Review
BibTex RIS Cite
Year 2020, Volume: 1 Issue: 3, 60 - 64, 01.12.2020
https://doi.org/10.37662/jpt.2021.8

Abstract

References

  • [1] Vilos GA, Rajakumar C. Electrosurgical generators and monopolar and bipolar electrosurgery. J Minim Invasive Gynecol. (2013); 20(3): 279-287. https://doi.org/10.1016/j.jmig.2013.02.013
  • [2] Glover JL, Bendick PJ, Link WJ. The use of thermal knives in surgery: electrosurgery, lasers, plasma scalpel. Curr Probl Surg. (1978); 15(1): 1-78. https://doi.org/10.1016/S0011-3840(78)80017-3
  • [3] Wang K, Advincula AP. “Current thoughts” in electrosurgery. Int J Gynecol Obstet. (2007); 97(3): 245-250. https://doi.org/10.1016/j.ijgo.2007.03.001
  • [4] Massarweh NN, Cosgriff N, Slakey DP. Electrosurgery: history, principles, and current and future uses. J Am Coll Surg. (2006); 202 (3): 520-530. https://doi.org/10.1016/j.jamcollsurg.2005.11.017
  • [5] Goldwyn RM. Bovie: the man and the machine. Ann Plast Surg. (1979); 2(2): 135-153.
  • [6] Cushing H. Electrosurgery as an aid to the removal of intracranial tumors. Surg Gynecol Obstet. (1928); 47(6): 751-184.
  • [7] Voorhees JR, Cohen-Gadol AA, Laws ER, Spencer DD. Battling blood loss in neurosurgery: Harvey Cushing's embrace of electrosurgery. J Neurosurg. (2005); 102(4): 745-752. https://doi.org/10.3171/jns.2005.102.4.0745
  • [8] Wicker P. Electrosurgery - Part I. The history of diathermy. NATNews. (1990); 27(8): 6-7.
  • [9] O'Connor JL, Bloom DA. William T. Bovie and electrosurgery. Surgery. (1996); 119(4): 390-396. https://doi.org/10.1016/S0039-6060(96)80137-1
  • [10] Taheri A, Mansoori P, Sandoval LF, Feldman SR, Pearce D, Williford PM. Electrosurgery: part I. Basics and principles. J Am Acad Dermatol. (2014); 70(4): 591 e1-14. https://doi.org/10.1016/j.jaad.2013.09.056
  • [11] Greenwood J. Two point coagulation: a new principle and instrument for applying coagulation current in neurosurgery. Am J Surg. (1940); 50(2): 267-270. https://doi.org/10.1016/S0002-9610(40)90609-2
  • [12] Dujovny M, Dujovny N, Gundamraj NR, Misra M. Bipolar coagulation in neurosurgery. Surg Neurol. (1998); 49(3): 328-332. https://doi.org/10.1016/s0090-3019(97)00440-0
  • [13] Bulsara KR, Sukhla S, Nimjee SM. History of bipolar coagulation. Neurosurg Rev. (2006); 29(2): 93-96. https://doi.org/10.1007/s10143-005-0012-6
  • [14] Sankaranarayanan G, Resapu RR, Jones DB, Schwaitzberg S, De S. Common uses and cited complications of energy in surgery. Surg Endosc. (2013); 27(9): 3056-3072. https://doi.org/10.1007/s00464-013-2823-9
  • [15] Harrell AG, Kercher KW, Heniford BT. Energy sources in laparoscopy. Semin Laparosc Surg. (2004); 11(3): 201-209. https://doi.org/10.1177/107155170401100310
  • [16] Tucker RD, Voyles CR. Laparoscopic electrosurgical complications and their prevention. AORN J. (1995); 62(1): 51-59. https://doi.org/10.1016/s0001-2092(06)63683-1
  • [17] Odell RC. Electrosurgery: principles and safety issues. Clin Obstet Gynecol. (1995); 38(3): 610-621. https://doi.org/10.1097/00003081-199509000-00021
  • [18] Sutton P, Awad S, Perkins A, Lobo D. Comparison of lateral thermal spread using monopolar and bipolar diathermy, the Harmonic Scalpel and the Ligasure. Br J Surg. (2010); 97(3): 428-433. https://doi.org/10.1002/bjs.6901
  • [19] Lamberton GR, Hsi RS, Jin DH, Lindler TU, Jellison FC, Baldwin DD. Prospective comparison of four laparoscopic vessel ligation devices. J Endourol. (2008); 22(10): 2307-2312. https://doi.org/10.1089/end.2008.9715
  • [20] Goldstein SL, Harold KL, Lentzner A, Matthews BD, Kercher KW, Sing RF, Pratt B, Lipford EH, Heniford BT. Comparison of thermal spread after ureteral ligation with the Laparo-Sonic ultrasonic shears and the Ligasure system. J Laparoendosc Adv Surg Tech. (2002); 12 (1): 61-63. https://doi.org/10.1089/109264202753486957
  • [21] Hefermehl LJ, Largo RA, Hermanns T, Poyet C, Sulser T, Eberli D. Lateral temperature spread of monopolar, bipolar and ultrasonic instruments for robot‐assisted laparoscopic surgery. BJU Int. (2014); 114(2): 245-252. https://doi.org/10.1111/bju.12498
  • [22] Baggish MS, Poiesz BJ, Joret D, Williamson P, Refai A. Presence of human immunodeficiency virus DNA in laser smoke. Lasers Surg Med. (1991); 11(3): 197-203. https://doi.org/10.1002/lsm.1900110302
  • [23] Alp E, Bijl D, Bleichrodt RP, Hansson B, Voss A. Surgical smoke and infection control. J Hosp Infect. (2006); 62(1): 1-5. https://doi.org/10.1016/j.jhin.2005.01.014
  • [24] Kwak HD, Kim SH, Seo YS, Song KJ. Detecting hepatitis B virus in surgical smoke emitted during laparoscopic surgery. Occup Environ Med. (2016); 73(12): 857-863. https://doi.org/10.1136/oemed-2016-103724
  • [25] Bigony L. Risks associated with exposure to surgical smoke plume: a review of the literature. AORN J. (2007); 86(6): 1013-1024. https://doi.org/10.1016/j.aorn.2007.07.005
  • [26] Okoshi K, Kobayashi K, Kinoshita K, Tomizawa Y, Hasegawa S, Sakai Y. Health risks associated with exposure to surgical smoke for surgeons and operation room personnel. Surg Today. (2015); 45(8): 957-965. https://doi.org/10.1007/s00595-014-1085-z
  • [27] Barrett WL, Garber SM. Surgical smoke: a review of the literature. Surg Endosc. (2003); 17(6): 979-987. https://doi.org/10.1007/s00464-002-8584-5
  • [28] Casey VJ, Martin C, Curtin P, Buckley K, McNamara LM. Comparison of Surgical Smoke Generated During Electrosurgery with Aerosolized Particulates from Ultrasonic and High-Speed Cutting. Ann Biomed Eng. (2020); 49(2): 560-572. https://doi.org/10.1007/s10439-020-02587-w
  • [29] Coccolini F, Tartaglia D, Puglisi A, Giordano C, Pistello M, Lodato M, Chiarugi M. SARS-CoV-2 is present in peritoneal fluid in COVID -19 patients. Ann Surg. (2020); 272(3): e240-e242. https://doi.org/10.1097/SLA.0000000000004030
  • [30] Safari S, Keyvani H, Alamdari NM, Dehghanian A, Hashemi MR, Honar BN, Aminian A. Abdominal surgery in patients with COVID- 19: detection of SARS-CoV-2 in abdominal and adipose tissues. Ann Surg. (2020); 272(3): e253-e256. https://doi.org/10.1097/SLA.0000000000004165
  • [31] Zakka K, Erridge S, Chidambaram S, Beatty JW, Kynoch M, Kinross J, Purkayastha S, PanSurg Collaborative Group. Electrocautery, diathermy, and surgical energy devices: are surgical teams at risk during the COVID-19 pandemic? Ann Surg. (2020); 272(3): e257- e262. https://doi.org/10.1097/SLA.0000000000004112
  • [32] Mowbray N, Ansell J, Horwood J, Cornish J, Rizkallah P, Parker A, Wall P, Spinelli A, Torkington J. Safe management of surgical smoke in the age of COVID‐19. Br J Surg. (2020); 107(11); 1406-1413. https://doi.org/10.1002/bjs.11679
  • [33] Mintz Y, Arezzo A, Boni L, Baldari L, Cassinotti E, Brodie R, Uranues S, Zheng M, Fingerhut A. The risk of COVID-19 transmission by laparoscopic smoke may be lower than for laparotomy: a narrative review. Surg Endosc. (2020): 34; 3298-3305. https://doi.org/10.1007/s00464-020-07652-y
  • [34] Wu MP, Ou CS, Chen SL, Yen EY, Rowbotham R. Complications and recommended practices for electrosurgery in laparoscopy. Am J Surg. (2000); 179(1): 67-73. https://doi.org/10.1016/s0002-9610(99)00267-6
  • [35] Jacobs VR, Morrison JE, Paepke S, Kiechle M. Body piercing affecting laparoscopy: perioperative precautions. J Am Assoc Gynecol Laparosc. (2004); 11(4): 537-541. https://doi.org/10.1016/s1074-3804(05)60089-8
  • [36] Voutsalath MA, Bichakjian CK, Pelosi F, Blum D, Johnson TM, Farrehi PM. Electrosurgery and implantable electronic devices: review and implications for office-based procedures. Dermatol Surg. (2011); 37(7): 889-899. https://doi.org/10.1111/j.1524-4725.2011.02006.x
  • [37] Parekh PJ, Buerlein RC, Shams R, Herre J, Johnson DA. An update on the management of implanted cardiac devices during electrosurgical procedures. Gastrointest Endosc. (2013); 78(6): 836- 841. https://doi.org/10.1016/j.gie.2013.08.013
  • [38] Paniccia A, Rozner M, Jones EL, Townsend NT, Varosy PD, Dunning JE, Girard G, Weyer C, Stiegmann GV, Robinson TN. Electromagnetic interference caused by common surgical energy- based devices on an implanted cardiac defibrillator. Am J Surg. (2014); 208(6): 932-936. https://doi.org/10.1016/j.amjsurg.2014.09.011
  • [39] Grochola LF, Vonlanthen R. Surgical energy devices or devices for hemostasis. In: Clavien PA, Sarr MG, Fong Y, Miyazaki M, editors. Atlas of upper gastrointestinal and hepato-pancreato-biliary surgery. Berlin: Springer-Verlag; (2016). p. 37-44. ISBN:978-3-662-46546-2
  • [40] Lyons SD, Law KSK. Laparoscopic vessel sealing technologies. J Minim Invasive Gynecol. (2013); 20(3): 301-307. https://doi.org/10.1016/j.jmig.2013.02.012
  • [41] Amaral JF. The experimental development of an ultrasonically activated scalpel for laparoscopic use. Surg Laparosc Endosc. (1994); 4(2): 92-99.
  • [42] Fagotti A, Vizzielli G, Fanfani F, Gallotta V, Rossitto C, Costantini B, Gueli-Alletti S, Avenia N, Iodice R, Scambia G. Randomized study comparing use of THUNDERBEAT technology vs standard electrosurgery during laparoscopic radical hysterectomy and pelvic lymphadenectomy for gynecologic cancer. J Minim Invasive Gynecol. (2014); 21(3): 447-453. https://doi.org/10.1016/j.jmig.2013.12.001
  • [43] Milsom J, Trencheva K, Monette S, Pavoor R, Shukla P, Ma J, Sonoda T. Evaluation of the safety, efficacy, and versatility of a new surgical energy device (THUNDERBEAT) in comparison with Harmonic ACE, LigaSure V, and EnSeal devices in a porcine model. J Laparoendosc Adv Surg Tech A. (2012); 22(4): 378-386. https://doi.org/10.1089/lap.2011.0420
  • [44] Van Slycke S, Gillardin J-P, Van Den Heede K, Minguet J, Vermeersch H, Brusselaers N. Comparison of the harmonic focus and the thunderbeat for open thyroidectomy. Langenbecks Arch Surg. (2016); 401(6): 851-859. https://doi.org/10.1007/s00423-016-1448-6
  • [45] Seehofer D, Mogl M, Boas-Knoop S, Unger J, Schirmeier A, Chopra S, Eurich D. Safety and efficacy of new integrated bipolar and ultrasonic scissors compared to conventional laparoscopic 5-mm sealing and cutting instruments. Surg Endosc. (2012); 26(9): 2541- 2549. https://doi.org/10.1007/s00464-012-2229-0
  • [46] Elbiss HM, Abu-Zidan FM. Bowel injury following gynecological laparoscopic surgery. Afr Health Sci. (2017); 17(4): 1237-1245. https://doi.org/10.4314/ahs.v17i4.35
  • [47] Nduka CC, Super PA, Monson J, Darzi AW. Cause and prevention of electrosurgical injuries in laparoscopy. J Am Coll Surg. (1994); 179 (2): 161-170.
  • [48] Willson PD, Mills T, Williams NS, Rogers J. Electrosurgical safety during laparoscopic surgery. Minim Invasive Ther. (1995); 4(4): 195- 201. https://doi.org/10.3109/13645709509152777
  • [49] Willson P, Van der Walt J, Moxon D, Rogers J. Port site electrosurgical (diathermy) burns during surgical laparoscopy. Surg Endosc. (1997); 11(6): 653-654. https://doi.org/10.1007/s004649900414
  • [50] Willson PD, Van der Walt JD, Rogers J. Electrosurgical coupling to a metal cannula causing skin burns during laparoscopic surgery. Minim Invasive Ther. (1995); 4(3): 163-164. https://doi.org/10.3109/13645709509153047
  • [51] Liu Q, Sun XB. Indirect electrical injuries from capacitive coupling: a rarely mentioned electrosurgical complication in monopolar laparoscopy. Acta Obstet Gynecol Scand. (2013); 92(2): 238-241. https://doi.org/10.1111/aogs.12049
  • [52] Tixier F, Garçon M, Rochefort F, Corvaisier S. Insulation failure in electrosurgery instrumentation: a prospective evaluation. Surg Endosc. (2016); 30(11): 4995-5001. https://doi.org/10.1007/s00464-016-4844-7
  • [53] Montero PN, Robinson TN, Weaver JS, Stiegmann GV. Insulation failure in laparoscopic instruments. Surg Endosc. (2010); 24(2): 462- 465. https://doi.org/10.1007/s00464-009-0601-5
  • [54] Ha A, Richards C, Criman E, Piaggione J, Yheulon C, Lim R. The safe use of surgical energy devices by surgeons may be overestimated. Surg Endosc. (2018); 32(9): 3861-3867. https://doi.org/10.1007/s00464-018-6116-1
  • [55] Fuchshuber P, Schwaitzberg S, Jones D, Jones SB, Feldman L, Munro M, Robinson T, Purcell-Jacjson G, Mikami D, Madani A, Brunt M, Dunkin B, Gugliemi C., Groah L, Lim R, Mischna J, Voyles CR. The SAGES Fundamental Use of Surgical Energy program (FUSE): history, development, and purpose. Surg Endosc. (2018); 32 (6): 2583-2602. https://doi.org/10.1007/s00464-017-5933-y

Is electrosurgery a revolution? Mechanism, benefits, complications and precautions

Year 2020, Volume: 1 Issue: 3, 60 - 64, 01.12.2020
https://doi.org/10.37662/jpt.2021.8

Abstract

Approximately one and a half-century ago, it was revealed that high-frequency alternating current flows through the tissue without causing a painful electrical shock and produces heat instead of muscle stimulation. The application of electrical current to the tissue produces effects such as fulguration, desiccation/coagulation, or vaporization/ablation. Devices that use high- frequency electric current are called energy devices. The development of these devices that facilitated dissection and bleeding control pioneered a new era in surgery. After the Bovie units, which have monopolar and bipolar modes, advanced energy devices were also developed. Advanced bipolar devices use pulsed bipolar energy and feedback control of the energy output during tissue coagulation. There is an electrosurgical unit in each operating theater now. However, these devices are not exempted from complications. Complications related to energy devices occur in 2 to 5 per 1000 procedures. The leading causes of these complications are the thermal diffusion effect, smoke plumes, and stray current. As the surgical experience increases, complications decrease and reach a plateau. Surgeons should understand the mechanism of action; they should have knowledge about the prevention and treatment of potential complications.

References

  • [1] Vilos GA, Rajakumar C. Electrosurgical generators and monopolar and bipolar electrosurgery. J Minim Invasive Gynecol. (2013); 20(3): 279-287. https://doi.org/10.1016/j.jmig.2013.02.013
  • [2] Glover JL, Bendick PJ, Link WJ. The use of thermal knives in surgery: electrosurgery, lasers, plasma scalpel. Curr Probl Surg. (1978); 15(1): 1-78. https://doi.org/10.1016/S0011-3840(78)80017-3
  • [3] Wang K, Advincula AP. “Current thoughts” in electrosurgery. Int J Gynecol Obstet. (2007); 97(3): 245-250. https://doi.org/10.1016/j.ijgo.2007.03.001
  • [4] Massarweh NN, Cosgriff N, Slakey DP. Electrosurgery: history, principles, and current and future uses. J Am Coll Surg. (2006); 202 (3): 520-530. https://doi.org/10.1016/j.jamcollsurg.2005.11.017
  • [5] Goldwyn RM. Bovie: the man and the machine. Ann Plast Surg. (1979); 2(2): 135-153.
  • [6] Cushing H. Electrosurgery as an aid to the removal of intracranial tumors. Surg Gynecol Obstet. (1928); 47(6): 751-184.
  • [7] Voorhees JR, Cohen-Gadol AA, Laws ER, Spencer DD. Battling blood loss in neurosurgery: Harvey Cushing's embrace of electrosurgery. J Neurosurg. (2005); 102(4): 745-752. https://doi.org/10.3171/jns.2005.102.4.0745
  • [8] Wicker P. Electrosurgery - Part I. The history of diathermy. NATNews. (1990); 27(8): 6-7.
  • [9] O'Connor JL, Bloom DA. William T. Bovie and electrosurgery. Surgery. (1996); 119(4): 390-396. https://doi.org/10.1016/S0039-6060(96)80137-1
  • [10] Taheri A, Mansoori P, Sandoval LF, Feldman SR, Pearce D, Williford PM. Electrosurgery: part I. Basics and principles. J Am Acad Dermatol. (2014); 70(4): 591 e1-14. https://doi.org/10.1016/j.jaad.2013.09.056
  • [11] Greenwood J. Two point coagulation: a new principle and instrument for applying coagulation current in neurosurgery. Am J Surg. (1940); 50(2): 267-270. https://doi.org/10.1016/S0002-9610(40)90609-2
  • [12] Dujovny M, Dujovny N, Gundamraj NR, Misra M. Bipolar coagulation in neurosurgery. Surg Neurol. (1998); 49(3): 328-332. https://doi.org/10.1016/s0090-3019(97)00440-0
  • [13] Bulsara KR, Sukhla S, Nimjee SM. History of bipolar coagulation. Neurosurg Rev. (2006); 29(2): 93-96. https://doi.org/10.1007/s10143-005-0012-6
  • [14] Sankaranarayanan G, Resapu RR, Jones DB, Schwaitzberg S, De S. Common uses and cited complications of energy in surgery. Surg Endosc. (2013); 27(9): 3056-3072. https://doi.org/10.1007/s00464-013-2823-9
  • [15] Harrell AG, Kercher KW, Heniford BT. Energy sources in laparoscopy. Semin Laparosc Surg. (2004); 11(3): 201-209. https://doi.org/10.1177/107155170401100310
  • [16] Tucker RD, Voyles CR. Laparoscopic electrosurgical complications and their prevention. AORN J. (1995); 62(1): 51-59. https://doi.org/10.1016/s0001-2092(06)63683-1
  • [17] Odell RC. Electrosurgery: principles and safety issues. Clin Obstet Gynecol. (1995); 38(3): 610-621. https://doi.org/10.1097/00003081-199509000-00021
  • [18] Sutton P, Awad S, Perkins A, Lobo D. Comparison of lateral thermal spread using monopolar and bipolar diathermy, the Harmonic Scalpel and the Ligasure. Br J Surg. (2010); 97(3): 428-433. https://doi.org/10.1002/bjs.6901
  • [19] Lamberton GR, Hsi RS, Jin DH, Lindler TU, Jellison FC, Baldwin DD. Prospective comparison of four laparoscopic vessel ligation devices. J Endourol. (2008); 22(10): 2307-2312. https://doi.org/10.1089/end.2008.9715
  • [20] Goldstein SL, Harold KL, Lentzner A, Matthews BD, Kercher KW, Sing RF, Pratt B, Lipford EH, Heniford BT. Comparison of thermal spread after ureteral ligation with the Laparo-Sonic ultrasonic shears and the Ligasure system. J Laparoendosc Adv Surg Tech. (2002); 12 (1): 61-63. https://doi.org/10.1089/109264202753486957
  • [21] Hefermehl LJ, Largo RA, Hermanns T, Poyet C, Sulser T, Eberli D. Lateral temperature spread of monopolar, bipolar and ultrasonic instruments for robot‐assisted laparoscopic surgery. BJU Int. (2014); 114(2): 245-252. https://doi.org/10.1111/bju.12498
  • [22] Baggish MS, Poiesz BJ, Joret D, Williamson P, Refai A. Presence of human immunodeficiency virus DNA in laser smoke. Lasers Surg Med. (1991); 11(3): 197-203. https://doi.org/10.1002/lsm.1900110302
  • [23] Alp E, Bijl D, Bleichrodt RP, Hansson B, Voss A. Surgical smoke and infection control. J Hosp Infect. (2006); 62(1): 1-5. https://doi.org/10.1016/j.jhin.2005.01.014
  • [24] Kwak HD, Kim SH, Seo YS, Song KJ. Detecting hepatitis B virus in surgical smoke emitted during laparoscopic surgery. Occup Environ Med. (2016); 73(12): 857-863. https://doi.org/10.1136/oemed-2016-103724
  • [25] Bigony L. Risks associated with exposure to surgical smoke plume: a review of the literature. AORN J. (2007); 86(6): 1013-1024. https://doi.org/10.1016/j.aorn.2007.07.005
  • [26] Okoshi K, Kobayashi K, Kinoshita K, Tomizawa Y, Hasegawa S, Sakai Y. Health risks associated with exposure to surgical smoke for surgeons and operation room personnel. Surg Today. (2015); 45(8): 957-965. https://doi.org/10.1007/s00595-014-1085-z
  • [27] Barrett WL, Garber SM. Surgical smoke: a review of the literature. Surg Endosc. (2003); 17(6): 979-987. https://doi.org/10.1007/s00464-002-8584-5
  • [28] Casey VJ, Martin C, Curtin P, Buckley K, McNamara LM. Comparison of Surgical Smoke Generated During Electrosurgery with Aerosolized Particulates from Ultrasonic and High-Speed Cutting. Ann Biomed Eng. (2020); 49(2): 560-572. https://doi.org/10.1007/s10439-020-02587-w
  • [29] Coccolini F, Tartaglia D, Puglisi A, Giordano C, Pistello M, Lodato M, Chiarugi M. SARS-CoV-2 is present in peritoneal fluid in COVID -19 patients. Ann Surg. (2020); 272(3): e240-e242. https://doi.org/10.1097/SLA.0000000000004030
  • [30] Safari S, Keyvani H, Alamdari NM, Dehghanian A, Hashemi MR, Honar BN, Aminian A. Abdominal surgery in patients with COVID- 19: detection of SARS-CoV-2 in abdominal and adipose tissues. Ann Surg. (2020); 272(3): e253-e256. https://doi.org/10.1097/SLA.0000000000004165
  • [31] Zakka K, Erridge S, Chidambaram S, Beatty JW, Kynoch M, Kinross J, Purkayastha S, PanSurg Collaborative Group. Electrocautery, diathermy, and surgical energy devices: are surgical teams at risk during the COVID-19 pandemic? Ann Surg. (2020); 272(3): e257- e262. https://doi.org/10.1097/SLA.0000000000004112
  • [32] Mowbray N, Ansell J, Horwood J, Cornish J, Rizkallah P, Parker A, Wall P, Spinelli A, Torkington J. Safe management of surgical smoke in the age of COVID‐19. Br J Surg. (2020); 107(11); 1406-1413. https://doi.org/10.1002/bjs.11679
  • [33] Mintz Y, Arezzo A, Boni L, Baldari L, Cassinotti E, Brodie R, Uranues S, Zheng M, Fingerhut A. The risk of COVID-19 transmission by laparoscopic smoke may be lower than for laparotomy: a narrative review. Surg Endosc. (2020): 34; 3298-3305. https://doi.org/10.1007/s00464-020-07652-y
  • [34] Wu MP, Ou CS, Chen SL, Yen EY, Rowbotham R. Complications and recommended practices for electrosurgery in laparoscopy. Am J Surg. (2000); 179(1): 67-73. https://doi.org/10.1016/s0002-9610(99)00267-6
  • [35] Jacobs VR, Morrison JE, Paepke S, Kiechle M. Body piercing affecting laparoscopy: perioperative precautions. J Am Assoc Gynecol Laparosc. (2004); 11(4): 537-541. https://doi.org/10.1016/s1074-3804(05)60089-8
  • [36] Voutsalath MA, Bichakjian CK, Pelosi F, Blum D, Johnson TM, Farrehi PM. Electrosurgery and implantable electronic devices: review and implications for office-based procedures. Dermatol Surg. (2011); 37(7): 889-899. https://doi.org/10.1111/j.1524-4725.2011.02006.x
  • [37] Parekh PJ, Buerlein RC, Shams R, Herre J, Johnson DA. An update on the management of implanted cardiac devices during electrosurgical procedures. Gastrointest Endosc. (2013); 78(6): 836- 841. https://doi.org/10.1016/j.gie.2013.08.013
  • [38] Paniccia A, Rozner M, Jones EL, Townsend NT, Varosy PD, Dunning JE, Girard G, Weyer C, Stiegmann GV, Robinson TN. Electromagnetic interference caused by common surgical energy- based devices on an implanted cardiac defibrillator. Am J Surg. (2014); 208(6): 932-936. https://doi.org/10.1016/j.amjsurg.2014.09.011
  • [39] Grochola LF, Vonlanthen R. Surgical energy devices or devices for hemostasis. In: Clavien PA, Sarr MG, Fong Y, Miyazaki M, editors. Atlas of upper gastrointestinal and hepato-pancreato-biliary surgery. Berlin: Springer-Verlag; (2016). p. 37-44. ISBN:978-3-662-46546-2
  • [40] Lyons SD, Law KSK. Laparoscopic vessel sealing technologies. J Minim Invasive Gynecol. (2013); 20(3): 301-307. https://doi.org/10.1016/j.jmig.2013.02.012
  • [41] Amaral JF. The experimental development of an ultrasonically activated scalpel for laparoscopic use. Surg Laparosc Endosc. (1994); 4(2): 92-99.
  • [42] Fagotti A, Vizzielli G, Fanfani F, Gallotta V, Rossitto C, Costantini B, Gueli-Alletti S, Avenia N, Iodice R, Scambia G. Randomized study comparing use of THUNDERBEAT technology vs standard electrosurgery during laparoscopic radical hysterectomy and pelvic lymphadenectomy for gynecologic cancer. J Minim Invasive Gynecol. (2014); 21(3): 447-453. https://doi.org/10.1016/j.jmig.2013.12.001
  • [43] Milsom J, Trencheva K, Monette S, Pavoor R, Shukla P, Ma J, Sonoda T. Evaluation of the safety, efficacy, and versatility of a new surgical energy device (THUNDERBEAT) in comparison with Harmonic ACE, LigaSure V, and EnSeal devices in a porcine model. J Laparoendosc Adv Surg Tech A. (2012); 22(4): 378-386. https://doi.org/10.1089/lap.2011.0420
  • [44] Van Slycke S, Gillardin J-P, Van Den Heede K, Minguet J, Vermeersch H, Brusselaers N. Comparison of the harmonic focus and the thunderbeat for open thyroidectomy. Langenbecks Arch Surg. (2016); 401(6): 851-859. https://doi.org/10.1007/s00423-016-1448-6
  • [45] Seehofer D, Mogl M, Boas-Knoop S, Unger J, Schirmeier A, Chopra S, Eurich D. Safety and efficacy of new integrated bipolar and ultrasonic scissors compared to conventional laparoscopic 5-mm sealing and cutting instruments. Surg Endosc. (2012); 26(9): 2541- 2549. https://doi.org/10.1007/s00464-012-2229-0
  • [46] Elbiss HM, Abu-Zidan FM. Bowel injury following gynecological laparoscopic surgery. Afr Health Sci. (2017); 17(4): 1237-1245. https://doi.org/10.4314/ahs.v17i4.35
  • [47] Nduka CC, Super PA, Monson J, Darzi AW. Cause and prevention of electrosurgical injuries in laparoscopy. J Am Coll Surg. (1994); 179 (2): 161-170.
  • [48] Willson PD, Mills T, Williams NS, Rogers J. Electrosurgical safety during laparoscopic surgery. Minim Invasive Ther. (1995); 4(4): 195- 201. https://doi.org/10.3109/13645709509152777
  • [49] Willson P, Van der Walt J, Moxon D, Rogers J. Port site electrosurgical (diathermy) burns during surgical laparoscopy. Surg Endosc. (1997); 11(6): 653-654. https://doi.org/10.1007/s004649900414
  • [50] Willson PD, Van der Walt JD, Rogers J. Electrosurgical coupling to a metal cannula causing skin burns during laparoscopic surgery. Minim Invasive Ther. (1995); 4(3): 163-164. https://doi.org/10.3109/13645709509153047
  • [51] Liu Q, Sun XB. Indirect electrical injuries from capacitive coupling: a rarely mentioned electrosurgical complication in monopolar laparoscopy. Acta Obstet Gynecol Scand. (2013); 92(2): 238-241. https://doi.org/10.1111/aogs.12049
  • [52] Tixier F, Garçon M, Rochefort F, Corvaisier S. Insulation failure in electrosurgery instrumentation: a prospective evaluation. Surg Endosc. (2016); 30(11): 4995-5001. https://doi.org/10.1007/s00464-016-4844-7
  • [53] Montero PN, Robinson TN, Weaver JS, Stiegmann GV. Insulation failure in laparoscopic instruments. Surg Endosc. (2010); 24(2): 462- 465. https://doi.org/10.1007/s00464-009-0601-5
  • [54] Ha A, Richards C, Criman E, Piaggione J, Yheulon C, Lim R. The safe use of surgical energy devices by surgeons may be overestimated. Surg Endosc. (2018); 32(9): 3861-3867. https://doi.org/10.1007/s00464-018-6116-1
  • [55] Fuchshuber P, Schwaitzberg S, Jones D, Jones SB, Feldman L, Munro M, Robinson T, Purcell-Jacjson G, Mikami D, Madani A, Brunt M, Dunkin B, Gugliemi C., Groah L, Lim R, Mischna J, Voyles CR. The SAGES Fundamental Use of Surgical Energy program (FUSE): history, development, and purpose. Surg Endosc. (2018); 32 (6): 2583-2602. https://doi.org/10.1007/s00464-017-5933-y
There are 55 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Review Articles
Authors

Ümit Özdemir 0000-0001-5681-7421

Ahmet Karayiğit 0000-0003-0380-9190

İhsan Karakaya 0000-0001-7634-0771

Dursun Özdemir 0000-0002-3672-5738

Hayrettin Dizen 0000-0002-4031-2557

İlter Ozer 0000-0001-6902-0913

Bülent Ünal 0000-0003-2538-7961

Publication Date December 1, 2020
Submission Date November 23, 2020
Acceptance Date May 6, 2021
Published in Issue Year 2020 Volume: 1 Issue: 3

Cite

APA Özdemir, Ü., Karayiğit, A., Karakaya, İ., Özdemir, D., et al. (2020). Is electrosurgery a revolution? Mechanism, benefits, complications and precautions. Journal of Pharmaceutical Technology, 1(3), 60-64. https://doi.org/10.37662/jpt.2021.8

download  download  17117  18771