Organoids are miniature forms of organs to demonstrate spatio-temporal cellular structure and tissue function. The organoids creation revolutionized developmental biology and provided the opportunity to study and modify human development and disease in laboratory setting. Recently, new biomaterial-guided culture systems have represented the versatility for designing and producing of organoids in a constant and reproducible manner. Since 2D cell culture models often lack in vivo tissue architecture, recent detailed research has allowed many 3D culture models development demonstrating the characteristics of in vivo organ structure and function. Organoid models are able to create 3D structures complex that maintain multiple cell types and also hide the relevant organ functions in vivo, and therefore, the development of organoids in particular has revolutionized developmental biology, disease modeling, and drug discovery.
The new biomaterials production has been important for development of in vitro 3D models. Further work with biomaterials has been on the creation of hybrid polymers that combine the advantages of both synthetic and natural polymers to take place of communal materials such as Matrigel and polydimethylsiloxane (PDMS). The creation of 3D culture systems has also revolutionized in vitro drug testing. Furthermore, recreating the three-dimensional environment of tumors and the functional arrangement of cancer cells has been a major motivation for developing new tumor models. Under defined culture conditions, cancer cells can form three-dimensional structures known as spheroids and advances in development of embryonic to self-organize into three-dimensional cultures known as organoids. These newly designed biomaterials using for tumor modeling will make an important contribution to understand the main mechanisms of cancer.
Primary Language | English |
---|---|
Subjects | Material Production Technologies |
Journal Section | Articles |
Authors | |
Publication Date | December 12, 2022 |
Submission Date | July 12, 2022 |
Acceptance Date | August 30, 2022 |
Published in Issue | Year 2022 Volume: 5 Issue: 2 |