Research Article
BibTex RIS Cite

Tailoring Drug Release through Thermoresponsive MeHA–NIPA Hydrogels: A 5-Fluorouracil Model System

Year 2025, Volume: 8 Issue: 2, 275 - 296, 15.09.2025
https://doi.org/10.58692/jotcsb.1773615

Abstract

Methacrylated hyaluronic acid (MeHA) hydrogels combined with poly(N-isopropylacrylamide) (PNIPA) were developed as temperature-responsive carriers for the sustained delivery of 5-fluorouracil (5-FU). MeHA was synthesized via glycidyl methacrylate (GMA) modification and confirmed by Fourier-transform infrared spectroscopy (FTIR) and Proton Nuclear Magnetic Resonance (¹H-NMR) analyses. Four MeHA–NIPA hydrogel compositions (10/90, 20/80, 30/70, and 40/60) were prepared through redox polymerization. Differential scanning calorimetry (DSC) revealed that increasing MeHA content shifted the volume phase transition temperature above the lower critical solution temperature (LCST) of PNIPA, owing to hydrogen bonding and enhanced crosslink density. Swelling studies at 25, 30, and 40 °C showed clear thermo-responsive behavior, with maximum water uptake observed at 25 °C. Drug loading efficiency correlated with swelling, reaching the highest value (85.2 ± 2.1%) for MeHA–NIPA-1, while the hydrogel with the highest crosslink density (MeHA–NIPA-4) exhibited the lowest capacity. In vitro release experiments at 37 °C (pH 7.4) demonstrated distinct composition-dependent profiles. MeHA–NIPA-3 achieved the fastest and highest cumulative release (~90%), while MeHA–NIPA-4 provided the most sustained release (~83–85%) over seven days. Kinetic modeling indicated that the release mechanism followed Fickian diffusion, best described by Weibull (R² = 0.903–0.977) and Korsmeyer–Peppas models (R² = 0.891–0.967). Shape parameter (β < 0.3) values confirmed diffusion-controlled transport. Overall, MeHA–NIPA hydrogels successfully integrated HA’s biocompatibility with PNIPA’s thermal responsiveness, enabling tunable 5-FU delivery. These findings highlight their potential as intelligent systems for controlled chemotherapy applications.

References

  • Akgun, B. S., Bostan, M. S., Un, I., Sadak, A. E., Bahadori, F., & Eroglu, M. S. (2025). Physico-chemical and spectroscopic characterization of hyaluronic acid hydrogels crosslinked with 1, 4-butanediol diglycidyl ether (BDDE). International Journal of Biological Macromolecules, 308, 142050. https://doi.org/10.1016/j.ijbiomac.2025.142050
  • Anjum, S., Naseer, F., Ahmad, T., Jahan, F., Qadir, H., Gul, R.,…Shabbir, A. (2024). Enhancing therapeutic efficacy: sustained delivery of 5-fluorouracil (5-FU) via thiolated chitosan nanoparticles targeting CD44 in triple-negative breast cancer. Scientific reports, 14(1), 11431. https://doi.org/10.1038/s41598-024-55900-1
  • Aycan, D., Gül, İ., Yorulmaz, V., & Alemdar, N. (2024). Gelatin microsphere-alginate hydrogel combined system for sustained and gastric targeted delivery of 5-fluorouracil. International Journal of Biological Macromolecules, 255, 128022. https://doi.org/10.1016/j.ijbiomac.2023.128022
  • Bang, S., Das, D., Yu, J., & Noh, I. (2019). Evaluation of MC3T3 cells proliferation and drug release study from sodium Hyaluronate-1, 4-butanediol Diglycidyl ether patterned gel. Nano. 2017; 7 (10): 328. Biomaterials Res, 23(1), 1-9. https://doi.org/10.3390/nano7100328
  • Barzegar-Jalali, M. (2008). Kinetic analysis of drug release from nanoparticles. Journal of Pharmacy & Pharmaceutical Sciences, 11(1), 167-177. https://doi.org/10.18433/j3d59t
  • Bencherif, S. A., Srinivasan, A., Horkay, F., Hollinger, J. O., Matyjaszewski, K., & Washburn, N. R. (2008). Influence of the degree of methacrylation on hyaluronic acid hydrogels properties. Biomaterials, 29(12), 1739-1749. https://doi.org/10.1016/j.biomaterials.2007.11.047
  • Bokatyi, A. N., Dubashynskaya, N. V., & Skorik, Y. A. (2024). Chemical modification of hyaluronic acid as a strategy for the development of advanced drug delivery systems. Carbohydrate polymers, 337, 122145. https://doi.org/10.1016/j.carbpol.2024.122145
  • Bordbar-Khiabani, A., & Gasik, M. (2022). Smart hydrogels for advanced drug delivery systems. International Journal of Molecular Sciences, 23(7), 3665. https://doi.org/10.3390/ijms23073665
  • Bostan, M. S., Senol, M., Cig, T., Peker, I., Goren, A. C., Ozturk, T., & Eroglu, M. S. (2013). Controlled release of 5-aminosalicylicacid from chitosan based pH and temperature sensitive hydrogels. International Journal of Biological Macromolecules, 52, 177-183. https://doi.org/10.1016/j.ijbiomac.2012.09.018
  • Buckley, C., Murphy, E. J., Montgomery, T. R., & Major, I. (2022). Hyaluronic acid: A review of the drug delivery capabilities of this naturally occurring polysaccharide. Polymers, 14(17), 3442. https://doi.org/10.3390/polym14173442
  • Chang, W.-H., Liu, P.-Y., Lin, M.-H., Lu, C.-J., Chou, H.-Y., Nian, C.-Y.,…Hsu, Y.-H. H. (2021). Applications of hyaluronic acid in ophthalmology and contact lenses. Molecules, 26(9), 2485. https://doi.org/10.3390/molecules26092485
  • Chen, C.-H., Kao, H.-H., Lee, Y.-C., & Chen, J.-P. (2023). Injectable thermosensitive hyaluronic acid hydrogels for chondrocyte delivery in cartilage tissue engineering. Pharmaceuticals, 16(9), 1293. https://doi.org/10.3390/ph16091293
  • Chen, X., Li, P., Kang, Y., Zeng, X., Xie, Y., Zhang, Y.,…Xie, T. (2019). Preparation of temperature-sensitive Xanthan/NIPA hydrogel using citric acid as crosslinking agent for bisphenol A adsorption. Carbohydrate polymers, 206, 94-101. https://doi.org/10.1016/j.carbpol.2018.10.092
  • Corsaro, C., Neri, G., Mezzasalma, A. M., & Fazio, E. (2021). Weibull modeling of controlled drug release from Ag-PMA nanosystems. Polymers, 13(17), 2897. https://doi.org/10.3390/polym13172897
  • Danyuo, Y., Dozie-Nwachukwu, S., Obayemi, J., Ani, C., Odusanya, O., Oni, Y.,…Soboyejo, W. (2016). Swelling of poly (N-isopropylacrylamide) P (NIPA)-based hydrogels with bacterial-synthesized prodigiosin for localized cancer drug delivery. Materials Science and Engineering: C, 59, 19-29. https://doi.org/10.1016/j.msec.2015.09.090
  • Das, A., Babu, A., Chakraborty, S., Van Guyse, J. F., Hoogenboom, R., & Maji, S. (2024). Poly (N‐isopropylacrylamide) and its copolymers: a review on recent advances in the areas of sensing and biosensing. Advanced Functional Materials, 34(37), 2402432. https://doi.org/10.1002/adfm.202402432
  • Dash, S., Murthy, P. N., Nath, L., & Chowdhury, P. (2010). Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm, 67(3), 217-223.
  • Della Sala, F., Longobardo, G., Fabozzi, A., di Gennaro, M., & Borzacchiello, A. (2022). Hyaluronic acid-based wound dressing with antimicrobial properties for wound healing application. Applied Sciences, 12(6), 3091. https://doi.org/10.3390/app12063091
  • Eyigor, A., Bahadori, F., Yenigun, V. B., & Eroglu, M. S. (2018). Beta-Glucan-based temperature-responsive hydrogels for 5-ASA delivery. Carbohydrate polymers, 201, 454-463. https://doi.org/10.1016/j.carbpol.2018.08.053
  • Fredenberg, S., Wahlgren, M., Reslow, M., & Axelsson, A. (2011). The mechanisms of drug release in poly (lactic-co-glycolic acid)-based drug delivery systems—A review. International Journal of Pharmaceutics, 415(1-2), 34-52. https://doi.org/10.1016/j.ijpharm.2011.05.049
  • Gong, M., Yan, F., Yu, L., & Li, F. (2022). A dopamine-methacrylated hyaluronic acid hydrogel as an effective carrier for stem cells in skin regeneration therapy. Cell Death & Disease, 13(8), 738. https://doi.org/10.1038/s41419-022-05060-9
  • Guan, Z., Katla, S. K., Dahanayake, V., & Bae, J. (2024). 3D printable Poly (N-isopropylacrylamide) microgel suspensions with temperature-dependent rheological responses. ACS Applied Polymer Materials, 6(23), 14095-14105. https://doi.org/10.1021/acsapm.3c03230
  • Hong, G.-W., Wan, J., Park, Y., Yoo, J., Cartier, H., Garson, S.,…Yi, K.-H. (2024). Manufacturing process of hyaluronic acid dermal fillers. Polymers, 16(19), 2739. https://doi.org/10.3390/polym16192739
  • Huang, X., & Brazel, C. S. (2001). On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. Journal of Controlled Release, 73(2-3), 121-136. https://doi.org/10.1016/s0168-3659(01)00248-6
  • Kapoor, D. U., Garg, R., Gaur, M., Pareek, A., Prajapati, B. G., Castro, G. R.,…Sriamornsak, P. (2024). Pectin hydrogels for controlled drug release: Recent developments and future prospects. Saudi Pharmaceutical Journal, 102002.
  • Kesharwani, P., Bisht, A., Alexander, A., Dave, V., & Sharma, S. (2021). Biomedical applications of hydrogels in drug delivery system: An update. Journal of Drug Delivery Science and Technology, 66, 102914. http://dx.doi.org/10.1016/j.jddst.2021.102914
  • Khan, F., Atif, M., Haseen, M., Kamal, S., Khan, M. S., Shahid, S., & Nami, S. A. (2022). Synthesis, classification and properties of hydrogels: Their applications in drug delivery and agriculture. Journal of Materials Chemistry B, 10(2), 170-203. https://doi.org/10.1039/D1TB01345A
  • Khunmanee, S., Jeong, Y., & Park, H. (2017). Crosslinking method of hyaluronic-based hydrogel for biomedical applications. Journal of tissue engineering, 8, 2041731417726464. https://doi.org/10.1177/2041731417726464
  • Kim, Y. S., & Guilak, F. (2022). Engineering hyaluronic acid for the development of new treatment strategies for osteoarthritis. International Journal of Molecular Sciences, 23(15), 8662. https://doi.org/10.3390/ijms23158662
  • Kunori, M., & Tokuyama, H. (2024). Development of a polyethyleneimine/poly (N-isopropylacrylamide) semi-IPN hydrogel for use in the temperature-swing adsorption and selective desorption of hydrophobic organic compounds. Journal of the Taiwan Institute of Chemical Engineers, 156, 105331. http://dx.doi.org/10.1016/j.jtice.2023.105331
  • Lanzalaco, S., Mingot, J., Torras, J., Alemán, C., & Armelin, E. (2023). Recent advances in poly (N‐isopropylacrylamide) hydrogels and derivatives as promising materials for biomedical and engineering emerging applications. Advanced Engineering Materials, 25(4), 2201303. https://doi.org/10.1002/adem.202201303
  • Liu, Y., Hu, Q., Dong, W., Liu, S., Zhang, H., & Gu, Y. (2022). Alginate/gelatin‐based hydrogel with soy protein/peptide powder for 3D printing tissue‐engineering scaffolds to promote angiogenesis. Macromolecular Bioscience, 22(4), 2100413. https://doi.org/10.1002/mabi.202100413
  • Luo, Z., Wang, Y., Xu, Y., Wang, J., & Yu, Y. (2023). Modification and crosslinking strategies for hyaluronic acid‐based hydrogel biomaterials. Smart Medicine, 2(4), e20230029. https://doi.org/10.1002/SMMD.20230029
  • Ma, J., Zhong, J., Sun, F., Liu, B., Peng, Z., Lian, J.,…Zhang, T. (2024). Hydrogel sensors for biomedical electronics. Chemical Engineering Journal, 481, 148317. http://dx.doi.org/10.1016/j.cej.2023.148317
  • Marques, A. C., Costa, P. J., Velho, S., & Amaral, M. H. (2021). Stimuli-responsive hydrogels for intratumoral drug delivery. Drug Discovery Today, 26(10), 2397-2405. https://doi.org/10.1016/j.drudis.2021.04.012
  • Mohammed, A. M., Osman, S. K., Saleh, K. I., & Samy, A. M. (2020). In vitro release of 5-fluorouracil and methotrexate from different thermosensitive chitosan hydrogel systems. Aaps Pharmscitech, 21(4), 131. https://doi.org/10.1208/s12249-020-01672-6
  • Mohsin, M. E. A., Siddiqa, A. J., Mousa, S., & Shrivastava, N. K. (2025). Design, characterization, and release kinetics of a hybrid hydrogel drug delivery system for sustained hormone therapy. Polymers, 17(8), 999.https://doi.org/10.3390/polym17080999
  • Ohya, S., Kidoaki, S., & Matsuda, T. (2005). Poly (N-isopropylacrylamide)(PNIPAM)-grafted gelatin hydrogel surfaces: interrelationship between microscopic structure and mechanical property of surface regions and cell adhesiveness. Biomaterials, 26(16), 3105-3111. https://doi.org/10.1016/j.biomaterials.2004.08.006
  • Osman, A., Oner, E. T., & Eroglu, M. S. (2017). Novel levan and pNIPA temperature sensitive hydrogels for 5-ASA controlled release. Carbohydrate polymers, 165, 61-70. https://doi.org/10.1016/j.carbpol.2017.01.097
  • Patel, M., & Koh, W.-G. (2020). Composite hydrogel of methacrylated hyaluronic acid and fragmented polycaprolactone nanofiber for osteogenic differentiation of adipose-derived stem cells. Pharmaceutics, 12(9), 902. https://doi.org/10.3390/pharmaceutics12090902
  • Perez-Lloret, M., & Erxleben, A. (2024). Improved and highly reproducible synthesis of methacrylated hyaluronic acid with tailored degrees of substitution. ACS omega, 9(24), 25914-25921. https://doi.org/10.1021/acsomega.4c00372
  • Poldervaart, M. T., Goversen, B., De Ruijter, M., Abbadessa, A., Melchels, F. P., Öner, F. C.,…Alblas, J. (2017). 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity. PloS one, 12(6), e0177628. https://doi.org/10.1371/journal.pone.0177628
  • Saravanakumar, K., Park, S., Santosh, S. S., Ganeshalingam, A., Thiripuranathar, G., Sathiyaseelan, A.,…Wang, M.-H. (2022). Application of hyaluronic acid in tissue engineering, regenerative medicine, and nanomedicine: A review. International Journal of Biological Macromolecules, 222, 2744-2760. https://doi.org/10.1016/j.ijbiomac.2022.10.055
  • Schante, C. E., Zuber, G., Herlin, C., & Vandamme, T. F. (2011). Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydrate polymers, 85(3), 469-489. https://doi.org/10.1016/j.carbpol.2011.03.019
  • Shang, H., Yang, X., & Liu, H. (2023). Temperature-responsive hydrogel prepared from carboxymethyl cellulose-stabilized N-vinylcaprolactam with potential for fertilizer delivery. Carbohydrate polymers, 313, 120875. https://doi.org/10.1016/j.carbpol.2023.120875
  • Sievers, J., Sperlich, K., Stahnke, T., Kreiner, C., Eickner, T., Martin, H.,…Stachs, O. (2021). Determination of hydrogel swelling factors by two established and a novel non‐contact continuous method. Journal of Applied Polymer Science, 138(18), 50326. https://doi.org/10.1002/app.50326
  • Spearman, B. S., Agrawal, N. K., Rubiano, A., Simmons, C. S., Mobini, S., & Schmidt, C. E. (2020). Tunable methacrylated hyaluronic acid‐based hydrogels as scaffolds for soft tissue engineering applications. Journal of Biomedical Materials Research Part A, 108(2), 279-291. https://doi.org/10.1002/jbm.a.36814
  • Stetsyshyn, Y., Ohar, H., Budkowski, A., & Lazzara, G. (2025). Molecular design and role of the dynamic hydrogen bonds and hydrophobic interactions in temperature-switchable polymers: from understanding to applications. Polymers, 17(11), 1580. https://doi.org/10.3390/polym17111580
  • Suljovrujic, E., Rogic Miladinovic, Z., & Krstic, M. (2021). Swelling properties and drug release of new biocompatible POEGOPGMA hydrogels with VPTT near to the human body temperature. Polymer Bulletin, 78(5), 2405-2425. https://doi.org/10.3390/gels11030201
  • Thang, N. H., Chien, T. B., & Cuong, D. X. (2023). Polymer-based hydrogels applied in drug delivery: An overview. Gels, 9(7), 523. https://doi.org/10.3390/gels9070523
  • Thirumalai, A., Girigoswami, K., Harini, K., Kiran, V., Durgadevi, P., & Girigoswami, A. (2025). Natural polymer derivative-based pH-responsive nanoformulations with entrapped diketo-tautomers of 5-fluorouracil for enhanced cancer therapy. ADMET and DMPK, 13(1). https://doi.org/10.5599/admet.2554
  • Toews, P., & Bates, J. (2023). Influence of drug and polymer molecular weight on release kinetics from HEMA and HPMA hydrogels. Scientific reports, 13(1), 16685. https://doi.org/10.1038/s41598-023-42923-3
  • Trombino, S., Servidio, C., Curcio, F., & Cassano, R. (2019). Strategies for hyaluronic acid-based hydrogel design in drug delivery. Pharmaceutics, 11(8), 407. https://doi.org/10.3390/pharmaceutics11080407
  • Ursini, O., Grieco, M., Sappino, C., Capodilupo, A. L., Giannitelli, S. M., Mauri, E.,…Gigli, G. (2023). Modulation of methacrylated hyaluronic acid hydrogels enables their use as 3D cultured model. Gels, 9(10), 801. https://doi.org/10.3390/gels9100801
  • Velasco-Rodriguez, B., Diaz-Vidal, T., Rosales-Rivera, L. C., García-González, C. A., Alvarez-Lorenzo, C., Al-Modlej, A.,…Soltero Martinez, J. F. A. (2021). Hybrid methacrylated gelatin and hyaluronic acid hydrogel scaffolds. Preparation and systematic characterization for prospective tissue engineering applications. International Journal of Molecular Sciences, 22(13), 6758. https://doi.org/10.3390/ijms22136758
  • Wang, A., Tao, C., Cui, Y., Duan, L., Yang, Y., & Li, J. (2009). Assembly of environmental sensitive microcapsules of PNIPAAm and alginate acid and their application in drug release. Journal of colloid and interface science, 332(2), 271-279. https://doi.org/10.1016/j.jcis.2008.12.032
  • Wang, W., Ummartyotin, S., & Narain, R. (2023). Advances and challenges on hydrogels for wound dressing. Current opinion in biomedical engineering, 26, 100443. https://doi.org/10.1016/j.cobme.2022.100443
  • Xia, C., Chen, P., Mei, S., Ning, L., Lei, C., Wang, J.,…Fan, S. (2016). Photo-crosslinked HAMA hydrogel with cordycepin encapsulated chitosan microspheres for osteoarthritis treatment. Oncotarget, 8(2), 2835. https://doi.org/10.18632/oncotarget.13748
  • Yang, J., Li, Z., Li, S., Zhang, Q., Zhou, X., & He, C. (2023). Tunable metacrylated silk fibroin-based hybrid bioinks for the bioprinting of tissue engineering scaffolds. Biomaterials Science, 11(5), 1895-1909. http://dx.doi.org/10.1039/D2BM01978G
  • Yasin, A., Ren, Y., Li, J., Sheng, Y., Cao, C., & Zhang, K. (2022). Advances in hyaluronic acid for biomedical applications. Frontiers in Bioengineering and Biotechnology, 10, 910290. https://doi.org/10.3389/fbioe.2022.910290
  • Zhang, J. N., Chen, B. Z., Ashfaq, M., Zhang, X. P., & Guo, X. D. (2018). Development of a BDDE-crosslinked hyaluronic acid based microneedles patch as a dermal filler for anti-ageing treatment. Journal of industrial and engineering chemistry, 65, 363-369. https://doi.org/10.1016/j.jiec.2018.05.007
  • Zhang, X.-Z., & Zhuo, R.-X. (2002). Synthesis and properties of thermosensitive poly (N-isopropylacrylamide-co-methyl methacrylate) hydrogel with rapid response. Materials Letters, 52(1-2), 5-9. https://doi.org/10.1016/S0167-577X(01)00355-X
There are 62 citations in total.

Details

Primary Language English
Subjects Chemical Reaction
Journal Section Full-length articles
Authors

Muge Sennaroglu Bostan 0000-0002-2909-689X

Publication Date September 15, 2025
Submission Date August 29, 2025
Acceptance Date September 5, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Sennaroglu Bostan, M. (2025). Tailoring Drug Release through Thermoresponsive MeHA–NIPA Hydrogels: A 5-Fluorouracil Model System. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 8(2), 275-296. https://doi.org/10.58692/jotcsb.1773615

Creative Commons Lisansı
This piece of scholarly information is licensed under Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı.

J. Turk. Chem. Soc., Sect. B: Chem. Eng. (JOTCSB)