Research Article
BibTex RIS Cite

Computational analysis of new PCPDTBT derivatives in monomer state: Substitutions effect of Si and Ge on the optoelectronic properties and performance of photovoltaic device

Year 2025, Volume: 8 Issue: 2, 103 - 113, 23.12.2025
https://doi.org/10.54565/jphcfum.1722001

Abstract

The study used Density functional theory (DFT) to analyze the structural, electrical and optical properties of PCPDTBT derivatives as an organic molecule in a monomer state that is substituted with Silicon and Germanium as well as 2-ethyl-hexyl replaced by a 2-methyl group for use in OPVs. The substitutions decreased the band gap energy (Eg), with Si-PCPDTBT and Ge-PCPDTBT having the Eg of 1.52 eV and 1.51 eV, respectively. FMOs analysis, molecular electrical properties, MEP, VOC, NCI, DOS, ELF, and refractive index of the molecules are computed using PBEPBE/6-311G+ (d, p) methods. Next, spectroscopic analyses are carried out utilizing UV-vis spectroscopies in gas phase, chloroform, and chlorobenzene solvents. The Eg and VOC are improved compared to the PCPDTBT. From the dipole moment, the Ge-PCPDTBT has stronger intermolecular interaction which is comparable to the Eg, and its refractive index in chloroform solvent is found to be higher than that of the Si-PCPDTBT.

References

  • [1] Bulavko, G. (2024). Organic photovoltaics: A journey through time, advancements, and future opportunities, History of science and technology, C Vol. 14 (1), pp: 10-32.
  • [2] Ristinen, R.A., Kraushaar, J.J., and Brack, J.T., (2022). Energy and the Environment, John Wiley & Sons,
  • [3] Berger, P. and Kim, M. (2018). Polymer solar cells: P3HT: PCBM and beyond, Journal of Renewable and Sustainable Energy, C Vol. 10 (1), pp.
  • [4] Yu, G., Gao, J., Hummelen, J.C., Wudl, F., and Heeger, A.J. (1995). Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science, C Vol. 270 (5243), pp: 1789-1791.
  • [5] Li, G., Zhu, R., and Yang, Y. (2012). Polymer solar cells, Nature photonics, C Vol. 6 (3), pp: 153-161.
  • [6] Yang, D., Yang, R., Priya, S., and Liu, S. (2019). Recent advances in flexible perovskite solar cells: fabrication and applications, Angew Chem Int Ed, C Vol. 58 (14), pp: 4466-4483.
  • [7] Sładek, M., Radek, P., Szindler, M.M., and Szindler, M. (2025). Thin Films of PNDI (2HD) 2T and PCPDTBT Polymers Deposited Using the Spin Coater Technique for Use in Solar Cells, Coatings, C Vol. 15 (5), pp: 603.
  • [8] Lim, S., Park, D.H., Joo, B.C., Lee, Y.U., and Yim, K. (2025). Exploring uncharted multiband hyperbolic dispersion in conjugated polymers: a first-principles study, Advanced Photonics, C Vol. 7 (3), pp: 036001-036001.
  • [9] Scharber, M.C., Mühlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A.J., and Brabec, C.J. (2006). Design rules for donors in bulk‐heterojunction solar cells—Towards 10% energy‐conversion efficiency, Adv Mater, C Vol. 18 (6), pp: 789-794.
  • [10] Mühlbacher, D., Scharber, M., Morana, M., Brabec, C., Zhu, Z., Waller, D., and Gaudiana, R. (2006). High photovoltaic performance of a low-bandgap polymer, Advanced Materials (Weinheim), C Vol. 18.
  • [11] Do, K., Saleem, Q., Ravva, M.K., Cruciani, F., Kan, Z., Wolf, J., Hansen, M.R., Beaujuge, P.M., and Brédas, J.L. (2016). Impact of fluorine substituents on π‐conjugated polymer main‐chain conformations, packing, and electronic couplings, Adv Mater, C Vol. 28 (37), pp: 8197-8205.
  • [12] Li, W., Albrecht, S., Yang, L., Roland, S., Tumbleston, J.R., McAfee, T., Yan, L., Kelly, M.A., Ade, H., and Neher, D. (2014). Mobility-controlled performance of thick solar cells based on fluorinated copolymers, J Am Chem Soc, C Vol. 136 (44), pp: 15566-15576.
  • [13] R. Murad, A., Iraqi, A., Aziz, S.B., Hi, H., N. Abdullah, S., Brza, M., and Abdulwahid, R.T. (2020). Influence of fluorine substitution on the optical, thermal, electrochemical and structural properties of carbazole-benzothiadiazole dicarboxylic imide alternate copolymers, Polymers, C Vol. 12 (12), pp: 2910.
  • [14] Schulz, G., Fischer, F., Trefz, D., Melnyk, A., Hamidi-Sakr, A., Brinkmann, M., Andrienko, D., and Ludwigs, S. (2017). The PCPDTBT family: correlations between chemical structure, polymorphism, and device performance, Macromolecules, C Vol. 50 (4), pp: 1402-1414.
  • [15] Hou, J., Chen, H.-Y., Zhang, S., Li, G., and Yang, Y. (2008). Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2, 1, 3-benzothiadiazole, J Am Chem Soc, C Vol. 130 (48), pp: 16144-16145.
  • [16] Morana, M., Azimi, H., Dennler, G., Egelhaaf, H.J., Scharber, M., Forberich, K., Hauch, J., Gaudiana, R., Waller, D., and Zhu, Z. (2010). Nanomorphology and charge generation in bulk heterojunctions based on low‐bandgap dithiophene polymers with different bridging atoms, Adv Funct Mater, C Vol. 20 (7), pp: 1180-1188.
  • [17] Albrecht, S., Vandewal, K., Tumbleston, J.R., Fischer, F.S., Douglas, J.D., Frechet, J.M., Ludwigs, S., Ade, H., Salleo, A., and Neher, D. (2014). On the efficiency of charge transfer state splitting in polymer:fullerene solar cells, Adv Mater, C Vol. 26 (16), pp: 2533-9. doi: 10.1002/adma.201305283.
  • [18] Kim, J.S., Fei, Z., Wood, S., James, D.T., Sim, M., Cho, K., Heeney, M.J., and Kim, J.S. (2014). Germanium‐and Silicon‐Substituted Donor–Acceptor Type Copolymers: Effect of the Bridging Heteroatom on Molecular Packing and Photovoltaic Device Performance, Advanced Energy Materials, C Vol. 4 (18), pp: 1400527.
  • [19] Perdew, J.P., Parr, R.G., Levy, M., and Balduz Jr, J.L. (1982). Density-functional theory for fractional particle number: Derivative discontinuities of the energy, Phys Rev Lett, C Vol. 49 (23), pp: 1691.
  • [20] Frisch, M., Trucks, G., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., and Petersson, G.J.I., Wallingford CT. (2009). gaussian 09, Revision d. 01, Gaussian, Vol. 201.
  • [21] Hssain, A. (2019). Serotonin: Structural characterization and determination of the Band Gap Energy, Journal of Physical Chemistry and Functional Materials, C Vol. 2 (2), pp: 54-58.
  • [22] Baer, R. (2008). On the mapping of time-dependent densities onto potentials in quantum mechanics, The Journal of chemical physics, C Vol. 128 (4), pp.
  • [23] Schirmer, J. (2025). Review of the foundations of time-dependent density-functional theory (TDDFT), PCCP, C Vol. 27 (10), pp: 4992-5005.
  • [24] Miertuš, S., Scrocco, E., and Tomasi, J. (1981). Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects, Chem Phys, C Vol. 55 (1), pp: 117-129.
  • [25] Seck, M., Vincze, A., Satka, A., Hasko, D., Uherek, F., Tournebize, A., Peisert, H., and Chasse, T. (2015). Characterization of the degradation process of Si-PCPDTBT: PC70BM (1: 2) blend layers deposited on ITO/glass substrate, Sol Energy Mater Sol Cells, C Vol. 132 210-214.
  • [26] Ameri, T., Khoram, P., Heumüller, T., Baran, D., Machui, F., Troeger, A., Sgobba, V., Guldi, D.M., Halik, M., and Rathgeber, S. (2014). Morphology analysis of near IR sensitized polymer/fullerene organic solar cells by implementing low bandgap heteroanalogue C-/Si-PCPDTBT, Journal of Materials Chemistry A, C Vol. 2 (45), pp: 19461-19472.
  • [27] Caddeo, C., Filippetti, A., Bosin, A., Videlot-Ackermann, C., Ackermann, J., and Mattoni, A. (2021). Theoretical insight on PTB7: PC71BM, PTB7-th: PC71BM and Si-PCPDTBT: PC71BM interactions governing blend nanoscale morphology for efficient solar cells, Nano Energy, C Vol. 82 105708.
  • [28] Lu, T. and Chen, F. (2012). Multiwfn: A multifunctional wavefunction analyzer, J Comput Chem, C Vol. 33 (5), pp: 580-592.
  • [29] Humphrey, W., Dalke, A., and Schulten, K. (1996). VMD: visual molecular dynamics, Journal of molecular graphics, C Vol. 14 (1), pp: 33-38.
  • [30] O'boyle, N.M., Tenderholt, A.L., and Langner, K.M. (2008). Cclib: a library for package‐independent computational chemistry algorithms, J Comput Chem, C Vol. 29 (5), pp: 839-845.
  • [31] El Idrissi, M., Elharfaoui, S., Zmirli, Z., Mouhssine, A., Dani, A., Salle, B., Tounsi, A., Digua, K., and Chaair, H. (2024). Theoretical and Experimental Study of the Orientation to the Most Effective Coagulant for Removing Reactive Black-5 Dye from Industrial Effluents, Physical Chemistry Research, C Vol. 12 (1), pp: 229-248.
  • [32] Fukui, K. (1982). Role of frontier orbitals in chemical reactions, Science, C Vol. 218 (4574), pp: 747-754.
  • [33] Hssain, A.H., Devi, T.G., Salih, R.O., and Abdullah, N.R. (2025). Structural and spectroscopic study of L-tryptophan dimer state using DFT and MD: computational and experimental analysis, J Mol Struct, C Vol. 141582.
  • [34] Borah, M.M. and Devi, T.G. (2018). Vibrational study and Natural Bond Orbital analysis of serotonin in monomer and dimer states by density functional theory, J Mol Struct, C Vol. 1161 464-476.
  • [35] Parr, R.G. and Pearson, R.G. (1983). Absolute hardness: companion parameter to absolute electronegativity, J Am Chem Soc, C Vol. 105 (26), pp: 7512-7516.
  • [36] Hssain, A.H., Gündüz, B., Majid, A., and Bulut, N. (2021). NTCDA compounds of optoelectronic interest: Theoretical insights and experimental investigation, Chem Phys Lett, C Vol. 780 138918. [37] Hssaın, A. (2022). DFT modelling studies of spectroscopic properties and Medium Effects on Molecular Reactivity of Secnidazole in different solvents, Journal of Physical Chemistry and Functional Materials, C Vol. 5 (1), pp: 69-83.
  • [38] Pearson, R.G. (1985). Absolute electronegativity and absolute hardness of Lewis acids and bases, J Am Chem Soc, C Vol. 107 (24), pp: 6801-6806.
  • [39] Seminario, J.M., (1996). Recent developments and applications of modern density functional theory, Elsevier,
  • [40] Frenking, G. and Shaik, S., (2014). The chemical bond: fundamental aspects of chemical bonding, John Wiley & Sons,
  • [41] Reed, A.E., Curtiss, L.A., and Weinhold, F. (1988). Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chem Rev, C Vol. 88 (6), pp: 899-926.
  • [42] Ando, S. (2006). DFT calculations on refractive index dispersion of fluoro-compounds in the DUV-UV-visible region, J Photopolym Sci Technol, C Vol. 19 (3), pp: 351-360.
  • [43] Ibrahimzade, L., Kaygili, O., Dundar, S., Ates, T., Dorozhkin, S.V., Bulut, N., Koytepe, S., Ercan, F., Gürses, C., and Hssain, A.H. (2021). Theoretical and experimental characterization of Pr/Ce co-doped hydroxyapatites, J Mol Struct, C Vol. 1240 130557.
  • [44] Hssain, A.H., Bulut, N., Ates, T., Koytepe, S., Kuruçay, A., Kebiroglu, H., and Kaygili, O. (2022). The experimental and theoretical investigation of Sm/Mg co-doped hydroxyapatites, Chem Phys Lett, C Vol. 800 139677.
  • [45] Hssain, A.H., Bulut, N., Ates, T., Koytepe, S., Kuruçay, A., Kebiroglu, H., and Kaygili, O. (2022). Experimental characterization and theoretical investigation of Zn/Sm co-doped hydroxyapatites, Materials Today Communications, C Vol. 31 103850.
  • [46] Hssain, A.H., Bulut, N., Ates, T., Koytepe, S., Kuruçay, A., Kebiroglu, H., and Kaygili, O. (2022). Sr/Smco-doped hydroxyapatites: experimental characterization and theoretical research, Journal of the Australian Ceramic Society, C Vol. 58 (5), pp: 1491-1507.
  • [47] Silvi, B. (2002). The synaptic order: a key concept to understand multicenter bonding, J Mol Struct, C Vol. 614 (1-3), pp: 3-10.
  • [48] Savin, A., Becke, A., Flad, J., Nesper, R., Preuss, H., and Von Schnering, H. (1991). A new look at electron localization, Angewandte Chemie International Edition in English, C Vol. 30 (4), pp: 409-412.
  • [49] Savin, A., Nesper, R., Wengert, S., and Fässler, T.F. (1997). ELF: The electron localization function, Angewandte Chemie International Edition in English, C Vol. 36 (17), pp: 1808-1832.
  • [50] Sah, M., Chaudhary, R., Sahani, S.K., Sahani, K., Pandey, B.K., Pandey, D., and Lelisho, M.E. (2025). Quantum physical analysis of caffeine and nicotine in CCL4 and DMSO solvent using density functional theory, Scientific Reports, C Vol. 15 (1), pp: 10372.
There are 49 citations in total.

Details

Primary Language English
Subjects Atomic and Molecular Physics
Journal Section Research Article
Authors

Ala Hssaın 0000-0001-9774-0555

Suhaib Mohammad 0009-0000-0137-0394

Danar Elyas 0009-0007-7619-1607

Niyazi Bulut 0000-0003-2863-7700

Submission Date June 18, 2025
Acceptance Date June 25, 2025
Publication Date December 23, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Hssaın, A., Mohammad, S., Elyas, D., Bulut, N. (2025). Computational analysis of new PCPDTBT derivatives in monomer state: Substitutions effect of Si and Ge on the optoelectronic properties and performance of photovoltaic device. Journal of Physical Chemistry and Functional Materials, 8(2), 103-113. https://doi.org/10.54565/jphcfum.1722001
AMA Hssaın A, Mohammad S, Elyas D, Bulut N. Computational analysis of new PCPDTBT derivatives in monomer state: Substitutions effect of Si and Ge on the optoelectronic properties and performance of photovoltaic device. Journal of Physical Chemistry and Functional Materials. December 2025;8(2):103-113. doi:10.54565/jphcfum.1722001
Chicago Hssaın, Ala, Suhaib Mohammad, Danar Elyas, and Niyazi Bulut. “Computational Analysis of New PCPDTBT Derivatives in Monomer State: Substitutions Effect of Si and Ge on the Optoelectronic Properties and Performance of Photovoltaic Device”. Journal of Physical Chemistry and Functional Materials 8, no. 2 (December 2025): 103-13. https://doi.org/10.54565/jphcfum.1722001.
EndNote Hssaın A, Mohammad S, Elyas D, Bulut N (December 1, 2025) Computational analysis of new PCPDTBT derivatives in monomer state: Substitutions effect of Si and Ge on the optoelectronic properties and performance of photovoltaic device. Journal of Physical Chemistry and Functional Materials 8 2 103–113.
IEEE A. Hssaın, S. Mohammad, D. Elyas, and N. Bulut, “Computational analysis of new PCPDTBT derivatives in monomer state: Substitutions effect of Si and Ge on the optoelectronic properties and performance of photovoltaic device”, Journal of Physical Chemistry and Functional Materials, vol. 8, no. 2, pp. 103–113, 2025, doi: 10.54565/jphcfum.1722001.
ISNAD Hssaın, Ala et al. “Computational Analysis of New PCPDTBT Derivatives in Monomer State: Substitutions Effect of Si and Ge on the Optoelectronic Properties and Performance of Photovoltaic Device”. Journal of Physical Chemistry and Functional Materials 8/2 (December2025), 103-113. https://doi.org/10.54565/jphcfum.1722001.
JAMA Hssaın A, Mohammad S, Elyas D, Bulut N. Computational analysis of new PCPDTBT derivatives in monomer state: Substitutions effect of Si and Ge on the optoelectronic properties and performance of photovoltaic device. Journal of Physical Chemistry and Functional Materials. 2025;8:103–113.
MLA Hssaın, Ala et al. “Computational Analysis of New PCPDTBT Derivatives in Monomer State: Substitutions Effect of Si and Ge on the Optoelectronic Properties and Performance of Photovoltaic Device”. Journal of Physical Chemistry and Functional Materials, vol. 8, no. 2, 2025, pp. 103-1, doi:10.54565/jphcfum.1722001.
Vancouver Hssaın A, Mohammad S, Elyas D, Bulut N. Computational analysis of new PCPDTBT derivatives in monomer state: Substitutions effect of Si and Ge on the optoelectronic properties and performance of photovoltaic device. Journal of Physical Chemistry and Functional Materials. 2025;8(2):103-1.

© 2018 Journal of Physical Chemistry and Functional Materials (JPCFM). All rights reserved.
For inquiries, submissions, and editorial support, please get in touch with nbulut@firat.edu.tr or visit our website at https://dergipark.org.tr/en/pub/jphcfum.

Stay connected with JPCFM for the latest research updates on physical chemistry and functional materials. Follow us on Social Media.

Published by DergiPark. Proudly supporting the advancement of science and innovation.https://dergipark.org.tr/en/pub/jphcfum