Research Article
BibTex RIS Cite

Investigation of Propyphenazone Molecule by Quantum Chemical Methods

Year 2022, Volume: 5 Issue: 2, 40 - 48, 12.12.2022
https://doi.org/10.54565/jphcfum.1184174

Abstract

Computational chemistry approaches were used to manage the phenazone molecule. The phenazone molecule was optimized at the 3-21G (d) level. The structural parameters were investigated. IR and NMR techniques, which are spectroscopic approaches, were used to determine the structure. The highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy, hardness (η), softness (σ), chemical potential (μ), electronegativity (χ), electrophilicity index (ω), nucleophilicity index (ε), the electron accepting power (ω+), electron-donating power (ω-), and polarizability of the propyphenazone molecule were investigated.
NMR spectra for 1H and 13C, as well as UV-Vis spectra, were obtained. HOMO-LUMO and molecular electrostatic potential (MEP) analyses were carried out. The theoretical calculations for the molecular structure and spectroscopy were done using the Gaussian 09 software with HF and 3-211G (d) basis set calculations. The GaussSum 3 software was used to compute the density of state (DOS).

Thanks

Author Mehmet Hanifi KEBİROGLU is a Ph.D. scholar in computational science and engineering subdivision with the grant of 100\2000 from the council of (YÖK-TURKEY) Higher Education (CoHE) of Turkey.

References

  • Levy M, Zylber-Katz E, Rosenkranz B 1995 Clinical pharmacokinetics of dipyrone and its metabolites. Clinical Pharmacokinetics 28: 216–234
  • Ohno H, Yamashita K, Yahata et al 1986 Maternal plasma concentrations of catecholamines and cyclic nucleotides during labor and following delivery. Research Communications in Chemical Pathology and Pharmacology 51: 183–194
  • Kaufman DW, Kelly JP, Levy M, Shapiro S 1991 The drug etiology of agranulocytosis and aplastic anemia. Monographs in Epidemiology and Biostatistics 18. Oxford University Press, Oxford
  • Roujeau JC, Kelly JP, Naldi L, Rzany B, Stern RS, Anderson T, Auquier A, Bastuji-Garin S, Correia O, Locati F, Mockenhaupt M, Paoletti C, Shapiro S, Sheir N, Schöpf E, Kaufman D 1995 Drug etiology of Stevens–Johnson syndrome and toxic epidermal necrolysis, first results from an international case–control study. New England Journal of Medicine 333: 1600–1609
  • Mockenhaupt M, Schlingmann J, Schroeder W, Schoepf E 1996 Evaluation of non-steroidal anti-inflammatory drugs (NSAIDs) and muscle relaxants as risk factors for Stevens–Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). Pharmacoepidemiology and Drug Safety 5: 116
  • International Collaborative Study of Severe Anaphylaxis 1998 Epidemiology 9: 141–146
  • Wolhoff H, Altrogge G, Pola W, Sistovaris N 1983 Metamizol—akute Überdosierung in suizidaler Absicht. Deutsche Medizinische Wochenschrift 108: 1761–1764
  • Indian Pharmacopoeia 2014, volume II, page 1237; volume III, page 2429 and 2586.
  • Erkan, S. & Dikyol, D. C. (2022). Computational Structure Characterization of 1,2,3-Selendiazole Isomers, Investigation of Some Molecular Properties and Biological Activities. Cumhuriyet Science Journal, 43 (2), 246-256.
  • Dennington R.D., Keith T.A., Millam J.M., GaussView 6.0. 16, Semichem. Inc., Shawnee Mission KS, 2016.
  • Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Nakatsuji H., Gaussian09 Revision D. 01, Gaussian Inc.,Wallingford CT, 2009. http://www.gaussian.com.
  • Becke A. D., Perspective: Fifty years of density-functional theory in chemical physics, The Journal of Chemical Physics, 140(18) (2014) 18A301.
  • Lee C., Yang W., Parr R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B., 37(2) (1988) 785.
  • Zhao Y., Truhlar D. G., The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theoretical Chemistry Accounts, 120(1-3) (2008) 215-241.
  • Rassolov V.A., Ratner M.A., Pople J.A., Redfern P.C., Curtiss L.A., 6-31G* basis set for third-row atoms, J. Comput. Chem., 22 (9) (2001) 976–984.
  • EL Aatiaoui, A., Koudad, M., Chelfi, T., ERKAN, S., Azzouzi, M., Aouniti, A., & Oussaid, A., Experimental and theoretical study of new Schiff bases based on imidazo (1, 2-a) pyridine as corrosion inhibitor of mild steel in 1M HCl, Journal of Molecular Structure, (2021) 1226 129372.
  • Al-Otaibi J. S., Mary Y. S., Mary Y. S., Kaya S., Erkan S., Spectral analysis and DFT investigation of some benzopyran analogues and their self-assemblies with graphene, Journal of Molecular Liquids, 317 (2020) 113924.
  • Young, D., (2004). Computational chemistry: a practical guide for applying techniques to real world problems, John Wiley & Sons, New Jersey, USA.
  • Sherrill, C.D. (2000). An introduction to Hartree-Fock molecular orbital theory, School of Chemistry and Biochemistry Georgia Institute of Technology, Atlanta, USA.
  • Lewars, E., (2003). Introduction to the theory and applications of molecular and quantum mechanics, J. Computational chemistry, Ontario Canada.
  • Onishi, T., (2018). Quantum Computational Chemistry, Modelling and Calculation for Functional Materials, Springer Nature, Singapore.
  • Froese Fischer, C (1977). The Hartree-Fock Method for Atoms: A Numerical Approach John Wiley and Sons, New York. ISBN 047125990X.
  • Helgaker, T; Jørgensen, P and Olsen, J (2000). Molecular Electronic-Structure Theory Wiley, Chichester. ISBN 0471967556.
  • Froese Fischer, C; Brage, T and Jönsson, P (1997). Computational Atomic Structure: An MCHF Approach, Institute of Physics, Bristol. ISBN 0750304669
  • Shavitt, I and Bartlett, R-J (2009). Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory Cambridge Molecular Science Cambridge University Press, Cambridge. ISBN 9780521818322
  • Ring, P and Schuck, P (2000). The Nuclear Many-Body Problem Springer-Verlag, Berlin, Heidlberg. ISBN 3-540-09820-8.
  • McHale, J.L., (2017). Molecular spectroscopy, Taylor & Francis Group, New York, USA.
  • Perkampus, H.-H., (2013). UV-VIS Spectroscopy and its Applications, Springer-Verlag Berlin Heidelberg, Germany.
  • Kaya S., Kaya C., A new method for calculation of molecular hardness: a theoretical study, Computational and Theoretical Chemistry, 1060 (2015) 66-70.
  • Knicker, H., Almendros, G., González-Vila, F.J., Lüdemann, H.-D., and Martin, F., 13C and 15N NMR analysis of some fungal melanins in comparison with soil organic matter, Organic Geochemistry, 23(11-12), (1995) 1023-1028.
  • Cheeseman, J.R., Trucks, G.W., Keith, T.A., and Frisch, M.J., A comparison of models for calculating nuclear magnetic resonance shielding tensors, The Journal of chemical physics, 104(14), (1996) 5497-5509.
  • Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Zakrzewski, V., Montgomery Jr, J., Stratmann, R.E., and Burant, J., (1998). Gaussian 98, revision a. 7, Gaussian, Inc., Pittsburgh, PA, 12.
  • Khalid HH, Erkan S, Bulut N, Halogens Effect on Spectroscopy, Anticancer and Molecular Docking Studies for Platinum complexes, Optik (2021).
  • Erkan, S., Kaya, S., Sayin, K., & Karakaş, D. Structural, spectral characterization and molecular docking analyses of mer-ruthenium (II) complexes containing the bidentate chelating ligands. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 224, (2020) 117399.
  • J.S. Murray, K. Sen, Molecular Electrostatic Potentials, Concepts and 399 Applications, Elsevier, Amsterdam, 1996.
  • E. Scrocco, J. Tomasi, in: P. Lowdin (Ed.), Advances in Quantum Chemistry, Academic Press, New York, 1978, 402.
  • J. Sponer, P. Hobza, Int. J. Quant. Chem.,1996, 57, 959–970
  • F.J. Luque, M. Orozco, P.K. Bhadane, S.R. Gadre, J. Phys. Chem.,1993, 97, 9380–9384.
  • M. Chen, U.V. Waghmare, C.M. Friend, E. Kaxiras. J. Chem. Phys.,1998, 109, 6854–6680.
  • E.B. Sas, M. Kurt, M. Can, S. Okur, S. İcli, S. Demic, Structural investigation of a self–assembled monolayer material 5–[(3–methylphenyl) (phenyl) amino] isophthalic acid for organic light–emitting devices, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy (2014)
Year 2022, Volume: 5 Issue: 2, 40 - 48, 12.12.2022
https://doi.org/10.54565/jphcfum.1184174

Abstract

References

  • Levy M, Zylber-Katz E, Rosenkranz B 1995 Clinical pharmacokinetics of dipyrone and its metabolites. Clinical Pharmacokinetics 28: 216–234
  • Ohno H, Yamashita K, Yahata et al 1986 Maternal plasma concentrations of catecholamines and cyclic nucleotides during labor and following delivery. Research Communications in Chemical Pathology and Pharmacology 51: 183–194
  • Kaufman DW, Kelly JP, Levy M, Shapiro S 1991 The drug etiology of agranulocytosis and aplastic anemia. Monographs in Epidemiology and Biostatistics 18. Oxford University Press, Oxford
  • Roujeau JC, Kelly JP, Naldi L, Rzany B, Stern RS, Anderson T, Auquier A, Bastuji-Garin S, Correia O, Locati F, Mockenhaupt M, Paoletti C, Shapiro S, Sheir N, Schöpf E, Kaufman D 1995 Drug etiology of Stevens–Johnson syndrome and toxic epidermal necrolysis, first results from an international case–control study. New England Journal of Medicine 333: 1600–1609
  • Mockenhaupt M, Schlingmann J, Schroeder W, Schoepf E 1996 Evaluation of non-steroidal anti-inflammatory drugs (NSAIDs) and muscle relaxants as risk factors for Stevens–Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). Pharmacoepidemiology and Drug Safety 5: 116
  • International Collaborative Study of Severe Anaphylaxis 1998 Epidemiology 9: 141–146
  • Wolhoff H, Altrogge G, Pola W, Sistovaris N 1983 Metamizol—akute Überdosierung in suizidaler Absicht. Deutsche Medizinische Wochenschrift 108: 1761–1764
  • Indian Pharmacopoeia 2014, volume II, page 1237; volume III, page 2429 and 2586.
  • Erkan, S. & Dikyol, D. C. (2022). Computational Structure Characterization of 1,2,3-Selendiazole Isomers, Investigation of Some Molecular Properties and Biological Activities. Cumhuriyet Science Journal, 43 (2), 246-256.
  • Dennington R.D., Keith T.A., Millam J.M., GaussView 6.0. 16, Semichem. Inc., Shawnee Mission KS, 2016.
  • Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Nakatsuji H., Gaussian09 Revision D. 01, Gaussian Inc.,Wallingford CT, 2009. http://www.gaussian.com.
  • Becke A. D., Perspective: Fifty years of density-functional theory in chemical physics, The Journal of Chemical Physics, 140(18) (2014) 18A301.
  • Lee C., Yang W., Parr R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B., 37(2) (1988) 785.
  • Zhao Y., Truhlar D. G., The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theoretical Chemistry Accounts, 120(1-3) (2008) 215-241.
  • Rassolov V.A., Ratner M.A., Pople J.A., Redfern P.C., Curtiss L.A., 6-31G* basis set for third-row atoms, J. Comput. Chem., 22 (9) (2001) 976–984.
  • EL Aatiaoui, A., Koudad, M., Chelfi, T., ERKAN, S., Azzouzi, M., Aouniti, A., & Oussaid, A., Experimental and theoretical study of new Schiff bases based on imidazo (1, 2-a) pyridine as corrosion inhibitor of mild steel in 1M HCl, Journal of Molecular Structure, (2021) 1226 129372.
  • Al-Otaibi J. S., Mary Y. S., Mary Y. S., Kaya S., Erkan S., Spectral analysis and DFT investigation of some benzopyran analogues and their self-assemblies with graphene, Journal of Molecular Liquids, 317 (2020) 113924.
  • Young, D., (2004). Computational chemistry: a practical guide for applying techniques to real world problems, John Wiley & Sons, New Jersey, USA.
  • Sherrill, C.D. (2000). An introduction to Hartree-Fock molecular orbital theory, School of Chemistry and Biochemistry Georgia Institute of Technology, Atlanta, USA.
  • Lewars, E., (2003). Introduction to the theory and applications of molecular and quantum mechanics, J. Computational chemistry, Ontario Canada.
  • Onishi, T., (2018). Quantum Computational Chemistry, Modelling and Calculation for Functional Materials, Springer Nature, Singapore.
  • Froese Fischer, C (1977). The Hartree-Fock Method for Atoms: A Numerical Approach John Wiley and Sons, New York. ISBN 047125990X.
  • Helgaker, T; Jørgensen, P and Olsen, J (2000). Molecular Electronic-Structure Theory Wiley, Chichester. ISBN 0471967556.
  • Froese Fischer, C; Brage, T and Jönsson, P (1997). Computational Atomic Structure: An MCHF Approach, Institute of Physics, Bristol. ISBN 0750304669
  • Shavitt, I and Bartlett, R-J (2009). Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory Cambridge Molecular Science Cambridge University Press, Cambridge. ISBN 9780521818322
  • Ring, P and Schuck, P (2000). The Nuclear Many-Body Problem Springer-Verlag, Berlin, Heidlberg. ISBN 3-540-09820-8.
  • McHale, J.L., (2017). Molecular spectroscopy, Taylor & Francis Group, New York, USA.
  • Perkampus, H.-H., (2013). UV-VIS Spectroscopy and its Applications, Springer-Verlag Berlin Heidelberg, Germany.
  • Kaya S., Kaya C., A new method for calculation of molecular hardness: a theoretical study, Computational and Theoretical Chemistry, 1060 (2015) 66-70.
  • Knicker, H., Almendros, G., González-Vila, F.J., Lüdemann, H.-D., and Martin, F., 13C and 15N NMR analysis of some fungal melanins in comparison with soil organic matter, Organic Geochemistry, 23(11-12), (1995) 1023-1028.
  • Cheeseman, J.R., Trucks, G.W., Keith, T.A., and Frisch, M.J., A comparison of models for calculating nuclear magnetic resonance shielding tensors, The Journal of chemical physics, 104(14), (1996) 5497-5509.
  • Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Zakrzewski, V., Montgomery Jr, J., Stratmann, R.E., and Burant, J., (1998). Gaussian 98, revision a. 7, Gaussian, Inc., Pittsburgh, PA, 12.
  • Khalid HH, Erkan S, Bulut N, Halogens Effect on Spectroscopy, Anticancer and Molecular Docking Studies for Platinum complexes, Optik (2021).
  • Erkan, S., Kaya, S., Sayin, K., & Karakaş, D. Structural, spectral characterization and molecular docking analyses of mer-ruthenium (II) complexes containing the bidentate chelating ligands. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 224, (2020) 117399.
  • J.S. Murray, K. Sen, Molecular Electrostatic Potentials, Concepts and 399 Applications, Elsevier, Amsterdam, 1996.
  • E. Scrocco, J. Tomasi, in: P. Lowdin (Ed.), Advances in Quantum Chemistry, Academic Press, New York, 1978, 402.
  • J. Sponer, P. Hobza, Int. J. Quant. Chem.,1996, 57, 959–970
  • F.J. Luque, M. Orozco, P.K. Bhadane, S.R. Gadre, J. Phys. Chem.,1993, 97, 9380–9384.
  • M. Chen, U.V. Waghmare, C.M. Friend, E. Kaxiras. J. Chem. Phys.,1998, 109, 6854–6680.
  • E.B. Sas, M. Kurt, M. Can, S. Okur, S. İcli, S. Demic, Structural investigation of a self–assembled monolayer material 5–[(3–methylphenyl) (phenyl) amino] isophthalic acid for organic light–emitting devices, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy (2014)
There are 40 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Articles
Authors

Hanifi Kebiroglu 0000-0002-6764-3364

Öznur Büyük 0000-0003-1623-5333

Niyazi Bulut 0000-0003-2863-7700

Publication Date December 12, 2022
Submission Date October 4, 2022
Acceptance Date November 24, 2022
Published in Issue Year 2022 Volume: 5 Issue: 2

Cite

APA Kebiroglu, H., Büyük, Ö., & Bulut, N. (2022). Investigation of Propyphenazone Molecule by Quantum Chemical Methods. Journal of Physical Chemistry and Functional Materials, 5(2), 40-48. https://doi.org/10.54565/jphcfum.1184174
AMA Kebiroglu H, Büyük Ö, Bulut N. Investigation of Propyphenazone Molecule by Quantum Chemical Methods. Journal of Physical Chemistry and Functional Materials. December 2022;5(2):40-48. doi:10.54565/jphcfum.1184174
Chicago Kebiroglu, Hanifi, Öznur Büyük, and Niyazi Bulut. “Investigation of Propyphenazone Molecule by Quantum Chemical Methods”. Journal of Physical Chemistry and Functional Materials 5, no. 2 (December 2022): 40-48. https://doi.org/10.54565/jphcfum.1184174.
EndNote Kebiroglu H, Büyük Ö, Bulut N (December 1, 2022) Investigation of Propyphenazone Molecule by Quantum Chemical Methods. Journal of Physical Chemistry and Functional Materials 5 2 40–48.
IEEE H. Kebiroglu, Ö. Büyük, and N. Bulut, “Investigation of Propyphenazone Molecule by Quantum Chemical Methods”, Journal of Physical Chemistry and Functional Materials, vol. 5, no. 2, pp. 40–48, 2022, doi: 10.54565/jphcfum.1184174.
ISNAD Kebiroglu, Hanifi et al. “Investigation of Propyphenazone Molecule by Quantum Chemical Methods”. Journal of Physical Chemistry and Functional Materials 5/2 (December 2022), 40-48. https://doi.org/10.54565/jphcfum.1184174.
JAMA Kebiroglu H, Büyük Ö, Bulut N. Investigation of Propyphenazone Molecule by Quantum Chemical Methods. Journal of Physical Chemistry and Functional Materials. 2022;5:40–48.
MLA Kebiroglu, Hanifi et al. “Investigation of Propyphenazone Molecule by Quantum Chemical Methods”. Journal of Physical Chemistry and Functional Materials, vol. 5, no. 2, 2022, pp. 40-48, doi:10.54565/jphcfum.1184174.
Vancouver Kebiroglu H, Büyük Ö, Bulut N. Investigation of Propyphenazone Molecule by Quantum Chemical Methods. Journal of Physical Chemistry and Functional Materials. 2022;5(2):40-8.