Research Article
BibTex RIS Cite
Year 2018, Volume: 1 Issue: 2, 25 - 35, 30.11.2018

Abstract

References

  • [1]. S.K. Sadrnezhaad, S. Katiraci, A. Ghasemi, Int J Adv Desg Manuf Tech. 7(4), 1-6 (2014).
  • [2]. M. Yousefpour, I. Vali, E. Saebnoori, Int J Eng. 27(10), 1627-1634 (2014)
  • [3]. M. Kok, G. Ates, Eur. Phys. J. Plus, 132, 185 (2017).
  • [4]. M.L. Lethabena, P.A. Olubambi, H.K. Chikwanda, J Mater Res Tech. 1-10 (2015)
  • [5]. M. Es-souni, M. Es-souni, H.F. Brandies, Biometar. 22, 2153-2161 (2001)
  • [6]. S.A.Thompson, Int Endod J. 33, 297-310 (2000)[7]. D. Vojtech, J. Fojt, M. Voderova, P. Novak, L. Joska, Metal, Czech Repuclic (Congress paper) (2010)[8]. A. Bansiddhi, T.D. Sargeant, S.I. Stupp, D.C. Dunand, Acta Biometar. 4: 773-782 (2008)[9]. A. Amini, C. Cheng, Scientific Report. 3(2476) 1-6 (2013).
  • [10]. C.H. Xu, X.Q. Ma, S.Q. Shi, C.H. Woo, Mater Sci Eng: A. 371(1) 45-50 (2014).
  • [11]. W. Ching, S.M. Abdus, AIP Conference Proceedings. 1901(1) AIP Publishing (2017).
  • [12]. A.W. Hansen, L.V.R. Beltrami, L.M. Antonini, D.J. Villarinho, J.C.K.D. Neves, C.E.B. Marino, C.D.F. Malfatti, Mater Resch. 18(5) 1053-1061 (2015).
  • [13]. M. Kok, K. Yildiz, Appl Phy A Mater. 116(4) 2045-2050 (2014).
  • [14]. C.H. Xu, S.Q. Shi, H.C. Man, C.H. Woo, C. Surya, J Mater Sci. 41(4:1) 123-1129 (2006).
  • [15]. G.S. Firstov, R.G. Vitchev, H. Kumar, B. Blanpain, J. Van Humbeeck, Biomater. 23(24) 4863-4871 (2002).
  • [16]. A.W. Hansen, L.V.R. Beltrami, L.M. Antonini, D.J. Villarinho, J.C.K.D. Neves, C.E.B. Marino, C.D.F. Malfatti, Mater Resch. 18(5) 1053-1061 (2015).
  • [17]. S.K. Sadrnezhaad, S.A. Hosseini, Mater Design, 30(10) 4483-4487 (2009).
  • [18]. H. Li, Y. Cong, Y. Zheng, L. Cui, Mater Sci Eng C. 60, 554-559 (2016).
  • [19].M. Kok, G. Pirge, Y. Aydogdu, Appl Surf Sci. 268, 136-140 (2013).
  • [20]. S.H. El-Hadad, K.M. Ibrahim, L. Wagner, Journal of Metallurgy.1-6 (2014)
  • [21]. A. Sami Abualnoun, K. Abdul Raheem, A. Abid, A.A. Murtadha, Int J Mech Eng Tech (IJMET). 4(2) 86-99 (2013)
  • [22]. C.L. Chu, T. Hu, S.L. Wu, Y.S. Dong, L.H. Yin, P.H. Pu, C.Y. Lin, K.W.K. Chung, P.K. Yeung Chu, Acta Biomater. 3(5), 795-806 (2007).
  • [23]. K.N. Lin, S.K. Wu, Oxid Met.71(3-4), 187-200 (2009).
  • [24]. K.S. Kim, K.K. Jee, W.C. Kim, W.Y. Jang, S.H. Han, Mater Sci Eng A, 481, 658-661 (2008).
  • [25]. L. Zhang, C. Xie, J. Wu, Mater Charac. 58(5) 471-478 (2007).
  • [26]. K.S. Kim, K.K. Jee, Y.B. Kim, W.Y. Jang, S.H. Han, The Eur Phys J Special Topics. 158(1) 67-71 (2008).
  • [27]. A.S. Mahmud, C.W. Ng, M.F. Razali, AIP Conference Proceedings. 1774(1), 060006 (2016)

Investigation of Thermal properties, Chemical Analysis and Biocompatibility of High Temperature Oxidized NiTiMn Shape Memory Alloy

Year 2018, Volume: 1 Issue: 2, 25 - 35, 30.11.2018

Abstract




In recent years, studies have been conducted on the
biocompatibility of NiTi-based shape-memory alloys, which are used in medical
application. In this study, the oxidation process of Ni
48Ti51Mn
alloy produced with Arc Melter Method with the Thermogravimetric Analysis
Device (TG/DTA) was performed to improve biocompatibility for three different
oxidation temperatures (600-700-800
oC). The oxidation rate of the
alloy that was exposed to isothermal oxidation was calculated. With the
increase in the oxidation temperature, the alloys were oxidized faster. The
change of the oxidation on the Shape-Memory Effect (SME) of the NiTiMn alloy
was determined by Differential Scanning Calorimetry (DSC), and it was observed
that the SME did not disappear. The changes occurring on the surface and on the
crystal structure of the alloy were determined by SEM-EDX and X-ray analyses.
It was determined with chemical analysis (EDX) that a TiO
2 layer was
formed on the alloy. The fact that the TiO
2 layer increased with the
increase in the oxidation temperature was supported with x-ray measurement
results. In this way, it was concluded that there was a protective oxide layer
on the surface of the alloy. ICP-MS measurements were done to determine
penetration of Ni,Ti and Mn element of oxides alloys in to Ringer solution
.




References

  • [1]. S.K. Sadrnezhaad, S. Katiraci, A. Ghasemi, Int J Adv Desg Manuf Tech. 7(4), 1-6 (2014).
  • [2]. M. Yousefpour, I. Vali, E. Saebnoori, Int J Eng. 27(10), 1627-1634 (2014)
  • [3]. M. Kok, G. Ates, Eur. Phys. J. Plus, 132, 185 (2017).
  • [4]. M.L. Lethabena, P.A. Olubambi, H.K. Chikwanda, J Mater Res Tech. 1-10 (2015)
  • [5]. M. Es-souni, M. Es-souni, H.F. Brandies, Biometar. 22, 2153-2161 (2001)
  • [6]. S.A.Thompson, Int Endod J. 33, 297-310 (2000)[7]. D. Vojtech, J. Fojt, M. Voderova, P. Novak, L. Joska, Metal, Czech Repuclic (Congress paper) (2010)[8]. A. Bansiddhi, T.D. Sargeant, S.I. Stupp, D.C. Dunand, Acta Biometar. 4: 773-782 (2008)[9]. A. Amini, C. Cheng, Scientific Report. 3(2476) 1-6 (2013).
  • [10]. C.H. Xu, X.Q. Ma, S.Q. Shi, C.H. Woo, Mater Sci Eng: A. 371(1) 45-50 (2014).
  • [11]. W. Ching, S.M. Abdus, AIP Conference Proceedings. 1901(1) AIP Publishing (2017).
  • [12]. A.W. Hansen, L.V.R. Beltrami, L.M. Antonini, D.J. Villarinho, J.C.K.D. Neves, C.E.B. Marino, C.D.F. Malfatti, Mater Resch. 18(5) 1053-1061 (2015).
  • [13]. M. Kok, K. Yildiz, Appl Phy A Mater. 116(4) 2045-2050 (2014).
  • [14]. C.H. Xu, S.Q. Shi, H.C. Man, C.H. Woo, C. Surya, J Mater Sci. 41(4:1) 123-1129 (2006).
  • [15]. G.S. Firstov, R.G. Vitchev, H. Kumar, B. Blanpain, J. Van Humbeeck, Biomater. 23(24) 4863-4871 (2002).
  • [16]. A.W. Hansen, L.V.R. Beltrami, L.M. Antonini, D.J. Villarinho, J.C.K.D. Neves, C.E.B. Marino, C.D.F. Malfatti, Mater Resch. 18(5) 1053-1061 (2015).
  • [17]. S.K. Sadrnezhaad, S.A. Hosseini, Mater Design, 30(10) 4483-4487 (2009).
  • [18]. H. Li, Y. Cong, Y. Zheng, L. Cui, Mater Sci Eng C. 60, 554-559 (2016).
  • [19].M. Kok, G. Pirge, Y. Aydogdu, Appl Surf Sci. 268, 136-140 (2013).
  • [20]. S.H. El-Hadad, K.M. Ibrahim, L. Wagner, Journal of Metallurgy.1-6 (2014)
  • [21]. A. Sami Abualnoun, K. Abdul Raheem, A. Abid, A.A. Murtadha, Int J Mech Eng Tech (IJMET). 4(2) 86-99 (2013)
  • [22]. C.L. Chu, T. Hu, S.L. Wu, Y.S. Dong, L.H. Yin, P.H. Pu, C.Y. Lin, K.W.K. Chung, P.K. Yeung Chu, Acta Biomater. 3(5), 795-806 (2007).
  • [23]. K.N. Lin, S.K. Wu, Oxid Met.71(3-4), 187-200 (2009).
  • [24]. K.S. Kim, K.K. Jee, W.C. Kim, W.Y. Jang, S.H. Han, Mater Sci Eng A, 481, 658-661 (2008).
  • [25]. L. Zhang, C. Xie, J. Wu, Mater Charac. 58(5) 471-478 (2007).
  • [26]. K.S. Kim, K.K. Jee, Y.B. Kim, W.Y. Jang, S.H. Han, The Eur Phys J Special Topics. 158(1) 67-71 (2008).
  • [27]. A.S. Mahmud, C.W. Ng, M.F. Razali, AIP Conference Proceedings. 1774(1), 060006 (2016)
There are 24 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Articles
Authors

Mediha Kök

Publication Date November 30, 2018
Submission Date November 12, 2018
Acceptance Date November 21, 2018
Published in Issue Year 2018 Volume: 1 Issue: 2

Cite

APA Kök, M. (2018). Investigation of Thermal properties, Chemical Analysis and Biocompatibility of High Temperature Oxidized NiTiMn Shape Memory Alloy. Journal of Physical Chemistry and Functional Materials, 1(2), 25-35.
AMA Kök M. Investigation of Thermal properties, Chemical Analysis and Biocompatibility of High Temperature Oxidized NiTiMn Shape Memory Alloy. Journal of Physical Chemistry and Functional Materials. November 2018;1(2):25-35.
Chicago Kök, Mediha. “Investigation of Thermal Properties, Chemical Analysis and Biocompatibility of High Temperature Oxidized NiTiMn Shape Memory Alloy”. Journal of Physical Chemistry and Functional Materials 1, no. 2 (November 2018): 25-35.
EndNote Kök M (November 1, 2018) Investigation of Thermal properties, Chemical Analysis and Biocompatibility of High Temperature Oxidized NiTiMn Shape Memory Alloy. Journal of Physical Chemistry and Functional Materials 1 2 25–35.
IEEE M. Kök, “Investigation of Thermal properties, Chemical Analysis and Biocompatibility of High Temperature Oxidized NiTiMn Shape Memory Alloy”, Journal of Physical Chemistry and Functional Materials, vol. 1, no. 2, pp. 25–35, 2018.
ISNAD Kök, Mediha. “Investigation of Thermal Properties, Chemical Analysis and Biocompatibility of High Temperature Oxidized NiTiMn Shape Memory Alloy”. Journal of Physical Chemistry and Functional Materials 1/2 (November 2018), 25-35.
JAMA Kök M. Investigation of Thermal properties, Chemical Analysis and Biocompatibility of High Temperature Oxidized NiTiMn Shape Memory Alloy. Journal of Physical Chemistry and Functional Materials. 2018;1:25–35.
MLA Kök, Mediha. “Investigation of Thermal Properties, Chemical Analysis and Biocompatibility of High Temperature Oxidized NiTiMn Shape Memory Alloy”. Journal of Physical Chemistry and Functional Materials, vol. 1, no. 2, 2018, pp. 25-35.
Vancouver Kök M. Investigation of Thermal properties, Chemical Analysis and Biocompatibility of High Temperature Oxidized NiTiMn Shape Memory Alloy. Journal of Physical Chemistry and Functional Materials. 2018;1(2):25-3.