Research Article
BibTex RIS Cite

Biomedical Potential of p(Rt) Particles Synthesized from Rubia Tinctorum L. Extract: Characterization, Bioactivity and Controlled Drug Release

Year 2025, Volume: 8 Issue: 2, 185 - 202, 15.09.2025
https://doi.org/10.58692/jotcsb.1682389

Abstract

Rubia tinctorum L. (Root Dye, Madder) has been historically used in textile dyeing and is valued for its natural antibacterial, antioxidant, and therapeutic properties. In this study, the synthesis of poly(Rubia tinctorum) (p(Rt)) particles from Rubia tinctorum L. extract and their biomedical applications are reported for the first time. The extract and synthesized particles were characterized using SEM, FTIR, DLS, zeta potential analysis, and HPLC. The bioactivity of p(Rt) particles, including antimicrobial, antioxidant, and biocompatibility properties, were assessed. Drug release studies showed significant paracetamol and ceftriaxone release at different pH levels, with release kinetics fitting the Korsmeyer-Peppas model. This study highlights the novelty of p(Rt) particles and their potential in biomedical applications, particularly in drug delivery.

Supporting Institution

Van Yuzuncu Yıl University BAP with grant # FYL-2022-10034

Project Number

FYL-2022-10034

Thanks

This work is supported by the Van Yuzuncu Yıl University BAP with grant # FYL-2022-10034

References

  • Abachi, S., Khademi, F., Fatemi, H., & Malekzadeh, F. (2013). Study of antimicrobial activity of selected Iranian plant extracts on vancomycin resistant Staphylococcus epidermidis. IOSR Journal of Dental and Medical Sciences, 4(1), 59–63.
  • Alpaslan, D. (2019). Use of colorimetric hydrogel as an indicator for food packaging applications. Bulletin of Materials Science, 42(5), 247. https://doi.org/10.1007/s12034-019-1908-z
  • Alpaslan, D., Dudu, T. E., & Aktaş, N. (2018). Synthesis, characterization and modification of novel food packaging material from dimethyl acrylamide/gelatin and purple cabbage extract. MANAS Journal of Engineering, 6(2), 110–128.
  • Alpaslan, D., Dudu, T. E., Şahiner, N., & Aktas, N. (2020). Synthesis and preparation of responsive poly(Dimethyl acrylamide/gelatin and pomegranate extract) as a novel food packaging material. Materials Science and Engineering: C, 108, 110339. https://doi.org/10.1016/j.msec.2019.110339
  • Alpaslan, D., Ersen Dudu, T., & Aktas, N. (2022a). Agar and Sesame Oil Based Organo-Hydrogels as a Pharmaceutical Excipient in Paracetamol/Carboplatin Release Systems. Indian Journal of Pharmaceutical Sciences, 84(2). https://doi.org/10.36468/pharmaceutical-sciences.929
  • Alpaslan, D., Ersen Dudu, T., & Aktas, N. (2022b). Evaluation of poly(agar-co-glycerol-co-castor oil) organo-hydrogel as a controlled release system carrier support material. Polymer Bulletin, 79(8), 5901–5922. https://doi.org/10.1007/s00289-021-03777-9
  • Alpaslan, D., Erşen Dudu, T., & Aktas, N. (2023). Development of onion oil-based organo-hydrogel for drug delivery material. Journal of Dispersion Science and Technology, 44(5), 750–762. https://doi.org/10.1080/01932691.2021.1974869
  • Alpaslan, D., Olak, T., Turan, A., Ersen Dudu, T., & Aktas, N. (2021). A garlic oil-based organo-hydrogel for use in pH-sensitive drug release. Chemical Papers, 75(11), 5759–5772. https://doi.org/10.1007/s11696-021-01760-2
  • Alpaslan, D., Olak, T., Turan, A., Ersen Dudu, T., & Aktas, N. (2022). Use of Coconut Oil-Based Organo-Hydrogels in Pharmaceutical Applications. Journal of Polymers and the Environment, 30(2), 666–680. https://doi.org/10.1007/s10924-021-02219-x
  • Aras Aşci̇, Ö., Demi̇Rci̇, T., & Göktürk Baydar, N. (2018). Effects of NaCl applications on root growth and secondary metabolite production in madder (Rubia tinctorum L.) root cultures. International Journal of Secondary Metabolite, 5(3), 210–216. https://doi.org/10.21448/ijsm.453016
  • Böhm, B. H. H. (1993). Handbuch der Naturfarbstoffe. Lech, Ecomed Verlagsgesellschaft.
  • Cai, Y., Luo, Q., Sun, M., & Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences, 74(17), 2157–2184. https://doi.org/10.1016/j.lfs.2003.09.047
  • Childs, R. E., & Bardsley, W. G. (1975). The steady-state kinetics of peroxidase with 2,2′-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochemical Journal, 145(1), 93–103. https://doi.org/10.1042/bj1450093
  • Derksen, G. C. H., Van Holthoon, F. L., Willemen, H. M., Krul, C. A. M., Franssen, M. C. R., & Van Beek, T. A. (2021). Development of a process for obtaining non-mutagenic madder root (Rubia tinctorum) extract for textile dyeing. Industrial Crops and Products, 164, 113344. https://doi.org/10.1016/j.indcrop.2021.113344
  • Ersen Dudu, T., Alpaslan, D., & Aktas, N. (2022). Application of Poly (Agar-Co-Glycerol-Co-Sweet Almond Oil) Based Organo-Hydrogels as a Drug Delivery Material. Journal of Polymers and the Environment, 30(2), 483–493. https://doi.org/10.1007/s10924-021-02212-4
  • Essaidi, I., Snoussi, A., Ben Haj Koubaier, H., Casabianca, H., & Bouzouita, N. (2017). Effect of acid hydrolysis on alizarin content, antioxidant and antimicrobial activities of Rubia tinctorum extracts. Pigment & Resin Technology, 46(5), 379–384. https://doi.org/10.1108/PRT-11-2015-0116
  • Gilbert, K. G., & Cooke, D. T. (2001). Dyes from plants: Past usage, present understanding and potential. Plant Growth Regulation, 34(1), 57–69. https://doi.org/10.1023/A:1013374618870
  • Jeremić, S., Filipović, N., Peulić, A., & Marković, Z. (2014). Thermodynamical aspect of radical scavenging activity of alizarin and alizarin red S. Theoretical comparative study. Computational and Theoretical Chemistry, 1047, 15–21. https://doi.org/10.1016/j.comptc.2014.08.007
  • Korsmeyer, R. W., Gurny, R., Doelker, E., Buri, P., & Peppas, N. A. (1983). Mechanisms of solute release from porous hydrophilic polymers. International Journal of Pharmaceutics, 15(1), 25–35. https://doi.org/10.1016/0378-5173(83)90064-9
  • Manojlovic, N. T., Solujic, S., Sukdolak, S., & Milosev, M. (2005). Antifungal activity of Rubia tinctorum, Rhamnus frangula and Caloplaca cerina. Fitoterapia, 76(2), 244–246.
  • Marhoume, F. Z., Aboufatima, R., Zaid, Y., Limami, Y., Duval, R. E., Laadraoui, J., Belbachir, A., Chait, A., & Bagri, A. (2021). Antioxidant and Polyphenol-Rich Ethanolic Extract of Rubia tinctorum L. Prevents Urolithiasis in an Ethylene Glycol Experimental Model in Rats. Molecules, 26(4), 1005. https://doi.org/10.3390/molecules26041005
  • Marsoul, A., Boukir, A., Ijjaali, M., Taleb, M., Arrousse, N., Salim, R., & Dafali, A. (2023). Phytochemical Characterization, Antioxidant Proprieties and Electrochemical Investigations of Methanolic Extract of Rubia t.L. Roots for LC-Steel Corrosion Protection in 1 M HCl Medium. Journal of Bio- and Tribo-Corrosion, 9(2), 32. https://doi.org/10.1007/s40735-023-00749-6
  • Mellado, M., Madrid, A., Peña-Cortés, H., López, R., Jara, C., & Espinoza, L. (2013). ANTIOXIDANT ACTIVITY OF ANTHRAQUINONES ISOLATED FROM LEAVES OF MUEHLENBECKIA HASTULATA (J.E. SM.) JOHNST. (POLYGONACEAE). Journal of the Chilean Chemical Society, 58(2), 1767–1770. https://doi.org/10.4067/S0717-97072013000200028
  • Olak, T., Turan, A., Alpaslan, D., Dudu, T. E., & Aktaş, N. (2020). Developing poly(Agar-co-Glycerol-co-Thyme Oil) based organo-hydrogels for the controlled drug release applications. Journal of Drug Delivery Science and Technology, 60, 102088. https://doi.org/10.1016/j.jddst.2020.102088
  • Orban, N., Boldizsar, I., Szucs, Z., & Danos, B. (2008). Influence of different elicitors on the synthesis of anthraquinone derivatives in Rubia tinctorum L. cell suspension cultures. Dyes and Pigments, 77(1), 249–257. https://doi.org/10.1016/j.dyepig.2007.03.015
  • Ozdemir, M. B., & Karadag, R. (2023). Madder ( Rubia tinctorum L.) as an Economic Factor Under Sustainability Goals in the Textile Dyeing. Journal of Natural Fibers, 20(1), 2128968. https://doi.org/10.1080/15440478.2022.2128968
  • Ruch, R. J., Cheng, S., & Klaunig, J. E. (1989). Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis, 10(6), 1003–1008. https://doi.org/10.1093/carcin/10.6.1003
  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144–158. https://doi.org/10.5344/ajev.1965.16.3.144
  • Siva, R., Palackan, M. G., Maimoon, L., Geetha, T., Bhakta, D., Balamurugan, P., & Rajanarayanan, S. (2011). Evaluation of antibacterial, antifungal, and antioxidant properties of some food dyes. Food Science and Biotechnology, 20(1), 7–13. https://doi.org/10.1007/s10068-011-0002-0
  • Swain, T. (1966). Comparative phytochemistry. 43, 1791.
  • Zohra, H. F., Ramazan, E., & Ahmed, H. (2022). Biological activities and chemical composition of rubia tinctorum (l) root and aerial part extracts thereof. Acta Biológica Colombiana, 27(3), 403–414.
There are 31 citations in total.

Details

Primary Language English
Subjects Biomaterial
Journal Section Full-length articles
Authors

Duygu Alpaslan 0000-0002-6007-3397

Mustafa Yavuzcanli This is me 0000-0003-0656-1127

Abdullah Turan 0000-0003-3330-4468

Tuba Ersen Dudu This is me 0000-0001-5564-2834

Project Number FYL-2022-10034
Publication Date September 15, 2025
Submission Date April 23, 2025
Acceptance Date August 21, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Alpaslan, D., Yavuzcanli, M., Turan, A., Ersen Dudu, T. (2025). Biomedical Potential of p(Rt) Particles Synthesized from Rubia Tinctorum L. Extract: Characterization, Bioactivity and Controlled Drug Release. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 8(2), 185-202. https://doi.org/10.58692/jotcsb.1682389

Creative Commons Lisansı
This piece of scholarly information is licensed under Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı.

J. Turk. Chem. Soc., Sect. B: Chem. Eng. (JOTCSB)