perkins, B. S., Brune Drisse, M. N., Nxele, T., & Sly, P. (2014). E-waste: A global hazard. Annals of Global Health, 80, 286–295.
  • Distler, T., & Sitzmann, W. (2018). An investigation on additives for pelletizing highly torrefied biomass. Biofuels, Bioproducts and Biorefining, 12(6), 958–965.
  • Dong, L., et al. (2017). Pyrolysis routine of organics and parameter optimization of vacuum gasification for recovering hazardous waste toner. ACS Sustainable Chemistry & Engineering, 5(11), 10038–10045. https://doi.org/10.1021/acssuschemeng.7b02024
  • Emadi, B., Iroba, K. L., & Tabil, L. G. (2017). Effect of polymer plastic binder on mechanical, storage, and combustion characteristics of torrefied and pelletized herbaceous biomass. Applied Energy, 198, 312–319.
  • Fernández, B., Ayala, J., Del Valle, E., Martínez-Blanco, D., Castañón, A. M., & Menéndez-Aguado, J. M. (2022). Recycling of waste toner powder as adsorbent to remove aqueous heavy metals. Materials, 15(12), 4150.
  • Forti, V., Balde, C. P., Kuehr, R., & Bel, G. (2020). The Global E-Waste Monitor 2020: Quantities, Flows, and the Circular Economy Potential. United Nations University.
  • Gaikwad, V., Ghose, A., Cholake, S., Rawal, A., Iwato, M., & Sahajwalla, V. (2018). Transformation of e-waste plastics into sustainable filaments for 3D printing. ACS Sustainable Chemistry & Engineering, 6(11), 14432–14440. https://doi.org/10.1021/acssuschemeng.8b03105
  • Habib, H., Atassi, Y., Salloum, A., Nasser Ali, N., & Jafarian, M. (2021). An eco-friendly, cost-effective, lightweight microwave absorber based on waste toner. Journal of Electronic Materials, 50(4), 2049–2056. https://doi.org/10.1007/s11664-020-08679-6
  • Huang, R., Yang, J., Cao, Y., Dionysiou, D. D., & Wang, C. (2022). Peroxymonosulfate catalytic degradation of persistent organic pollutants by engineered catalyst of self-doped iron/carbon nanocomposite derived from waste toner powder. Separation and Purification Technology, 291, 120963. https://doi.org/10.1016/j.seppur.2022.120963
  • Ivan, N. A. S., et al. (2022). Waste egg tray and toner-derived highly efficient 3D solar evaporator for freshwater generation. ACS Applied Materials & Interfaces, 14(6), 7936–7948. https://doi.org/10.1021/acsami.1c22215
  • Kemper, J. (2015). Biomass and carbon dioxide capture and storage: A review. International Journal of Greenhouse Gas Control, 40, 401–430.
  • Kyoseva, V., Todorova, E., & Dombalov, I. (2011). The most common questions on the use of municipal solid waste as raw material and energy resource. ISBN 978-954-92844-1-6.
  • Kumar, U., Gaikwad, V., & Sahajwalla, V. (2018). Transformation of waste toner to iron using e-waste plastics as a carbon resource. Journal of Cleaner Production, 192, 244–251. https://doi.org/10.1016/j.jclepro.2018.05.010
  • Li, J., Lu, H., Guo, J., Xu, Z., & Zhou, Y. (2007). Recycle technology for recovering resources and products from waste printed circuit boards. Environmental Science & Technology, 41, 1995–2000.
  • Ma, D., Sheng, J., Hao, Y., Zhong, Y., & Wu, W. (2021). Photovoltaic green application of waste toner carbon on fully printable mesoscopic perovskite solar cells. Solar Energy, 228, 439–446. https://doi.org/10.1016/j.solener.2021.09.051
  • Nakadate, T., Yamano, Y., Yamauchi, T., Okubo, S., & Nagashima, D. (2018). Assessing the chronic respiratory health risk associated with inhalation exposure to powdered toner for printing in actual working conditions: A cohort study on occupationally exposed workers over 10 years. BMJ Open, 8, e022049. https://doi.org/10.1136/bmjopen-2018-022049
  • NICNAS. (1991). Full public report: Styrene-acrylate copolymer. National Industrial Chemicals Notification and Assessment Scheme.
  • Nnorom, I. C., & Osibanjo, O. (2008). Overview of electronic waste (e-waste) management practices and legislations, and their poor applications in the developing countries. Resources, Conservation and Recycling, 52, 843–858.
  • Park, Y., & Fray, D. (2009). Recovery of high purity precious metals from printed circuit boards. Journal of Hazardous Materials, 164, 1152–1158.
  • Parthasarathy, M. (2021). Challenges and emerging trends in toner waste recycling: A review. Recycling, 6(3), 57. https://doi.org/10.3390/recycling6030057
  • Patronov, G., & Tonchev, D. (2011). Waste toners and cartridges—Utilization option. University of Plovdiv “Paisii Hilendarski”.
  • Pirela, S. V., Martin, J., Bello, D., & Demokritou, P. (2017). Nanoparticle exposures from nano-enabled toner-based printing equipment and human health: State of science and future research needs. Critical Reviews in Toxicology, 47, 678–704.
  • Robinson, B. (2009). E-waste: An assessment of global production and environmental impacts. Science of the Total Environment, 408, 183–191.
  • Saini, D., Aggarwal, R., Anand, S. R., & Sonkar, S. K. (2019). Sunlight-induced photodegradation of toxic azo dye by self-doped iron oxide nano-carbon from waste printer ink. Solar Energy, 193, 65–73. https://doi.org/10.1016/j.solener.2019.09.022
  • Saini, D., Aggarwal, R., Anand, S. R., Satrawala, N., & Joshi, R. K. (2020). Sustainable feasibility of waste printer ink to magnetically separable iron oxide–doped nanocarbons for styrene oxidation. Materials Today Chemistry, 16, 100256. https://doi.org/10.1016/j.mtchem.2020.100256
  • Salhofer, S., & Tesar, M. (2011). Assessment of removal of components containing hazardous substances from small WEEE in Austria. Journal of Hazardous Materials, 186, 1481–1488. https://doi.org/10.1016/j.jhazmat.2010.12.046
  • Subramani, K., Govindarajan, K., Sundaramoorthy, S., & Marappan, S. (2019). Waste toner-derived carbon/Fe3O4 nanocomposite for high-performance supercapacitor. ACS Omega, 4(14), 15798–15805. https://doi.org/10.1021/acsomega.9b01337
  • Takasuga, T., Makino, T., Umetsu, N., & Senthilkumar, K. (2003). Quantitative analysis of toxic compounds formed from combustion of some plastic materials and newspaper. Organohalogen Compounds, 63, 86–89.
  • Tian, Z., Cao, K., Bai, S., & He, G. (2019). One-pot transformation of waste toner powder into 3D graphene oxide hydrogel. ACS Sustainable Chemistry & Engineering, 7(1), 496–501. https://doi.org/10.1021/acssuschemeng.8b03997
  • Tian, Z., Sun, L., Tian, H., Cao, K., Bai, S., Li, J., & Zhu, Q. (2021). 3D graphene oxide hydrogel derived from waste toner as adsorbent. Journal of Nanoscience and Nanotechnology, 21(10), 5275–5281. https://doi.org/10.1166/jnn.2021.19339
  • Tomsej, T., Horak, J., Tomsejova, S., Krpec, K., Klanova, J., Dej, M., & Hopan, F. (2018). The impact of co-combustion of polyethylene plastics and wood in a small residential boiler on emissions of gaseous pollutants. Chemosphere, 196, 18–24. https://doi.org/10.1016/j.chemosphere.2017.12.027
  • Uttam, K., Goonetilleke, D., Gaikwad, V., Pramudita, J. C., Joshi, R. K., & Sahajwalla, V. (2019). Activated carbon from e-waste plastics as a promising anode for sodium-ion batteries. ACS Sustainable Chemistry & Engineering, 7(12), 10310–10322.
  • Veit, H. M., Bernardes, A. M., & others. (2006). Recovery of copper from printed circuit board scraps by mechanical processing and electrometallurgy. Journal of Hazardous Materials, 137(3), 1704–1709. https://doi.org/10.1016/j.jhazmat.2006.05.008
  • Verma, R., Vinoda, K. S., Papireddy, M., & Gowda, A. N. (2016). Toxic pollutants from plastic waste—a review. Procedia Environmental Sciences, 35, 701–708.
  • Vucinic, A. A., Vujevic, D., Mujkic, K., & Novak, M. (2013). Recycling of waste toner in the Republic of Croatia—An environmentally friendly approach. Chemical Engineering Transactions, 34, 121–126.
  • Werther, J. (2007). Gaseous emissions from waste combustion. Journal of Hazardous Materials, 144(3), 604–613. https://doi.org/10.1016/j.jhazmat.2007.02.017
  • Wu, J., Li, J., & Xu, Z. (2008). Electrostatic separation for recovering metals and nonmetals from waste printed circuit board: Problems and improvements. Environmental Science & Technology, 42(14), 5272–5276. https://doi.org/10.1021/es800324f
  • Xing, Y. F., Xu, Y. H., Shi, M. H., & Lian, Y. X. (2016). The impact of PM2.5 on the human respiratory system. Journal of Thoracic Disease, 8(1), E69. https://doi.org/10.21037/jtd.2016.01.14
  • Yordanova, D., & Dombalov, I. (2012). Hazardous household waste—Definition and choice of appropriate treatment method. Proceedings of the International Conference: Ecology – Interdisciplinary Science and Practice, ISBN 978-954-749-096-3, 365–367.
  • Yordanova, D., Angelova, S., & Dombalov, I. (2014). Utilisation options for waste toner powder. J. Environ. Sci, 3, 140-144.
  • Yordanova, D., Angelova, S., & Dombalov, I. (2019). Utilisation options for waste toner powder. International Scientific Journal Environmental Science, 8, 140–144.
  • Yu, X., Zhu, C., Wang, H., & Wu, Y. (2022). Waste toner-derived micro-materials as low-cost magnetic solid-phase extraction adsorbent for the analysis of trace Pb in environmental and biological samples. Analytical and Bioanalytical Chemistry, 414(7), 2409–2418. https://doi.org/10.1007/s00216-022-03879-x
  • Zhang, W., Guan, H., Hu, Y., Wang, W., Hao, L., Yang, X., & Tian, W. (2022). Visible-light-driven hydrogen evolution from waste toner powder activated by Ni species. Green Chemistry, 24(3), 1335–1341. https://doi.org/10.1039/D1GC03506A
  • Zhu, H., Zhou, Y., Wang, S., Wu, X., Hou, J., Yin, W., Feng, K., Wang, X., & Yang, J. (2018). Preparation and application synthesis of magnetic nanocomposite using waste toner for the removal of Cr(VI). RSC Advances, 8(49), 27654–27660.
There are 53 citations in total.

Details

Primary Language English
Subjects Environmental and Sustainable Processes, Chemical and Thermal Processes in Energy and Combustion, Materials Science and Technologies
Journal Section Full-length articles
Authors

Şeyda Taşar 0000-0003-3184-1542

Melek Yılgın 0000-0002-4177-8025

Neslihan Duranay 0000-0001-7259-1864

Dursun Pehlivan 0000-0001-7696-885X

Publication Date March 11, 2025
Submission Date November 13, 2024
Acceptance Date February 28, 2025
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Taşar, Ş., Yılgın, M., Duranay, N., Pehlivan, D. (2025). Potential of Waste Toner Powder for Sustainable Energy Production: An Assessment of Its Suitability for Bio-Briquette Applications. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 8(1), 97-110.

Creative Commons Lisansı
This piece of scholarly information is licensed under Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı.

J. Turk. Chem. Soc., Sect. B: Chem. Eng. (JOTCSB)