Research Article
BibTex RIS Cite
Year 2019, Volume: 2 Issue: 1, 23 - 25, 19.07.2019

Abstract

References

  • [1] Z.-l. Wang, Z.C. Kang, Functional and smart materials: structural evolution and structure analysis, Springer Science & Business Media, 2012.
  • [2] I.N. Qader, M. Kök, F. Dağdelen, Effect of heat treatment on thermodynamics parameters, crystal and microstructure of (Cu-Al-Ni-Hf) shape memory alloy, Physica B: Condensed Matter, 553 (2019) 1-5.
  • [3] F. Dagdelen, M. Aldalawi, M. Kok, I. Qader, Influence of Ni addition and heat treatment on phase transformation temperatures and microstructures of a ternary CuAlCr alloy, The European Physical Journal Plus, 134 (2019) 66.
  • [4] M. Kök, H.S.A. Zardawi, I.N. Qader, M.S. Kanca, The effects of cobalt elements addition on Ti2Ni phases, thermodynamics parameters, crystal structure and transformation temperature of NiTi shape memory alloys, The European Physical Journal Plus, 134 (2019) 197.
  • [5] F. Dagdelen, M. Kok, I. Qader, Effects of Ta Content on Thermodynamic Properties and Transformation Temperatures of Shape Memory NiTi Alloy, Metals and Materials International, (2019) 1-8.
  • [6] E. Ercan, F. Dagdelen, I. Qader, Effect of tantalum contents on transformation temperatures, thermal behaviors and microstructure of CuAlTa HTSMAs, Journal of Thermal Analysis and Calorimetry, (2019) 1-8.
  • [7] D.M. Rowe, Thermoelectrics handbook: macro to nano, CRC press, 2018.
  • [8] I.N. Qader, M. Omar, Carrier concentration effect and other structure-related parameters on lattice thermal conductivity of Si nanowires, Bulletin of Materials Science, 40 (2017) 599-607.
  • [9] B. Leimkuhler, C. Matthews, Molecular Dynamics, Springer, 2016.
  • [10] M.H. Kebiroglu, C. Orek, N. Bulut, O. Kaygili, S. Keser, T. Ates, Temperature dependent structural and vibrational properties of hydroxyapatite: A theoretical and experimental study, Ceramics International, 43 (2017) 15899-15904.
  • [11] A. Hybl, R.E. Rundle, D.E. Williams, The Crystal and Molecular Structure of the Cyclohexaamylose-Potassium Acetate Complex1, Journal of the American Chemical Society, 87 (1965) 2779-2788.
  • [12] G. Bram, A. Loupy, M. Majdoub, E. Gutierrez, E. Ruiz-Hitzsky, Alkylation of potassium acetate in “dry media” thermal activation in commercial microwave ovens, Tetrahedron, 46 (1990) 5167-5176.
  • [13] R.E. Miller, E.R. Stadtman, Glutamate synthase from Escherichia coli an iron-sulfide flavoprotein, Journal of Biological Chemistry, 247 (1972) 7407-7419.
  • [14] D. Ulmer, Fixation: The key to good tissue preservation, J Int Soc Plastination, 8 (1994) 7-10.
  • [15] P.N. Dyer, R.S. Edayathumangalam, C.L. White, Y. Bao, S. Chakravarthy, U.M. Muthurajan, K. Luger, Reconstitution of nucleosome core particles from recombinant histones and DNA, in: Methods in enzymology, Elsevier, 2003, pp. 23-44.
  • [16] M. Gasgnier, A. Petit, Effects of microwave and heating treatments on the crystallographic properties of a potassium acetate powder, Journal of materials science, 29 (1994) 6479-6484.
  • [17] P. Ferloni, M. Sanesi, P. Franzosini, Phase Transitions in the Alkali C1—n. C4 Alkanoates, Zeitschrift für Naturforschung A, 30 (1975) 1447-1457.
  • [18] T. Jenkins, P. O'Brien, A thermal and Raman investigation of the phase transitions above room temperature in anhydrous potassium acetate, Journal of Physics and Chemistry of Solids, 44 (1983) 565-568.
  • [19] M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09, revision D. 01, in, Gaussian, Inc., Wallingford CT, 2009.

Chemical Structural and Vibrational Analysis of Potassium Acetate: A Density Function Theory Study

Year 2019, Volume: 2 Issue: 1, 23 - 25, 19.07.2019

Abstract

Potassium acetate (C2H3KO2) is an
essential macromineral for the human body
and it is been used in many areas due to its stellar
properties.
In this study,
C2H3KO2 was optimized
by applying the density functional
theory (DFT) using Gaussian program. The highest occupied molecular orbital
(HOMO) and lowest occupied molecular orbital (LUMO) were plotted. Also, based
on the obtained results, the band gap energy was calculated. In addition, the
obtained FTIR was compared with its corresponding experimental result. Beside,
ultraviolet to visible spectroscopy for the (C2H3KO2)
molecule was illustrated. Other theoretical calculations were made and results
were plausible when compared with experimental data.

Thanks

The authors would like to thanks Prof. Dr. Niyazi BULUT for his scientific help.

References

  • [1] Z.-l. Wang, Z.C. Kang, Functional and smart materials: structural evolution and structure analysis, Springer Science & Business Media, 2012.
  • [2] I.N. Qader, M. Kök, F. Dağdelen, Effect of heat treatment on thermodynamics parameters, crystal and microstructure of (Cu-Al-Ni-Hf) shape memory alloy, Physica B: Condensed Matter, 553 (2019) 1-5.
  • [3] F. Dagdelen, M. Aldalawi, M. Kok, I. Qader, Influence of Ni addition and heat treatment on phase transformation temperatures and microstructures of a ternary CuAlCr alloy, The European Physical Journal Plus, 134 (2019) 66.
  • [4] M. Kök, H.S.A. Zardawi, I.N. Qader, M.S. Kanca, The effects of cobalt elements addition on Ti2Ni phases, thermodynamics parameters, crystal structure and transformation temperature of NiTi shape memory alloys, The European Physical Journal Plus, 134 (2019) 197.
  • [5] F. Dagdelen, M. Kok, I. Qader, Effects of Ta Content on Thermodynamic Properties and Transformation Temperatures of Shape Memory NiTi Alloy, Metals and Materials International, (2019) 1-8.
  • [6] E. Ercan, F. Dagdelen, I. Qader, Effect of tantalum contents on transformation temperatures, thermal behaviors and microstructure of CuAlTa HTSMAs, Journal of Thermal Analysis and Calorimetry, (2019) 1-8.
  • [7] D.M. Rowe, Thermoelectrics handbook: macro to nano, CRC press, 2018.
  • [8] I.N. Qader, M. Omar, Carrier concentration effect and other structure-related parameters on lattice thermal conductivity of Si nanowires, Bulletin of Materials Science, 40 (2017) 599-607.
  • [9] B. Leimkuhler, C. Matthews, Molecular Dynamics, Springer, 2016.
  • [10] M.H. Kebiroglu, C. Orek, N. Bulut, O. Kaygili, S. Keser, T. Ates, Temperature dependent structural and vibrational properties of hydroxyapatite: A theoretical and experimental study, Ceramics International, 43 (2017) 15899-15904.
  • [11] A. Hybl, R.E. Rundle, D.E. Williams, The Crystal and Molecular Structure of the Cyclohexaamylose-Potassium Acetate Complex1, Journal of the American Chemical Society, 87 (1965) 2779-2788.
  • [12] G. Bram, A. Loupy, M. Majdoub, E. Gutierrez, E. Ruiz-Hitzsky, Alkylation of potassium acetate in “dry media” thermal activation in commercial microwave ovens, Tetrahedron, 46 (1990) 5167-5176.
  • [13] R.E. Miller, E.R. Stadtman, Glutamate synthase from Escherichia coli an iron-sulfide flavoprotein, Journal of Biological Chemistry, 247 (1972) 7407-7419.
  • [14] D. Ulmer, Fixation: The key to good tissue preservation, J Int Soc Plastination, 8 (1994) 7-10.
  • [15] P.N. Dyer, R.S. Edayathumangalam, C.L. White, Y. Bao, S. Chakravarthy, U.M. Muthurajan, K. Luger, Reconstitution of nucleosome core particles from recombinant histones and DNA, in: Methods in enzymology, Elsevier, 2003, pp. 23-44.
  • [16] M. Gasgnier, A. Petit, Effects of microwave and heating treatments on the crystallographic properties of a potassium acetate powder, Journal of materials science, 29 (1994) 6479-6484.
  • [17] P. Ferloni, M. Sanesi, P. Franzosini, Phase Transitions in the Alkali C1—n. C4 Alkanoates, Zeitschrift für Naturforschung A, 30 (1975) 1447-1457.
  • [18] T. Jenkins, P. O'Brien, A thermal and Raman investigation of the phase transitions above room temperature in anhydrous potassium acetate, Journal of Physics and Chemistry of Solids, 44 (1983) 565-568.
  • [19] M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09, revision D. 01, in, Gaussian, Inc., Wallingford CT, 2009.
There are 19 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Articles
Authors

İbrahim Nazem Qader

Ahmad Mohammad

Yousif Hussein Azeez This is me

Riyadh Saeed Agid This is me

Henar Sleman Hassan This is me

Srwa Hashim Mohammed Al-nabawi This is me

Publication Date July 19, 2019
Submission Date June 18, 2019
Acceptance Date July 8, 2019
Published in Issue Year 2019 Volume: 2 Issue: 1

Cite

APA Nazem Qader, İ., Mohammad, A., Azeez, Y. H., Agid, R. S., et al. (2019). Chemical Structural and Vibrational Analysis of Potassium Acetate: A Density Function Theory Study. Journal of Physical Chemistry and Functional Materials, 2(1), 23-25.
AMA Nazem Qader İ, Mohammad A, Azeez YH, Agid RS, Hassan HS, Al-nabawi SHM. Chemical Structural and Vibrational Analysis of Potassium Acetate: A Density Function Theory Study. Journal of Physical Chemistry and Functional Materials. July 2019;2(1):23-25.
Chicago Nazem Qader, İbrahim, Ahmad Mohammad, Yousif Hussein Azeez, Riyadh Saeed Agid, Henar Sleman Hassan, and Srwa Hashim Mohammed Al-nabawi. “Chemical Structural and Vibrational Analysis of Potassium Acetate: A Density Function Theory Study”. Journal of Physical Chemistry and Functional Materials 2, no. 1 (July 2019): 23-25.
EndNote Nazem Qader İ, Mohammad A, Azeez YH, Agid RS, Hassan HS, Al-nabawi SHM (July 1, 2019) Chemical Structural and Vibrational Analysis of Potassium Acetate: A Density Function Theory Study. Journal of Physical Chemistry and Functional Materials 2 1 23–25.
IEEE İ. Nazem Qader, A. Mohammad, Y. H. Azeez, R. S. Agid, H. S. Hassan, and S. H. M. Al-nabawi, “Chemical Structural and Vibrational Analysis of Potassium Acetate: A Density Function Theory Study”, Journal of Physical Chemistry and Functional Materials, vol. 2, no. 1, pp. 23–25, 2019.
ISNAD Nazem Qader, İbrahim et al. “Chemical Structural and Vibrational Analysis of Potassium Acetate: A Density Function Theory Study”. Journal of Physical Chemistry and Functional Materials 2/1 (July 2019), 23-25.
JAMA Nazem Qader İ, Mohammad A, Azeez YH, Agid RS, Hassan HS, Al-nabawi SHM. Chemical Structural and Vibrational Analysis of Potassium Acetate: A Density Function Theory Study. Journal of Physical Chemistry and Functional Materials. 2019;2:23–25.
MLA Nazem Qader, İbrahim et al. “Chemical Structural and Vibrational Analysis of Potassium Acetate: A Density Function Theory Study”. Journal of Physical Chemistry and Functional Materials, vol. 2, no. 1, 2019, pp. 23-25.
Vancouver Nazem Qader İ, Mohammad A, Azeez YH, Agid RS, Hassan HS, Al-nabawi SHM. Chemical Structural and Vibrational Analysis of Potassium Acetate: A Density Function Theory Study. Journal of Physical Chemistry and Functional Materials. 2019;2(1):23-5.