Research Article
BibTex RIS Cite
Year 2023, , 51 - 63, 18.12.2023
https://doi.org/10.54565/jphcfum.1375349

Abstract

References

  • M.F. Khan, R.B. Rashid, and M.A. Rashid, Computational study of geometry, molecular properties and docking study of aspirin. World J Pharm Res, 2015. 4: p. 2702-2714.
  • G. Pasero and P. Marson, A short history of anti-rheumatic therapy. II. Aspirin. Reumatismo, 2010. 62(2): p. 148-156.
  • G. Adebayo, J. Williams, and S. Healy, Aspirin esterase activity—Evidence for skewed distribution in healthy volunteers. European Journal of Internal Medicine, 2007. 18(4): p. 299-303.
  • A.B. Moreira, et al., Solid-phase fluorescence spectroscopy for the determination of acetylsalicylic acid in powdered pharmaceutical samples. Analytica chimica acta, 2004. 523(1): p. 49-52.
  • J. Vane and R. Botting, The mechanism of action of aspirin. Thrombosis research, 2003. 110(5-6): p. 255-258.
  • B. Campbell, Anticoagulation for patients with arterial disease. European Journal of Vascular and Endovascular Surgery, 2001. 21(1): p. 1-2.
  • E.S. Huang, et al., Long-term use of aspirin and the risk of gastrointestinal bleeding. The American journal of medicine, 2011. 124(5): p. 426-433.
  • O. Rebaz, R.F. Rashid, and K. OTHMAN, Exploring The Synthesis of 1, 2, 4-Triazole Derivatives: A Comprehensive Review. Journal of Physical Chemistry and Functional Materials. 6(1): p. 43-56.
  • J. Mahdi, et al., The historical analysis of aspirin discovery, its relation to the willow tree and antiproliferative and anticancer potential. Cell proliferation, 2006. 39(2): p. 147-155.
  • M.J. Desborough and D.M. Keeling, The aspirin story–from willow to wonder drug. British journal of haematology, 2017. 177(5): p. 674-683.
  • M. Ugurlucan, et al., Aspirin: from a historical perspective. Recent Patents on Cardiovascular Drug Discovery (Discontinued), 2012. 7(1): p. 71-76.
  • T.E. Wallen, et al., Aspirin Administration Mitigates Platelet Hyperaggregability After Splenectomy in a Murine Model. Journal of Surgical Research, 2022. 279: p. 548-556.
  • S. Dutta and P. Sengupta, Men and mice: relating their ages. Life sciences, 2016. 152: p. 244-248.
  • E.J. Jacobs, et al., A large cohort study of long-term daily use of adult-strength aspirin and cancer incidence. Journal of the National Cancer Institute, 2007. 99(8): p. 608-615.
  • E. Flossmann and P.M. Rothwell, Effect of aspirin on long-term risk of colorectal cancer: consistent evidence from randomised and observational studies. The Lancet, 2007. 369(9573): p. 1603-1613.
  • L. Wilbraham, C. Adamo, and I. Ciofini, Communication: evaluating non-empirical double hybrid functionals for spin-state energetics in transition-metal complexes. The Journal of chemical physics, 2018. 148(4): p. 041103.
  • A. Vektariene, G. Vektaris, and J. Svoboda, A theoretical approach to the nucleophilic behavior of benzofused thieno [3, 2-b] furans using DFT and HF based reactivity descriptors. Arkivoc: Online Journal of Organic Chemistry, 2009.
  • E. Cances, B. Mennucci, and J. Tomasi, A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. The Journal of chemical physics, 1997. 107(8): p. 3032-3041.
  • T. Risthaus and S. Grimme, Benchmarking of London dispersion-accounting density functional theory methods on very large molecular complexes. Journal of chemical theory and computation, 2013. 9(3): p. 1580-1591.
  • L. AHMED and O. Rebaz, Population Analysis and UV-Vis spectra of Dopamine Molecule Using Gaussian 09. Journal of Physical Chemistry and Functional Materials, 2020. 3(2): p. 48-58.
  • D.H. Pereira, et al., New perspectives on the role of frontier molecular orbitals in the study of chemical reactivity: a review. Revista Virtual de Quimica, 2016: p. 425-453.
  • B. Kumar, et al., Crystal structure of 1-(4-fluorophenyl)-4-(4-methoxyphenyl)-1H-1, 2, 3-triazole. Acta Crystallographica Section E: Crystallographic Communications, 2015. 71(Pt 8): p. o534.
  • K. Fukui, Role of frontier orbitals in chemical reactions. science, 1982. 218(4574): p. 747-754.
  • L. AHMED and O. Rebaz, Spectroscopic properties of Vitamin C: A theoretical work. Cumhuriyet Science Journal, 2020. 41(4): p. 916-928.
  • I. Obot, D. Macdonald, and Z. Gasem, Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: an overview. Corrosion Science, 2015. 99: p. 1-30.
  • T. Koopmans, Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. physica, 1934. 1(1-6): p. 104-113.
  • S.Y. Omar, et al., Investigating the Role of Metoclopramide and Hyoscine-N-Butyl Bromide in Colon Motility. ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 2023. 11(2): p. 109-115.
  • H.H. Rasul, et al., Theoretical investigation on corrosion inhibition efficiency of some amino acid compounds. Computational and Theoretical Chemistry, 2023: p. 114177.
  • H. Chermette, Chemical reactivity indexes in density functional theory. Journal of computational chemistry, 1999. 20(1): p. 129-154.
  • R.G. Parr and R.G. Pearson, Absolute hardness: companion parameter to absolute electronegativity. Journal of the American chemical society, 1983. 105(26): p. 7512-7516.
  • L. AHMED, et al., Quantum Chemical Study of Some Basic Organic Compounds as the Corrosion Inhibitors. Journal of Physical Chemistry and Functional Materials, 2023. 6(1): p. 34-42.
  • L.H. Madkour, et al., Quantum chemical calculations, molecular dynamic (MD) simulations and experimental studies of using some azo dyes as corrosion inhibitors for iron. Part 2: Bis–azo dye derivatives. Journal of Molecular Structure, 2018. 1163: p. 397-417.
  • J.F. Janak, Proof that∂ e∂ n i= ε in density-functional theory. Physical Review B, 1978. 18(12): p. 7165.
  • L. Von Szentpály, Studies on electronegativity equalization: part 1. Consistent diatomic partial charges. Journal of Molecular Structure: THEOCHEM, 1991. 233: p. 71-81.
  • W. Yang and R.G. Parr, Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proceedings of the National Academy of Sciences, 1985. 82(20): p. 6723-6726.
  • H. Raissi, et al., Relationships between experimental and theoretical scales of electrophilicity of 7-L-4-nitrobenzofurazans. Journal of Molecular Structure, 2021. 1224: p. 128843.
  • A. Toro-Labbé, Theoretical aspects of chemical reactivity. 2006: Elsevier.
  • M.M. Marinho, et al., Quantum computational investigations and molecular docking studies on amentoflavone. Heliyon, 2021. 7(1): p. e06079.
  • C.O. Areán, et al., Computational and Fourier transform infrared spectroscopic studies on carbon monoxide adsorption on the zeolites Na-ZSM-5 and K-ZSM-5: evidence of dual-cation sites. The Journal of Physical Chemistry C, 2008. 112(12): p. 4658-4666.
  • V. Arjunan and S. Mohan, Fourier transform infrared and FT-Raman spectra, assignment, ab initio, DFT and normal co-ordinate analysis of 2-chloro-4-methylaniline and 2-chloro-6-methylaniline. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009. 72(2): p. 436-444.
  • L. AHMED and O. Rebaz, A theoretical study on Dopamine molecule. Journal of Physical Chemistry and Functional Materials, 2019. 2(2): p. 66-72.
  • O. Rebaz, et al., Theoretical Determination of Corrosion Inhibitor Activities of Naphthalene and Tetralin. Gazi University Journal of Science, 2022: p. 1-1.
  • G.Ö. Tarı, S. Gümüş, and E. Ağar, Crystal structure, spectroscopic studies and quantum mechanical calculations of 2-[((3-iodo-4-methyl) phenylimino) methyl]-5-nitrothiophene. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015. 141: p. 119-127.
  • J.S. Murray and P. Politzer, The electrostatic potential: an overview. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011. 1(2): p. 153-163.
  • D.M. Mamad, R.A. Omer, and K.A. Othman, Quantum chemical analysis of amino acids as anti-corrosion agents. Corrosion Reviews, 2023(0).
  • D.M. Mamad, et al. Insight into Corrosion Inhibition Efficiency of Imidazole-Based Molecules: A Quantum Chemical Study. in Doklady Physical Chemistry. 2023. Springer.
  • V.I. Minkin, et al., Spectroscopic and theoretical evidence for the elusive intermediate of the photoinitiated and thermal rearrangements of photochromic spiropyrans. The Journal of Physical Chemistry A, 2005. 109(42): p. 9605-9616.
  • G. Cottone, R. Noto, and G. La Manna, Theoretical study of spiropyran–merocyanine thermal isomerization. Chemical Physics Letters, 2004. 388(1-3): p. 218-222.
  • M. Abdel-Mottaleb and S.N. Ali, A new approach for studying bond rupture/closure of a spiro benzopyran photochromic material: reactivity descriptors derived from frontier orbitals and DFT computed electrostatic potential energy surface maps. International Journal of Photoenergy, 2016. 2016.
  • R. Anwar Omar, et al., A novel cyclobutane-derived thiazole–thiourea hybrid with a potency against COVID-19 and tick-borne encephalitis: synthesis, characterization, and computational analysis. Journal of Sulfur Chemistry, 2023: p. 1-18.
  • P. Koparir, et al., Novel 1, 2, 4-triazolethiol–thiophen Hybrids: Facile Synthesis, Characterization, ADMET Prediction and Molecular Docking. Polycyclic Aromatic Compounds, 2023: p. 1-15.
  • R.A. Omar, et al., A novel coumarin-triazole-thiophene hybrid: synthesis, characterization, ADMET prediction, molecular docking and molecular dynamics studies with a series of SARS-CoV-2 proteins. Journal of Chemical Sciences, 2023. 135(1): p. 6.
  • R.A. Omer, P. Koparir, and M. Koparir, Synthesis, experimental and theoretical characterization with inhibitor activity for 1, 2, 4-traizaol derivatives. Indian Journal of Chemistry (IJC), 2022. 61(12): p. 1278-1287.
  • R. Omer, et al., Synthesis, Characterization and DFT Study of 1-(3-Mesityl-3-methylcyclobutyl)-2-((4-phenyl-5-(thiophen-2-yl)-4H-1, 2, 4-triazol-3-yl) thio) ethan-1-one. Protection of Metals and Physical Chemistry of Surfaces, 2022: p. 1-13.
  • A.E. Parlak, et al., Experimental, DFT and Theoretical Corrosion Study for 4-(((4-ethyl-5-(thiophen-2-yl)-4H-1, 2, 4-triazole-3-yl) thio) methyl)-7, 8-dimethyl-2H-chromen-2-one. Arabian Journal of Chemistry, 2022. 15(9): p. 104088.
  • P. Koparir, et al., Synthesis, Characterization and Computational Analysis of Thiophene-2, 5-Diylbis ((3-Mesityl-3-Methylcyclobutyl) Methanone). Polycyclic Aromatic Compounds, 2022: p. 1-19.
  • Z. El Adnani, et al., DFT theoretical study of 7-R-3methylquinoxalin-2 (1H)-thiones (RH; CH3; Cl) as corrosion inhibitors in hydrochloric acid. Corrosion science, 2013. 68: p. 223-230.
  • R.A. Omer, P. Koparir, and L.O. Ahmed, Characterization and inhibitor activity of two newly synthesized thiazole. Journal of Bio-and Tribo-Corrosion, 2022. 8(1): p. 28.
  • D. Alexander and A. Moccari, Evaluation of corrosion inhibitors for component cooling water systems. Corrosion, 1993. 49(11).
  • S. Martinez, Inhibitory mechanism of mimosa tannin using molecular modeling and substitutional adsorption isotherms. Materials chemistry and physics, 2003. 77(1): p. 97-102.
  • R.M. Issa, M.K. Awad, and F.M. Atlam, Quantum chemical studies on the inhibition of corrosion of copper surface by substituted uracils. Applied Surface Science, 2008. 255(5): p. 2433-2441.
  • S. Chen, et al., Quantum chemical study of some benzimidazole and its derivatives as corrosion ınhibitors of steel in HCl solution. Int. J. Electrochem. Sci, 2014. 9: p. 5400-5408.
  • M. Beytur, et al., Synthesis, characterization and theoretical determination of corrosion inhibitor activities of some new 4, 5-dihydro-1H-1, 2, 4-Triazol-5-one derivatives. Heliyon, 2019. 5(6): p. e01809.
  • N. Karakus and K. Sayin, The investigation of corrosion inhibition efficiency on some benzaldehyde thiosemicarbazones and their thiole tautomers: Computational study. Journal of the Taiwan Institute of Chemical Engineers, 2015. 48: p. 95-102.
  • S. Erkan, K. Sayın, and D. Karakaş, Theoretical studies on eight oxovanadium (IV) complexes with salicylaldehyde and aniline ligands. Hacettepe J Biol Chem, 2014. 42: p. 337-342.

Composition and Properties of Aspirin Through DFT Analysis

Year 2023, , 51 - 63, 18.12.2023
https://doi.org/10.54565/jphcfum.1375349

Abstract

ABSTRACT Computing research on aspirin has produced considerable knowledge of its molecular structure and actions. It has revealed its chemical characteristics and connections with other molecules. Data from the study will be used to further investigate the effects of the drug and potential new uses for it. Using Density Functional Theory (B3LYP/cc-pVDZ) computations, we analyzed the optimal molecular shape, vibrational frequencies, 1H- and 13C-NMR chemical shifts. We also investigated electronic structural factors, such as dipole moment (μ), hardness (η), softness (σ), electronegativity (χ), electrophilicity index (ω), nucleophilicity index (ε), and chemical potential (Pi), which are connected to corrosion inhibition efficacy. Additionally, we calculated the fraction of transferred electrons (ΔN) to determine the interaction between the iron surface and organic molecules. The calculations revealed a positive association between organic-based corrosion inhibitors and quantum chemical parameters processes. Thus, the behavior of corrosion inhibitors can be predicted without the need for experimental investigation.

References

  • M.F. Khan, R.B. Rashid, and M.A. Rashid, Computational study of geometry, molecular properties and docking study of aspirin. World J Pharm Res, 2015. 4: p. 2702-2714.
  • G. Pasero and P. Marson, A short history of anti-rheumatic therapy. II. Aspirin. Reumatismo, 2010. 62(2): p. 148-156.
  • G. Adebayo, J. Williams, and S. Healy, Aspirin esterase activity—Evidence for skewed distribution in healthy volunteers. European Journal of Internal Medicine, 2007. 18(4): p. 299-303.
  • A.B. Moreira, et al., Solid-phase fluorescence spectroscopy for the determination of acetylsalicylic acid in powdered pharmaceutical samples. Analytica chimica acta, 2004. 523(1): p. 49-52.
  • J. Vane and R. Botting, The mechanism of action of aspirin. Thrombosis research, 2003. 110(5-6): p. 255-258.
  • B. Campbell, Anticoagulation for patients with arterial disease. European Journal of Vascular and Endovascular Surgery, 2001. 21(1): p. 1-2.
  • E.S. Huang, et al., Long-term use of aspirin and the risk of gastrointestinal bleeding. The American journal of medicine, 2011. 124(5): p. 426-433.
  • O. Rebaz, R.F. Rashid, and K. OTHMAN, Exploring The Synthesis of 1, 2, 4-Triazole Derivatives: A Comprehensive Review. Journal of Physical Chemistry and Functional Materials. 6(1): p. 43-56.
  • J. Mahdi, et al., The historical analysis of aspirin discovery, its relation to the willow tree and antiproliferative and anticancer potential. Cell proliferation, 2006. 39(2): p. 147-155.
  • M.J. Desborough and D.M. Keeling, The aspirin story–from willow to wonder drug. British journal of haematology, 2017. 177(5): p. 674-683.
  • M. Ugurlucan, et al., Aspirin: from a historical perspective. Recent Patents on Cardiovascular Drug Discovery (Discontinued), 2012. 7(1): p. 71-76.
  • T.E. Wallen, et al., Aspirin Administration Mitigates Platelet Hyperaggregability After Splenectomy in a Murine Model. Journal of Surgical Research, 2022. 279: p. 548-556.
  • S. Dutta and P. Sengupta, Men and mice: relating their ages. Life sciences, 2016. 152: p. 244-248.
  • E.J. Jacobs, et al., A large cohort study of long-term daily use of adult-strength aspirin and cancer incidence. Journal of the National Cancer Institute, 2007. 99(8): p. 608-615.
  • E. Flossmann and P.M. Rothwell, Effect of aspirin on long-term risk of colorectal cancer: consistent evidence from randomised and observational studies. The Lancet, 2007. 369(9573): p. 1603-1613.
  • L. Wilbraham, C. Adamo, and I. Ciofini, Communication: evaluating non-empirical double hybrid functionals for spin-state energetics in transition-metal complexes. The Journal of chemical physics, 2018. 148(4): p. 041103.
  • A. Vektariene, G. Vektaris, and J. Svoboda, A theoretical approach to the nucleophilic behavior of benzofused thieno [3, 2-b] furans using DFT and HF based reactivity descriptors. Arkivoc: Online Journal of Organic Chemistry, 2009.
  • E. Cances, B. Mennucci, and J. Tomasi, A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. The Journal of chemical physics, 1997. 107(8): p. 3032-3041.
  • T. Risthaus and S. Grimme, Benchmarking of London dispersion-accounting density functional theory methods on very large molecular complexes. Journal of chemical theory and computation, 2013. 9(3): p. 1580-1591.
  • L. AHMED and O. Rebaz, Population Analysis and UV-Vis spectra of Dopamine Molecule Using Gaussian 09. Journal of Physical Chemistry and Functional Materials, 2020. 3(2): p. 48-58.
  • D.H. Pereira, et al., New perspectives on the role of frontier molecular orbitals in the study of chemical reactivity: a review. Revista Virtual de Quimica, 2016: p. 425-453.
  • B. Kumar, et al., Crystal structure of 1-(4-fluorophenyl)-4-(4-methoxyphenyl)-1H-1, 2, 3-triazole. Acta Crystallographica Section E: Crystallographic Communications, 2015. 71(Pt 8): p. o534.
  • K. Fukui, Role of frontier orbitals in chemical reactions. science, 1982. 218(4574): p. 747-754.
  • L. AHMED and O. Rebaz, Spectroscopic properties of Vitamin C: A theoretical work. Cumhuriyet Science Journal, 2020. 41(4): p. 916-928.
  • I. Obot, D. Macdonald, and Z. Gasem, Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: an overview. Corrosion Science, 2015. 99: p. 1-30.
  • T. Koopmans, Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. physica, 1934. 1(1-6): p. 104-113.
  • S.Y. Omar, et al., Investigating the Role of Metoclopramide and Hyoscine-N-Butyl Bromide in Colon Motility. ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 2023. 11(2): p. 109-115.
  • H.H. Rasul, et al., Theoretical investigation on corrosion inhibition efficiency of some amino acid compounds. Computational and Theoretical Chemistry, 2023: p. 114177.
  • H. Chermette, Chemical reactivity indexes in density functional theory. Journal of computational chemistry, 1999. 20(1): p. 129-154.
  • R.G. Parr and R.G. Pearson, Absolute hardness: companion parameter to absolute electronegativity. Journal of the American chemical society, 1983. 105(26): p. 7512-7516.
  • L. AHMED, et al., Quantum Chemical Study of Some Basic Organic Compounds as the Corrosion Inhibitors. Journal of Physical Chemistry and Functional Materials, 2023. 6(1): p. 34-42.
  • L.H. Madkour, et al., Quantum chemical calculations, molecular dynamic (MD) simulations and experimental studies of using some azo dyes as corrosion inhibitors for iron. Part 2: Bis–azo dye derivatives. Journal of Molecular Structure, 2018. 1163: p. 397-417.
  • J.F. Janak, Proof that∂ e∂ n i= ε in density-functional theory. Physical Review B, 1978. 18(12): p. 7165.
  • L. Von Szentpály, Studies on electronegativity equalization: part 1. Consistent diatomic partial charges. Journal of Molecular Structure: THEOCHEM, 1991. 233: p. 71-81.
  • W. Yang and R.G. Parr, Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proceedings of the National Academy of Sciences, 1985. 82(20): p. 6723-6726.
  • H. Raissi, et al., Relationships between experimental and theoretical scales of electrophilicity of 7-L-4-nitrobenzofurazans. Journal of Molecular Structure, 2021. 1224: p. 128843.
  • A. Toro-Labbé, Theoretical aspects of chemical reactivity. 2006: Elsevier.
  • M.M. Marinho, et al., Quantum computational investigations and molecular docking studies on amentoflavone. Heliyon, 2021. 7(1): p. e06079.
  • C.O. Areán, et al., Computational and Fourier transform infrared spectroscopic studies on carbon monoxide adsorption on the zeolites Na-ZSM-5 and K-ZSM-5: evidence of dual-cation sites. The Journal of Physical Chemistry C, 2008. 112(12): p. 4658-4666.
  • V. Arjunan and S. Mohan, Fourier transform infrared and FT-Raman spectra, assignment, ab initio, DFT and normal co-ordinate analysis of 2-chloro-4-methylaniline and 2-chloro-6-methylaniline. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009. 72(2): p. 436-444.
  • L. AHMED and O. Rebaz, A theoretical study on Dopamine molecule. Journal of Physical Chemistry and Functional Materials, 2019. 2(2): p. 66-72.
  • O. Rebaz, et al., Theoretical Determination of Corrosion Inhibitor Activities of Naphthalene and Tetralin. Gazi University Journal of Science, 2022: p. 1-1.
  • G.Ö. Tarı, S. Gümüş, and E. Ağar, Crystal structure, spectroscopic studies and quantum mechanical calculations of 2-[((3-iodo-4-methyl) phenylimino) methyl]-5-nitrothiophene. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015. 141: p. 119-127.
  • J.S. Murray and P. Politzer, The electrostatic potential: an overview. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011. 1(2): p. 153-163.
  • D.M. Mamad, R.A. Omer, and K.A. Othman, Quantum chemical analysis of amino acids as anti-corrosion agents. Corrosion Reviews, 2023(0).
  • D.M. Mamad, et al. Insight into Corrosion Inhibition Efficiency of Imidazole-Based Molecules: A Quantum Chemical Study. in Doklady Physical Chemistry. 2023. Springer.
  • V.I. Minkin, et al., Spectroscopic and theoretical evidence for the elusive intermediate of the photoinitiated and thermal rearrangements of photochromic spiropyrans. The Journal of Physical Chemistry A, 2005. 109(42): p. 9605-9616.
  • G. Cottone, R. Noto, and G. La Manna, Theoretical study of spiropyran–merocyanine thermal isomerization. Chemical Physics Letters, 2004. 388(1-3): p. 218-222.
  • M. Abdel-Mottaleb and S.N. Ali, A new approach for studying bond rupture/closure of a spiro benzopyran photochromic material: reactivity descriptors derived from frontier orbitals and DFT computed electrostatic potential energy surface maps. International Journal of Photoenergy, 2016. 2016.
  • R. Anwar Omar, et al., A novel cyclobutane-derived thiazole–thiourea hybrid with a potency against COVID-19 and tick-borne encephalitis: synthesis, characterization, and computational analysis. Journal of Sulfur Chemistry, 2023: p. 1-18.
  • P. Koparir, et al., Novel 1, 2, 4-triazolethiol–thiophen Hybrids: Facile Synthesis, Characterization, ADMET Prediction and Molecular Docking. Polycyclic Aromatic Compounds, 2023: p. 1-15.
  • R.A. Omar, et al., A novel coumarin-triazole-thiophene hybrid: synthesis, characterization, ADMET prediction, molecular docking and molecular dynamics studies with a series of SARS-CoV-2 proteins. Journal of Chemical Sciences, 2023. 135(1): p. 6.
  • R.A. Omer, P. Koparir, and M. Koparir, Synthesis, experimental and theoretical characterization with inhibitor activity for 1, 2, 4-traizaol derivatives. Indian Journal of Chemistry (IJC), 2022. 61(12): p. 1278-1287.
  • R. Omer, et al., Synthesis, Characterization and DFT Study of 1-(3-Mesityl-3-methylcyclobutyl)-2-((4-phenyl-5-(thiophen-2-yl)-4H-1, 2, 4-triazol-3-yl) thio) ethan-1-one. Protection of Metals and Physical Chemistry of Surfaces, 2022: p. 1-13.
  • A.E. Parlak, et al., Experimental, DFT and Theoretical Corrosion Study for 4-(((4-ethyl-5-(thiophen-2-yl)-4H-1, 2, 4-triazole-3-yl) thio) methyl)-7, 8-dimethyl-2H-chromen-2-one. Arabian Journal of Chemistry, 2022. 15(9): p. 104088.
  • P. Koparir, et al., Synthesis, Characterization and Computational Analysis of Thiophene-2, 5-Diylbis ((3-Mesityl-3-Methylcyclobutyl) Methanone). Polycyclic Aromatic Compounds, 2022: p. 1-19.
  • Z. El Adnani, et al., DFT theoretical study of 7-R-3methylquinoxalin-2 (1H)-thiones (RH; CH3; Cl) as corrosion inhibitors in hydrochloric acid. Corrosion science, 2013. 68: p. 223-230.
  • R.A. Omer, P. Koparir, and L.O. Ahmed, Characterization and inhibitor activity of two newly synthesized thiazole. Journal of Bio-and Tribo-Corrosion, 2022. 8(1): p. 28.
  • D. Alexander and A. Moccari, Evaluation of corrosion inhibitors for component cooling water systems. Corrosion, 1993. 49(11).
  • S. Martinez, Inhibitory mechanism of mimosa tannin using molecular modeling and substitutional adsorption isotherms. Materials chemistry and physics, 2003. 77(1): p. 97-102.
  • R.M. Issa, M.K. Awad, and F.M. Atlam, Quantum chemical studies on the inhibition of corrosion of copper surface by substituted uracils. Applied Surface Science, 2008. 255(5): p. 2433-2441.
  • S. Chen, et al., Quantum chemical study of some benzimidazole and its derivatives as corrosion ınhibitors of steel in HCl solution. Int. J. Electrochem. Sci, 2014. 9: p. 5400-5408.
  • M. Beytur, et al., Synthesis, characterization and theoretical determination of corrosion inhibitor activities of some new 4, 5-dihydro-1H-1, 2, 4-Triazol-5-one derivatives. Heliyon, 2019. 5(6): p. e01809.
  • N. Karakus and K. Sayin, The investigation of corrosion inhibition efficiency on some benzaldehyde thiosemicarbazones and their thiole tautomers: Computational study. Journal of the Taiwan Institute of Chemical Engineers, 2015. 48: p. 95-102.
  • S. Erkan, K. Sayın, and D. Karakaş, Theoretical studies on eight oxovanadium (IV) complexes with salicylaldehyde and aniline ligands. Hacettepe J Biol Chem, 2014. 42: p. 337-342.
There are 65 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Articles
Authors

Rebaz Omer 0000-0002-3774-6071

Rzgar Farooq Rashid 0000-0001-9343-8500

Rebaz Omer 0000-0002-4227-9690

Publication Date December 18, 2023
Submission Date October 14, 2023
Acceptance Date November 20, 2023
Published in Issue Year 2023

Cite

APA Omer, R., Rashid, R. F., & Omer, R. (2023). Composition and Properties of Aspirin Through DFT Analysis. Journal of Physical Chemistry and Functional Materials, 6(2), 51-63. https://doi.org/10.54565/jphcfum.1375349
AMA Omer R, Rashid RF, Omer R. Composition and Properties of Aspirin Through DFT Analysis. Journal of Physical Chemistry and Functional Materials. December 2023;6(2):51-63. doi:10.54565/jphcfum.1375349
Chicago Omer, Rebaz, Rzgar Farooq Rashid, and Rebaz Omer. “Composition and Properties of Aspirin Through DFT Analysis”. Journal of Physical Chemistry and Functional Materials 6, no. 2 (December 2023): 51-63. https://doi.org/10.54565/jphcfum.1375349.
EndNote Omer R, Rashid RF, Omer R (December 1, 2023) Composition and Properties of Aspirin Through DFT Analysis. Journal of Physical Chemistry and Functional Materials 6 2 51–63.
IEEE R. Omer, R. F. Rashid, and R. Omer, “Composition and Properties of Aspirin Through DFT Analysis”, Journal of Physical Chemistry and Functional Materials, vol. 6, no. 2, pp. 51–63, 2023, doi: 10.54565/jphcfum.1375349.
ISNAD Omer, Rebaz et al. “Composition and Properties of Aspirin Through DFT Analysis”. Journal of Physical Chemistry and Functional Materials 6/2 (December 2023), 51-63. https://doi.org/10.54565/jphcfum.1375349.
JAMA Omer R, Rashid RF, Omer R. Composition and Properties of Aspirin Through DFT Analysis. Journal of Physical Chemistry and Functional Materials. 2023;6:51–63.
MLA Omer, Rebaz et al. “Composition and Properties of Aspirin Through DFT Analysis”. Journal of Physical Chemistry and Functional Materials, vol. 6, no. 2, 2023, pp. 51-63, doi:10.54565/jphcfum.1375349.
Vancouver Omer R, Rashid RF, Omer R. Composition and Properties of Aspirin Through DFT Analysis. Journal of Physical Chemistry and Functional Materials. 2023;6(2):51-63.