Research Article
BibTex RIS Cite

Photocatalytic Decomposition of Methylene Blue Using CuO Nanoparticles Green Synthesized via Prunus serrulata Leaf Extract

Year 2025, Volume: 8 Issue: 2, 171 - 178, 23.12.2025
https://doi.org/10.54565/jphcfum.1777418

Abstract

The green synthesis of nanoparticles using plant-based materials has gained significant attention in the fields of nanotechnology and biotechnology. Plant-derived extracts play a crucial role in both the reduction and stabilization processes during the synthesis of metal/metal oxide (M/MOx) nanoparticles (NPs). Key phytochemicals, including polyphenols, terpenoids, flavonoids, and phenolic acids, are responsible for facilitating these reduction and stabilization mechanisms in green synthesis methods. Copper oxide nanoparticles (CuO NPs) have emerged as valuable materials with diverse applications in photocatalysis, solar energy conversion, and biomedical research, participating in a wide range of reactions. Prunus serrulata leaves, rich in flavonoids, have been utilized for the first time as a natural source for the synthesis of CuO NPs, serving as both reducing and capping agents. The synthesis resulted in a crystal structure for the CuO NPs, attributed to interactions with flavonoids and nanoparticle agglomeration. Morphological analysis using scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) revealed that CuO NPs were spherical with an average size of 20-25 nm. X-ray photoelectron spectroscopy (XPS) confirmed that the synthesized CuO NPs consisted solely of CuO, along with carbon atoms derived from the flavonoid molecules in Prunus serrulata leaf extract. The photocatalytic degradation of methylene blue (MB), a representative synthetic dye commonly found in industrial wastewater from sectors such as textiles, paper production, and pharmaceuticals, was effectively achieved using CuO NPs synthesized via Prunus serrulata leaf extract. This demonstrates the potential of plant-mediated CuO NPs for environmental remediation applications, particularly in addressing synthetic dye contamination.

Ethical Statement

Ethics approval and consent to participate: Not applicable.

Supporting Institution

This research established by the funding from Boğaziçi University Research Funds (Project No: 21B05P5).

Project Number

21B05P5

Thanks

This research established by the funding from Boğaziçi University Research Funds (Project No: 21B05P5).

References

  • [1] P. Christian, F. Von der Kammer, M. Baalousha and T. Hofmann. Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology. 2008;17:326-343. doi:https://doi.org/10.1007/s10646-008-0213-1.
  • [2] K. Parveen, V. Banse and L. Ledwani. Green synthesis of nanoparticles: Their advantages and disadvantages. AIP conference proceedings. 2016;1724(1):020048. doi:https://doi.org/10.1063/1.4945168.
  • [3] P. Cruz, Y. Pérez, I. del Hierro and M. Fajardo. Copper, copper oxide nanoparticles and copper complexes supported on mesoporous SBA-15 as catalysts in the selective oxidation of benzyl alcohol in aqueous phase. Microporous and Mesoporous Materials. 2016;220:136-147. doi:https://doi.org/10.1016/j.micromeso.2015.08.029.
  • [4] N. Benhadria, M. Hachemaoui, F. Zaoui, A. Mokhtar, S. Boukreris, T. Attar and B. Boukoussa. Catalytic reduction of methylene blue dye by copper oxide nanoparticles. Journal of Cluster Science. 2022;33:249-260. doi:https://doi.org/10.1007/s10876-020-01950-0.
  • [5] A. P. Wanninayake, S. Gunashekar, S. Li, B. C. Church and N. Abu-Zahra. Performance enhancement of polymer solar cells using copper oxide nanoparticles. Semiconductor Science and Technology. 2015;30:6:064004. doi:https://doi.org/10.1088/0268-1242/30/6/064004.
  • [6] J. Singh, G. Kaur and M. Rawat. A brief review on synthesis and characterization of copper oxide nanoparticles and its applications. Journal of Bioelectronics and Nanotechnology 2016;1:9. doi:https://doi.org/10.13188/2475-224X.1000003.
  • [7] Q. Xiong, A. Liu, Q. Ren, Y. Xue, X. Yu, Y. Ying and C. Xu. Cuprous oxide nanoparticles trigger reactive oxygen species-induced apoptosis through activation of erk-dependent autophagy in bladder cancer. Cell Death & Disease. 2020;11:366. doi:https://doi.org/10.1038/s41419-020-2554-5.
  • [8] N. Wongpisutpaisan, P. Charoonsuk, N. Vittayakorn and W. Pecharapa. Sonochemical synthesis and characterization of copper oxide nanoparticles. Energy Procedia. 2011;9:404-409. doi:https://doi.org/10.1016/j.egypro.2011.09.044.
  • [9] R. P. Waichal, G. D. Karvir, K. R. Patil, P. Ambekar, I. S. Mulla and S. N. Kale. Synthesis of cuprous oxide nanoparticles by electrochemical method and evaluation of the corresponding nanoparticle film for humidity sensing. 2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1). 2012:47-50. doi:https://doi.org/10.1109/ISPTS.2012.6260874.
  • [10] H. A. Jung, A. R. Kim, H. Y. Chung and J. S. Choi. In vitro antioxidant activity of some selected Prunus species in Korea. Archives of pharmacal research. 2002;25:865-872. doi:https://doi.org/10.1007/BF02977006
  • [11] H. Şengönül and O. Demircan, Isolation and characterization of quercetin from Prunus Serrulata leaf extract in the synthesis of Fe3O4 nanoparticles, Inorganic Chemistry Communications. 2024; 159:111688. doi:https://doi.org/10.1016/j.inoche.2023.111688.
  • [12] H. Şengönül and O. Demircan, Utilization of Prunus serrulata leaf extract for the synthesis and characterization of ZnO nanoparticles. Nano-Structures & Nano-Objects. 2024;37:101084. doi:https://doi.org/10.1016/j.nanoso.2023.101084.
  • [13] H. Şengönül and O. Demircan. Synthesis and characterization of Fe3O4 nanoparticles using Prunus serrulata leaf extract. BioNanoScience. 2023;13:1944-1954. doi:https://doi.org/10.1007/s12668-023-01174-2
  • [14] M. MuthuKathija, S. Muthusamy, R. I. Khan, M. S. M. Badhusha, K. Rajalakshmi, V. Rama and Y. Xu. Photocatalytic degradation of methylene blue dye using biogenic copper oxide nanoparticles and its degradation pathway analysis. Inorganic Chemistry Communications. 2024;161:111929. doi: https://doi.org/10.1016/j.inoche.2023.111929
  • [15] S. Nouren, I. Bibi, A. Kausar, M. Sultan, H. N. Bhatti, Y. Safa, S. Sadaf, N. Alwadai and M. Iqbal. Green synthesis of CuO nanoparticles using Jasmin sambac extract: Conditions optimization and photocatalytic degradation of methylene blue dye. Journal of King Saud University – Science. 2024;36:103089. doi:https://doi.org/10.1016/j.jksus.2024.103089.
  • [16] M. Iqbal, A. Ali, K. S. Ahmad, F. M. Rana, J. Khan, K. Khan and K. H. Thebo. Synthesis and characterization of transition metals doped CuO nanostructure and their application in hybrid bulk heterojunction solar cells. SN Applied Sciences. 2019;1:647. doi:https://doi.org/10.1007/s42452-019-0663-5.
  • [17] A. B. D. Nandiyanto, R. Oktiani and R. Ragadhita. How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology. 2019;4:97-118. doi:https://doi.org/10.17509/ijost.v4i1.15806.
  • [18] J. Yuan, J. J. Zhang, M. P. Yang, W. J. Meng, H. Wang and J. X. Lu. CuO nanoparticles supported on TiO2 with high efficiency for CO2 electrochemical reduction to ethanol. Catalysts. 2018;8:171. doi:https://doi.org/10.3390/catal8040171.
  • [19] Q. Zhou, T. T. Li, W. Xu, H. L. Zhu and Y. Q. Zheng. Ultrathin nanosheets-assembled CuO flowers for highly efficient electrocatalytic water oxidation. Journal of Materials Science. 2018;53:8141-8150. doi:https://doi.org/10.1007/s10853-018-2160-4.
  • [20] N. Akram, J. Guo, W. Ma, Y. Guo, A. Hassan and J. Wang. Synergistic catalysis of Co (OH) 2/CuO for the degradation of organic pollutant under visible light irradiation. Scientific Reports. 2020;10:1939. doi:https://doi.org/10.1038/s41598-020-59053-9.
  • [21] Y. Liu, L. Ma, D. Zhang, G. Han and Y. Chang. A simple route to prepare a Cu 2 O–CuO–GN nanohybrid for high-performance electrode materials. RSC advances. 2017;7:12027-12032. doi:https://doi.org/10.1039/C6RA26535A.
  • [22] A.A. Badawy, N.A.H. Abdelfattah, S.S. Salem, M.F. Awad, A. Fouda, Efficacy Assessment of Biosynthesized Copper Oxide Nanoparticles (CuO-NPs) on Stored Grain Insects and Their Impacts on Morphological and Physiological Traits of Wheat (Triticum aestivum L.) Plant, Biology. 2021;10:233. doi:https://doi.org/10.3390/biology10030233.
  • [23] A. Atri, M. Echabaane, A. Bouzidi, I. Harabi, B.M. Soucase and R.B. Chaâbane. Green synthesis of copper oxide nanoparticles using Ephedra Alata plant extract and a study of their antifungal, antibacterial activity and photocatalytic performance under sunlight. Heliyon. 2023;9:13327. doi:https://doi.org/10.1016/j.heliyon.2023.e13327.
  • [24] A. Ahmad, M. Khan, S. Khan, R. Luque, K. M. Abualnaja, O. K. Alduaij and T. A. Yousef. Bio-construction of CuO nanoparticles using Texas sage plant extract for catalytical degradation of methylene blue via photocatalysis. Journal of Molecular Structure. 2022;1256:132522. doi:https://doi.org/10.1016/j.molstruc.2022.132522.
  • [25] M. Qasem, R. El Kurdi and D. Patra. Green synthesis of curcumin conjugated CuO nanoparticles for catalytic reduction of methylene blue. ChemistrySelect. 2020;5:1694-1704. doi: https://doi.org/10.1002/slct.201904135.
There are 25 citations in total.

Details

Primary Language English
Subjects Photochemistry, Catalysis and Mechanisms of Reactions, Colloid and Surface Chemistry, Physical Chemistry (Other)
Journal Section Research Article
Authors

Hüseyin Şengönül 0009-0004-4421-3355

Oktay Demircan 0000-0002-4304-2708

Project Number 21B05P5
Submission Date September 3, 2025
Acceptance Date September 30, 2025
Publication Date December 23, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Şengönül, H., & Demircan, O. (2025). Photocatalytic Decomposition of Methylene Blue Using CuO Nanoparticles Green Synthesized via Prunus serrulata Leaf Extract. Journal of Physical Chemistry and Functional Materials, 8(2), 171-178. https://doi.org/10.54565/jphcfum.1777418
AMA Şengönül H, Demircan O. Photocatalytic Decomposition of Methylene Blue Using CuO Nanoparticles Green Synthesized via Prunus serrulata Leaf Extract. Journal of Physical Chemistry and Functional Materials. December 2025;8(2):171-178. doi:10.54565/jphcfum.1777418
Chicago Şengönül, Hüseyin, and Oktay Demircan. “Photocatalytic Decomposition of Methylene Blue Using CuO Nanoparticles Green Synthesized via Prunus Serrulata Leaf Extract”. Journal of Physical Chemistry and Functional Materials 8, no. 2 (December 2025): 171-78. https://doi.org/10.54565/jphcfum.1777418.
EndNote Şengönül H, Demircan O (December 1, 2025) Photocatalytic Decomposition of Methylene Blue Using CuO Nanoparticles Green Synthesized via Prunus serrulata Leaf Extract. Journal of Physical Chemistry and Functional Materials 8 2 171–178.
IEEE H. Şengönül and O. Demircan, “Photocatalytic Decomposition of Methylene Blue Using CuO Nanoparticles Green Synthesized via Prunus serrulata Leaf Extract”, Journal of Physical Chemistry and Functional Materials, vol. 8, no. 2, pp. 171–178, 2025, doi: 10.54565/jphcfum.1777418.
ISNAD Şengönül, Hüseyin - Demircan, Oktay. “Photocatalytic Decomposition of Methylene Blue Using CuO Nanoparticles Green Synthesized via Prunus Serrulata Leaf Extract”. Journal of Physical Chemistry and Functional Materials 8/2 (December2025), 171-178. https://doi.org/10.54565/jphcfum.1777418.
JAMA Şengönül H, Demircan O. Photocatalytic Decomposition of Methylene Blue Using CuO Nanoparticles Green Synthesized via Prunus serrulata Leaf Extract. Journal of Physical Chemistry and Functional Materials. 2025;8:171–178.
MLA Şengönül, Hüseyin and Oktay Demircan. “Photocatalytic Decomposition of Methylene Blue Using CuO Nanoparticles Green Synthesized via Prunus Serrulata Leaf Extract”. Journal of Physical Chemistry and Functional Materials, vol. 8, no. 2, 2025, pp. 171-8, doi:10.54565/jphcfum.1777418.
Vancouver Şengönül H, Demircan O. Photocatalytic Decomposition of Methylene Blue Using CuO Nanoparticles Green Synthesized via Prunus serrulata Leaf Extract. Journal of Physical Chemistry and Functional Materials. 2025;8(2):171-8.

© 2018 Journal of Physical Chemistry and Functional Materials (JPCFM). All rights reserved.
For inquiries, submissions, and editorial support, please get in touch with nbulut@firat.edu.tr or visit our website at https://dergipark.org.tr/en/pub/jphcfum.

Stay connected with JPCFM for the latest research updates on physical chemistry and functional materials. Follow us on Social Media.

Published by DergiPark. Proudly supporting the advancement of science and innovation.https://dergipark.org.tr/en/pub/jphcfum