Research Article
BibTex RIS Cite

Determination of Microstructure, Electrical Properties and Microhardness Values of Ni-Mn-Cr-Sn Heusler Alloy

Year 2025, Volume: 8 Issue: 2, 138 - 149, 23.12.2025
https://doi.org/10.54565/jphcfum.1698822

Abstract

In this study, Ni-Mn-Cr-Sn Heusler [Ni2(Mn1-xCrx)Sn (x=0, 0.25, 0.5, 0.75 and 1, (0≤x≤1)] alloys were investigated. The determined powder samples were compressed under pressure and turned into pellets and then melted in an arc melting furnace to provide the desired Heusler conditions. After XRD analysis was performed on the samples obtained after the process, SEM, EDX and MAPPING images were taken. Phases belonging to each composition were determined by examining the XRD peaks. A backscattered detector was used in SEM, EDX and MAPPING analyses of the samples. Finally, the microhardness measurements of the samples, depending on the composition, were determined using the Vickers hardness test, and the average microhardness values obtained were measured as 486.6-805.5HV0.3. Temperature-dependent electrical measurements of the obtained samples were determined by four-point probe method (FPPT). The electrical resistance values of the samples at 320K were obtained as 0.12-400.72x10-6 (m) and 0.01-0.62 x10-6 (m) at 900 K. In addition, the temperature coefficient of electrical resistivity value (TCR) was calculated as  (1.47-3.16)x (10-3 K-1).

Supporting Institution

Malatya Turgut Özal University Scientific Research Projects Coordination Unit

Project Number

24H08

Thanks

This article was financially supported by Malatya Turgut Özal University Scientific Research Projects Coordination Unit with project number 24H08. The authors thank Malatya Turgut Özal University Research Foundation for their financial support. We thank the Editing Office of the Dean for Research at Erciyes University for proofreading this manuscript.

References

  • [1] Nanda, B. R. K., & Dasgupta, I. (2003). Electronic structure and magnetism in half-Heusler compounds. Journal of Physics: Condensed Matter, 15(43), 7307-7323. DOI: 10.1088/0953-8984/15/43/014
  • [2] Galanakis, I., Mavropoulos, P., & Dederichs, P. H. (2006). Electronic structure and Slater–Pauling behaviour in half-metallic Heusler alloys calculated from first principles. Journal of Physics D: Applied Physics, 39(5), 765-775. DOI: 10.1088/0022-3727/39/5/S01
  • [3] Galanakis, I., & Mavropoulos, P. (2007). Spin-polarization and electronic properties of half-metallic Heusler alloys calculated from first principles. Journal of Physics: Condensed Matter, 19(31), 315213. DOI: 10.1088/0953-8984/19/31/315213
  • [4] Dubenko, I., Samanta, T., Pathak, A. K., Kazakov, A., Prudnikov, V., Stadler, S., ... & Ali, N. (2012). Magnetocaloric effect and multifunctional properties of Ni–Mn-based Heusler alloys. Journal of Magnetism and Magnetic Materials, 324(21), 3530-3534. DOI: 10.1016/j.jmmm.2012.02.082
  • [5] Planes, A., Mañosa, L., & Acet, M. (2009). Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. Journal of Physics: Condensed Matter, 21(23), 233201. DOI: 10.1088/0953-8984/21/23/233201
  • [6] Felser, C., Wollmann, L., Chadov, S., Fecher, G. H., & Parkin, S. S. (2015). Basics and prospective of magnetic Heusler compounds. APL materials, 3(4) 041518. DOI: 10.1063/1.4917387
  • [7] Wang, X., Shang, J. X., Wang, F. H., Jiang, C. B., & Xu, H. B. (2014). The structural stability and magnetic properties of the ferromagnetic Heusler alloy Ni–Mn–Sn: a first principle investigation. Journal of magnetism and magnetic materials, 355, 173-179. DOI: 10.1016/j.jmmm.2013.12.017
  • [8] Heusler, F. (1904). Über Manganbronze und über die Synthese magnetisierbarer Legierungen aus unmagnetischen Metallen. Zeitschrift für Angew. Chemie,17(9):260–264.
  • [9] Rai, D. P., Shankar, A., Sakhya, A. P., Sinha, T. P., Khenata, R., Ghimire, M. P., & Thapa, R. K. (2016). Electronic and magnetic properties of X2YZ and XYZ Heusler compounds: a comparative study of density functional theory with different exchange-correlation potentials. Materials Research Express, 3(7), 075022. DOI: 10.1088/2053-1591/3/7/075022
  • [10] Abriel, W., & Ihringer, J. (1984). Crystal structures and phase transition of Rb2TeBr6 (300 12.5 K). Journal of Solid State Chemistry, 52(3), 274-280. DOI: 10.1016/0022-4596(84)90010-0
  • [11] Galanakis, I., (2016). Theory of Heusler and Full-Heusler Compounds, First Edition. Springer International Publishing, 3-36 pp.
  • [12] Kandpal, H.C., Fecher, G.H., Felser, C. (2007). Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds. Journal of Physics D: Applied Physics, 40(6), 1507–1523. DOI: 10.1088/0022-3727/40/6/S01
  • [13] Ak, F., Öz, E., & Saatçi, B. (2019). Structural and magnetic properties of Ni2-xCoxMnSb (x: 0.00, 0.25, 0.50 and 1.00) Heusler alloys: The relationship between Curie temperature and lattice parameter. Intermetallics, 111, 106491. DOI: 10.1016/j.intermet.2019.106491
  • [14] Chabri, T., Barman, A., Chatterjee, S., Mollick, S. A., Nath, T. K., & Mukherjee, D. (2021). Effects of transitional hysteresis on the large magnetocaloric and magnetoresistance properties of Ni-Mn-Co-Sn Heusler alloy. Journal of Alloys and Compounds, 863, 158485. DOI: 10.1016/j.jallcom.2020.158485
  • [15] Chabri, T., Venimadhav, A., & Nath, T. K. (2018). Interplay of austenite and martensite phase inside martensite transition regime and its role on magnetocaloric effect and magnetoresistance in Ni-Mn-Sn based Heusler alloy. Intermetallics, 102, 65-71. DOI: 10.1016/j.intermet.2018.09.003
  • [16] Venugopalan, K. (2007). Hyperfine interactions in Heusler systems, Indian J. Pure Appl. Phys. 45, 783.
  • [17] Nazmunnahar, M., González, L., delVal, J.J., González, J., Sunol, J.J., Hernando, B. (2012) Magnetic Transformation in Ni50Mn50-xSnx (x=11, 12.5) and Ni49Mn51-xSnx (x=13) Heusler Alloys. IEEE Trans. Magn. 48 (11) 3749-3752. DOI: 10.1109/TMAG.2012.2201703
  • [18] Ghernaout, D. (2018). Magnetic field generation in the water treatment perspectives: An overview. International Journal of Advances in Applied Sciences, 5(1), 193-203. DOI: 10.21833/ijaas.2018.01.025
  • [19] Webster, P. J. (1969). Heusler alloys. Contemporary Physics, 10(6): 559-577. DOI: 10.1080/00107516908204800
  • [20] Nazmunnahar, M., Ryba, T., Del Val, J. J., Ipatov, M., Gonzalez, J., Hašková, V., ... & Varga, R. (2015). Half-metallic Ni2MnSn Heusler alloy prepared by rapid quenching. Journal of Magnetism and Magnetic Materials, 386, 98-101. DOI: 10.1016/j.jmmm.2015.03.066
  • [21] Buschow, K. V., Van Engen, P. G., & Jongebreur, R. (1983). Magneto-optical properties of metallic ferromagnetic materials. Journal of Magnetism and Magnetic Materials, 38(1), 1-22. DOI: 10.1016/0304-8853(83)90097-5
  • [22] Mubeen, A., Majid, A., Haider, S., & Alam, K. (2024). Quantum electronic transport properties of 3d transition metal doped SnO monolayer for spin-thin film transistor. Optical and Quantum Electronics, 56(7), 1169. DOI: 10.1007/s11082-024-07089-w
  • [23] Mubeen, A., & Majid, A. (2022). Density functional theory study on magnetic character and Mn crystal field split levels in Mn-doped SnO monolayer. Journal of Superconductivity and Novel Magnetism, 35(10), 2975-2986. DOI: 10.1007/s10948-022-06355-w
  • [24] Mubeen, A., & Majid, A. (2023). First principles investigation of 3d transition metal doped SnO monolayer based diluted magnetic semiconductors. Journal of Magnetism and Magnetic Materials, 580, 170897. DOI: 10.1016/j.jmmm.2023.170897
  • [25] Mubeen, A., Majid, A., Alkhedher, M., Tag-ElDin, E. M., & Bulut, N. (2022). Structural and electronic properties of SnO downscaled to monolayer. Materials, 15(16), 5578. DOI: 10.3390/ma15165578
  • [26] Mubeen, A., Majid, A., Alkhedher, M., Haider, S., & Akhtar, M. S. (2023). First principles investigations on electronic and magnetic properties of Fe: SnO monolayer. Optical and Quantum Electronics, 55(10), 914. DOI: 10.1007/s11082-023-05186-w
There are 26 citations in total.

Details

Primary Language English
Subjects Condensed Matter Physics (Other)
Journal Section Research Article
Authors

Fermin Ak 0000-0003-3238-4638

Mehtap Payveren Arıkan 0000-0002-8037-4904

Buket Saatçi 0000-0002-1351-5279

Mehmet Ari 0000-0002-4511-6811

Project Number 24H08
Submission Date May 13, 2025
Acceptance Date July 10, 2025
Publication Date December 23, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Ak, F., Payveren Arıkan, M., Saatçi, B., Ari, M. (2025). Determination of Microstructure, Electrical Properties and Microhardness Values of Ni-Mn-Cr-Sn Heusler Alloy. Journal of Physical Chemistry and Functional Materials, 8(2), 138-149. https://doi.org/10.54565/jphcfum.1698822
AMA Ak F, Payveren Arıkan M, Saatçi B, Ari M. Determination of Microstructure, Electrical Properties and Microhardness Values of Ni-Mn-Cr-Sn Heusler Alloy. Journal of Physical Chemistry and Functional Materials. December 2025;8(2):138-149. doi:10.54565/jphcfum.1698822
Chicago Ak, Fermin, Mehtap Payveren Arıkan, Buket Saatçi, and Mehmet Ari. “Determination of Microstructure, Electrical Properties and Microhardness Values of Ni-Mn-Cr-Sn Heusler Alloy”. Journal of Physical Chemistry and Functional Materials 8, no. 2 (December 2025): 138-49. https://doi.org/10.54565/jphcfum.1698822.
EndNote Ak F, Payveren Arıkan M, Saatçi B, Ari M (December 1, 2025) Determination of Microstructure, Electrical Properties and Microhardness Values of Ni-Mn-Cr-Sn Heusler Alloy. Journal of Physical Chemistry and Functional Materials 8 2 138–149.
IEEE F. Ak, M. Payveren Arıkan, B. Saatçi, and M. Ari, “Determination of Microstructure, Electrical Properties and Microhardness Values of Ni-Mn-Cr-Sn Heusler Alloy”, Journal of Physical Chemistry and Functional Materials, vol. 8, no. 2, pp. 138–149, 2025, doi: 10.54565/jphcfum.1698822.
ISNAD Ak, Fermin et al. “Determination of Microstructure, Electrical Properties and Microhardness Values of Ni-Mn-Cr-Sn Heusler Alloy”. Journal of Physical Chemistry and Functional Materials 8/2 (December2025), 138-149. https://doi.org/10.54565/jphcfum.1698822.
JAMA Ak F, Payveren Arıkan M, Saatçi B, Ari M. Determination of Microstructure, Electrical Properties and Microhardness Values of Ni-Mn-Cr-Sn Heusler Alloy. Journal of Physical Chemistry and Functional Materials. 2025;8:138–149.
MLA Ak, Fermin et al. “Determination of Microstructure, Electrical Properties and Microhardness Values of Ni-Mn-Cr-Sn Heusler Alloy”. Journal of Physical Chemistry and Functional Materials, vol. 8, no. 2, 2025, pp. 138-49, doi:10.54565/jphcfum.1698822.
Vancouver Ak F, Payveren Arıkan M, Saatçi B, Ari M. Determination of Microstructure, Electrical Properties and Microhardness Values of Ni-Mn-Cr-Sn Heusler Alloy. Journal of Physical Chemistry and Functional Materials. 2025;8(2):138-49.

© 2018 Journal of Physical Chemistry and Functional Materials (JPCFM). All rights reserved.
For inquiries, submissions, and editorial support, please get in touch with nbulut@firat.edu.tr or visit our website at https://dergipark.org.tr/en/pub/jphcfum.

Stay connected with JPCFM for the latest research updates on physical chemistry and functional materials. Follow us on Social Media.

Published by DergiPark. Proudly supporting the advancement of science and innovation.https://dergipark.org.tr/en/pub/jphcfum