Research Article
BibTex RIS Cite

The effects of duration of ultrasonication on the morphology and structural properties of Ni-doped hydroxyapatite structure

Year 2022, Volume: 5 Issue: 2, 22 - 25, 12.12.2022
https://doi.org/10.54565/jphcfum.1193117

Abstract

This work aims to explain the effects of sonication periods, ranging from 0 to 4 h with a step of 1 h, on the morphology and structural properties of Ni-doped hydroxyapatites at a constant amount of 0.4 at.%. The lattice parameters, crystallinity, and crystallite size were affected by the sonication time. Among the sonicated samples, it was observed that the increasing sonication period reduced the c/a ratio. It was also found that the morphology was affected by the ultrasonication duration.

References

  • M. E. El-Naggar, O. A. Abu Ali, M. A. Abu-Saied, M. K. Ahmed, E. Abdel-Fattah and D. I. Saleh. Tailoring combinations of hydroxyapatite/cadmium selenite/graphene oxide based on their structure, morphology, and antibacterial activity. Journal of Inorganic and Organometallic Polymers and Materials. 2022;32(1):311-325. doi:https://doi.org/10.1007/s10904-021-02115-w.
  • S. V. Dorozhkin. Multiphasic calcium orthophosphate (CaPO4) bioceramics and their biomedical applications. Ceramics International. 2016;42(6):6529-6554. doi:https://doi.org/10.1016/j.ceramint.2016.01.062.
  • V. G. DileepKumar, M. S. Sridhar, P. Aramwit, V. K. Krut’ko, O. N. Musskaya, I. E. Glazov and N. Reddy. A review on the synthesis and properties of hydroxyapatite for biomedical applications. Journal of Biomaterials Science, Polymer Edition. 2022;33(2):229-261. doi:https://doi.org/10.1080/09205063.2021.1980985.
  • S. Panda, C. K. Biswas and S. Paul. A comprehensive review on the preparation and application of calcium hydroxyapatite: a special focus on atomic doping methods for bone tissue engineering. Ceramics International. 2021;47(20):28122–28144. doi:https://doi.org/10.1016/j.ceramint.2021.07.100.
  • E. S. Krishna and G. Suresh. Development and characterization of acicular nano-hydroxyapatite powder from wet chemical synthesis method. Materials Today: Proceedings. 2022;56(2):781-784. doi:https://doi.org/10.1016/j.matpr.2022.02.256.
  • P. Arokiasamy, M. M. A. B. Abdullah, S. Z. Abd Rahim, S. Luhar, A. V. Sandu, N. H. Jamil and M. Nabiałek. Synthesis methods of hydroxyapatite from natural sources: A review. Ceramics International. 2022;48(11):14959-14979. doi:https://doi.org/10.1016/j.ceramint.2022.03.064.
  • M. S. F. Hussin, H. Z. Abdulah, M. I. Idris and M. A. A. Wahap. Extraction of natural hydroxyapatite for biomedical applications-A review. Heliyon. 2022;8(8):e10356. doi: https://doi.org/10.1016/j.heliyon.2022.e10356.
  • R. S. Agid, O. Kaygili, N. Bulut, S. V. Dorozhkin, T. Ates, S. Koytepe, B. Ates, I. Ercan, T İnce and B. K. Mahmood. Investigation of the effects of Pr doping on the structural properties of hydroxyapatite: an experimental and theoretical study. Journal of the Australian Ceramic Society. 2020;56:1501–1513. doi:https://doi.org/10.1007/s41779-020-00495-9.
  • R. O. Kareem, O. Kaygili, T. Ates, N. Bulut, S. Koytepe, A. Kuruçay, F. Ercan and I. Ercan. Experimental and theoretical characterization of Bi-based hydroxyapatites doped with Ce. Ceramics International. 2022;48(22):33440-33454. doi:https://doi.org/10.1016/j.ceramint.2022.07.287.
  • S. Acar, O. Kaygili, T. Ates, S. V. Dorozhkin, N. Bulut, B. Ates, S. Koytepe, F. Ercan, H. Kebiroglu and A. H. Hssain. Experimental characterization and theoretical investigation of Ce/Yb co-doped hydroxyapatites. Materials Chemistry and Physics. 2022;276:125444. doi:https://doi.org/10.1016/j.matchemphys.2021.125444.
  • B. A. Priya, K. Senthilguru, T. Agarwal, S. N. G. H. Narayana, S. Giri, K. Pramanik, K. Pal and I. Banerjee. Nickel doped nanohydroxyapatite: vascular endothelial growth factor inducing biomaterial for bone tissue engineering. RSC Advances. 2015;5:72515-72528. doi:https://doi.org/10.1039/C5RA09560C.
  • B. D. Cullity. Elements of X-ray Diffraction, Addison, Wesley Mass: 1978. p. 127–131.
  • E. Landi, A. Tampieri, G. Celotti and S. Sprio. Densification behaviour and mechanisms of synthetic hydroxyapatites. Journal of the European Ceramic Society. 2000;20(14–15):2377–2387. doi:https://doi.org/10.1016/S0955-2219(00)00154-0.
  • N. Edwin and P. Wilson. Investigations on sonofragmentation of hydroxyapatite crystals as a function of strontium incorporation. Ultrasonics Sonochemistry. 2019;50:188-199. doi: https://doi.org/10.1016/j.ultsonch.2018.09.018.
  • T. Q. Tran, D. P. Minh, T. S. Phan, Q. N. Pham and H. N. Xuan. Dry reforming of methane over calcium-deficient hydroxyapatite supported cobalt and nickel catalysts. Chemical Engineering Science. 2020;228:115975. doi:https://doi.org/10.1016/j.ces.2020.115975.
  • N. Kabilan, K. D. Babu, N. Karthikeyan and K. Chinnakali. Optical nonlinear properties of hydroxyapatite based materials. Optik. 2022;265:169562. doi:https://doi.org/10.1016/j.ijleo.2022.169562.
  • B. Moreno-Perez, Z. Matamoros-Veloza, J. C. Rendon-Angeles, K. Yanagisawa, A. Onda, J. E. Pérez-Terrazas, E. E. Mejia-Martínez, O. B. Díaz and M. Rodríguez-Reyes. Synthesis of silicon-substituted hydroxyapatite using hydrothermal process. Boletín de la Sociedad Española de Cerámica y Vidrio. 2020;59(2):50-64. doi:https://doi.org/10.1016/j.bsecv.2019.07.001.
  • M. E. El-Naggar, A. Elmushyakhi, A. G. Al-Sehemi, A. Kalam, H. Algarni, S. R. Salem and M. Abou Taleb. Biomedical domains of the as-prepared nanocomposite based on hydroxyapatite, bismuth trioxide and graphene oxide. Journal of Materials Research and Technology. 2022;19:3954-3965. doi:https://doi.org/10.1016/j.jmrt.2022.06.106. , S.-L. Iconaru, M. Motelica-Heino and D. Predoi. Study on Europium-Doped Hydroxyapatite Nanoparticles by Fourier Transform Infrared Spectroscopy and Their Antimicrobial Properties. Journal of Spectroscopy. 2013;2013:284285. doi:https://doi.org/10.1155/2013/284285.
Year 2022, Volume: 5 Issue: 2, 22 - 25, 12.12.2022
https://doi.org/10.54565/jphcfum.1193117

Abstract

References

  • M. E. El-Naggar, O. A. Abu Ali, M. A. Abu-Saied, M. K. Ahmed, E. Abdel-Fattah and D. I. Saleh. Tailoring combinations of hydroxyapatite/cadmium selenite/graphene oxide based on their structure, morphology, and antibacterial activity. Journal of Inorganic and Organometallic Polymers and Materials. 2022;32(1):311-325. doi:https://doi.org/10.1007/s10904-021-02115-w.
  • S. V. Dorozhkin. Multiphasic calcium orthophosphate (CaPO4) bioceramics and their biomedical applications. Ceramics International. 2016;42(6):6529-6554. doi:https://doi.org/10.1016/j.ceramint.2016.01.062.
  • V. G. DileepKumar, M. S. Sridhar, P. Aramwit, V. K. Krut’ko, O. N. Musskaya, I. E. Glazov and N. Reddy. A review on the synthesis and properties of hydroxyapatite for biomedical applications. Journal of Biomaterials Science, Polymer Edition. 2022;33(2):229-261. doi:https://doi.org/10.1080/09205063.2021.1980985.
  • S. Panda, C. K. Biswas and S. Paul. A comprehensive review on the preparation and application of calcium hydroxyapatite: a special focus on atomic doping methods for bone tissue engineering. Ceramics International. 2021;47(20):28122–28144. doi:https://doi.org/10.1016/j.ceramint.2021.07.100.
  • E. S. Krishna and G. Suresh. Development and characterization of acicular nano-hydroxyapatite powder from wet chemical synthesis method. Materials Today: Proceedings. 2022;56(2):781-784. doi:https://doi.org/10.1016/j.matpr.2022.02.256.
  • P. Arokiasamy, M. M. A. B. Abdullah, S. Z. Abd Rahim, S. Luhar, A. V. Sandu, N. H. Jamil and M. Nabiałek. Synthesis methods of hydroxyapatite from natural sources: A review. Ceramics International. 2022;48(11):14959-14979. doi:https://doi.org/10.1016/j.ceramint.2022.03.064.
  • M. S. F. Hussin, H. Z. Abdulah, M. I. Idris and M. A. A. Wahap. Extraction of natural hydroxyapatite for biomedical applications-A review. Heliyon. 2022;8(8):e10356. doi: https://doi.org/10.1016/j.heliyon.2022.e10356.
  • R. S. Agid, O. Kaygili, N. Bulut, S. V. Dorozhkin, T. Ates, S. Koytepe, B. Ates, I. Ercan, T İnce and B. K. Mahmood. Investigation of the effects of Pr doping on the structural properties of hydroxyapatite: an experimental and theoretical study. Journal of the Australian Ceramic Society. 2020;56:1501–1513. doi:https://doi.org/10.1007/s41779-020-00495-9.
  • R. O. Kareem, O. Kaygili, T. Ates, N. Bulut, S. Koytepe, A. Kuruçay, F. Ercan and I. Ercan. Experimental and theoretical characterization of Bi-based hydroxyapatites doped with Ce. Ceramics International. 2022;48(22):33440-33454. doi:https://doi.org/10.1016/j.ceramint.2022.07.287.
  • S. Acar, O. Kaygili, T. Ates, S. V. Dorozhkin, N. Bulut, B. Ates, S. Koytepe, F. Ercan, H. Kebiroglu and A. H. Hssain. Experimental characterization and theoretical investigation of Ce/Yb co-doped hydroxyapatites. Materials Chemistry and Physics. 2022;276:125444. doi:https://doi.org/10.1016/j.matchemphys.2021.125444.
  • B. A. Priya, K. Senthilguru, T. Agarwal, S. N. G. H. Narayana, S. Giri, K. Pramanik, K. Pal and I. Banerjee. Nickel doped nanohydroxyapatite: vascular endothelial growth factor inducing biomaterial for bone tissue engineering. RSC Advances. 2015;5:72515-72528. doi:https://doi.org/10.1039/C5RA09560C.
  • B. D. Cullity. Elements of X-ray Diffraction, Addison, Wesley Mass: 1978. p. 127–131.
  • E. Landi, A. Tampieri, G. Celotti and S. Sprio. Densification behaviour and mechanisms of synthetic hydroxyapatites. Journal of the European Ceramic Society. 2000;20(14–15):2377–2387. doi:https://doi.org/10.1016/S0955-2219(00)00154-0.
  • N. Edwin and P. Wilson. Investigations on sonofragmentation of hydroxyapatite crystals as a function of strontium incorporation. Ultrasonics Sonochemistry. 2019;50:188-199. doi: https://doi.org/10.1016/j.ultsonch.2018.09.018.
  • T. Q. Tran, D. P. Minh, T. S. Phan, Q. N. Pham and H. N. Xuan. Dry reforming of methane over calcium-deficient hydroxyapatite supported cobalt and nickel catalysts. Chemical Engineering Science. 2020;228:115975. doi:https://doi.org/10.1016/j.ces.2020.115975.
  • N. Kabilan, K. D. Babu, N. Karthikeyan and K. Chinnakali. Optical nonlinear properties of hydroxyapatite based materials. Optik. 2022;265:169562. doi:https://doi.org/10.1016/j.ijleo.2022.169562.
  • B. Moreno-Perez, Z. Matamoros-Veloza, J. C. Rendon-Angeles, K. Yanagisawa, A. Onda, J. E. Pérez-Terrazas, E. E. Mejia-Martínez, O. B. Díaz and M. Rodríguez-Reyes. Synthesis of silicon-substituted hydroxyapatite using hydrothermal process. Boletín de la Sociedad Española de Cerámica y Vidrio. 2020;59(2):50-64. doi:https://doi.org/10.1016/j.bsecv.2019.07.001.
  • M. E. El-Naggar, A. Elmushyakhi, A. G. Al-Sehemi, A. Kalam, H. Algarni, S. R. Salem and M. Abou Taleb. Biomedical domains of the as-prepared nanocomposite based on hydroxyapatite, bismuth trioxide and graphene oxide. Journal of Materials Research and Technology. 2022;19:3954-3965. doi:https://doi.org/10.1016/j.jmrt.2022.06.106. , S.-L. Iconaru, M. Motelica-Heino and D. Predoi. Study on Europium-Doped Hydroxyapatite Nanoparticles by Fourier Transform Infrared Spectroscopy and Their Antimicrobial Properties. Journal of Spectroscopy. 2013;2013:284285. doi:https://doi.org/10.1155/2013/284285.
There are 18 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Articles
Authors

Tankut Ateş 0000-0002-4519-2953

Serhat Keser 0000-0002-9678-1053

Niyazi Bulut 0000-0003-2863-7700

Omer Kaygılı 0000-0002-2321-1455

Publication Date December 12, 2022
Submission Date October 22, 2022
Acceptance Date November 7, 2022
Published in Issue Year 2022 Volume: 5 Issue: 2

Cite

APA Ateş, T., Keser, S., Bulut, N., Kaygılı, O. (2022). The effects of duration of ultrasonication on the morphology and structural properties of Ni-doped hydroxyapatite structure. Journal of Physical Chemistry and Functional Materials, 5(2), 22-25. https://doi.org/10.54565/jphcfum.1193117
AMA Ateş T, Keser S, Bulut N, Kaygılı O. The effects of duration of ultrasonication on the morphology and structural properties of Ni-doped hydroxyapatite structure. Journal of Physical Chemistry and Functional Materials. December 2022;5(2):22-25. doi:10.54565/jphcfum.1193117
Chicago Ateş, Tankut, Serhat Keser, Niyazi Bulut, and Omer Kaygılı. “The Effects of Duration of Ultrasonication on the Morphology and Structural Properties of Ni-Doped Hydroxyapatite Structure”. Journal of Physical Chemistry and Functional Materials 5, no. 2 (December 2022): 22-25. https://doi.org/10.54565/jphcfum.1193117.
EndNote Ateş T, Keser S, Bulut N, Kaygılı O (December 1, 2022) The effects of duration of ultrasonication on the morphology and structural properties of Ni-doped hydroxyapatite structure. Journal of Physical Chemistry and Functional Materials 5 2 22–25.
IEEE T. Ateş, S. Keser, N. Bulut, and O. Kaygılı, “The effects of duration of ultrasonication on the morphology and structural properties of Ni-doped hydroxyapatite structure”, Journal of Physical Chemistry and Functional Materials, vol. 5, no. 2, pp. 22–25, 2022, doi: 10.54565/jphcfum.1193117.
ISNAD Ateş, Tankut et al. “The Effects of Duration of Ultrasonication on the Morphology and Structural Properties of Ni-Doped Hydroxyapatite Structure”. Journal of Physical Chemistry and Functional Materials 5/2 (December 2022), 22-25. https://doi.org/10.54565/jphcfum.1193117.
JAMA Ateş T, Keser S, Bulut N, Kaygılı O. The effects of duration of ultrasonication on the morphology and structural properties of Ni-doped hydroxyapatite structure. Journal of Physical Chemistry and Functional Materials. 2022;5:22–25.
MLA Ateş, Tankut et al. “The Effects of Duration of Ultrasonication on the Morphology and Structural Properties of Ni-Doped Hydroxyapatite Structure”. Journal of Physical Chemistry and Functional Materials, vol. 5, no. 2, 2022, pp. 22-25, doi:10.54565/jphcfum.1193117.
Vancouver Ateş T, Keser S, Bulut N, Kaygılı O. The effects of duration of ultrasonication on the morphology and structural properties of Ni-doped hydroxyapatite structure. Journal of Physical Chemistry and Functional Materials. 2022;5(2):22-5.