Research Article
BibTex RIS Cite
Year 2023, Volume: 6 Issue: 1, 1 - 17, 21.06.2023
https://doi.org/10.54565/jphcfum.1253804

Abstract

References

  • [1] V. Vaiano, M. Matarangolo, O. Sacco, D. Sannino, Photocatalytic Removal of Eriochrome Black T Dye over ZnO Nanoparticle Doped with Pr, Ce or Eu, Journal of Chemical Engineering. Trans., 2017, 57, 625-630.
  • [2] S. Kansal, S. Kumar, U. Swaiti, M.S.K. Ahmad, Photocatalytic Degradation of Eriochrome Black T Dye using well-Crystalline Anatase TiO2 Nanoparticles, Journal of. Alloys Compounds, 2013, 581, 392-397.
  • [3] J. Kaur, S. Singhal, Highly Robust Light Driven ZnO Catalyst for the Degradation of Eriochrome Black T at Room Temperature, Super lattices Microstructure, 2015, 83, 9-21.
  • [4] T.F. Saeid, F.F. Reza, A.R. Zolfa, Green Synthesis, Characterization and Photocatalytic Activity of Cobalt Chromite Spine Nanoparticles using Eriochrome Black T, Mater. Res. Express, 2019, 7(1), 2053-1591.
  • [5] U.G. Akpan, B.H. Hameed, Parameter Affecting the Photocatalytic Degradation of Dyes Using TiO2 - Based Photocatalysts: A Review. Journal of Hazardous Materials, 2009, 170, 520-529.
  • [6] S. Sharma, N. Chaturvedi, R.K. Chaturvedi, M.K. Sharma, Photocatalytic Degradation of Eriochrome Black T Using Ammonium Phosphomolybdate Semiconductor. International. Journal of Chemical Science, 2010, 8(3), 1580-1590.
  • [7] A.A. El-Bindary, A. Ismail, E.F. Eladi, Photocalytic Degradation of Reactive Blue 21 Using Ag Doped Zno Nanoparticle, Journal of Material Environmental Science., 2019, 10(12), 1258-1271.
  • [8] C. Tian, Q. Zhang, A. Wu, M. Jiang, M. Liang, B. Jiang, H. Fu, Cost-Effective Large-Scale Synthesis of Zno Photocatalyst with Excellent Performance for Dye Photodegradation, Chem. Commun, 2012, 48, 2858-2865.
  • [9] P. Franco, O. Sacco, I. Demarco, D. Sannino, V. Vaiano, Photocatalytic Degradation of Eriochrome Black T Azo Dye Using Eu-Doped Zno Prepared by Supercritical Antisolvent Precipitation Rout: A Preliminary Investigation, Top. Catalysis, 2020, 63(1), 1193-1205.
  • [10] N.F. Djaja, R. Saleh, Characteristic and Photocatalytic Activities of Ce-Doped Zno Nanoparticles. Materials of Science Applied, 2013, 04, 145-152.
  • [11] S. Liu, J. Yu, Q. Xiang, Improved Visible-Light Photocatalytic Activity of Porous Carbon Self-Doped Zno Nanosheet-Assembled Flowers, Cryst. Eng. Comm, 2011, 13(7), 2943-2949.
  • [12] S. Benkhaya, S. M’rabet, A. El-Harfi, Classifications, Properties, Resent Synthesis and Application of Azo Dyes, Heliyon, 2020, 6(1) e03271.
  • [13] R. Elshaarawy, T.M. Sayed, H.M. Khalifa, E.A.A. El-Sawi, Mild And Convenient Protocol For The Conversion of Toxic Acid Red 37 Into Pharmacological (Antibiotic and anticancer) Nominees:Organopalladium Architectures, Compt. Rendus Chem, 2017, 20, 934-941.
  • [14] G. Jethave, U. Fegade, S. Attarde, S. Ingle, Decontamination Study of Eriochrome Black T from Wastewater by Using Altipbo Nanoparticles for Sustainable Clean Environment. Journal of water Environmental Nanotechnologyl, 2019, 4(4): 263-274.
  • [15] I.N. Ismael, H.S Wahab, Adsorption of Eriochrome Black T Azo Dye onto Nanosized Anatase TiO2, Am. J. Environ. Eng. Sci, 2015, 2(6), 86-92.
  • [16] M.D.G. De-luna, E.D. Flores, D.A.D. Genuino, C.M. Futalan, M.W Wan, Adsorption of Eriochrome Black T Dye Using Activated Carbon Prepared from Waste Rice Hull-Optimisation, Isotherm and Kinetic Studies, J. Taiwan Inst. Chem. Eng., 2013, 44, 646- 653.
  • [17] A. Sadollahkhani, I. Kazeminezhad, Photocatalytic Degradation of Eriochrome Black T Dye Using ZnO Nanoparticles. Mater. Lett, 2014, 120, 267-270.
  • [18] K.M Lee, S.B. Abdulhamid, C.M. Lai, Multivariate Analysis of Photocatalytic –Mineralization of Eriochrome Black T Dye Using ZnO Catalyst and UV Irradiation, Mater. Sci. Semi. Proc, 2015, 39, 40-48.
  • [19] D. Zhang, M.M. Wang, G. Han, S. Li, H. Zhao, B. Zhao, Z. Tong, Enhanced Photocatalytic Ability from C-Doped ZnO Photocatalyst Synthesized Without an External Carbon Precursor, Fun. Mater. Lett. 2014, 7(3), 1450026-1450030.
  • [20] S. Yiwei, W. Hui, X. He, C. Lihui, H. Liulian, Preparation of Carbon Doped Zinc Oxide Induced by Nanocellulose and Its Photocatalytic Degradation Properties of Tetracyline. Chem. Ind. For. Prod, 2019, 39(5), 115-120.
  • [21] Y.Y.G. Lim, K. Hsu, Y-C. Chen, L-C. Chen, S-Y. Chen, K-H. Chen, Visible-Light Driven Photocatalytic Carbon Doped Porous ZnO Nanoarchitecture for Solar Water Splitting, Nanoscale, 2012, 4, 6515-6519.
  • [22] P. Rao, R.A. Chittora, B. Surbhi, Preparation and Application of Carbon Doped Zno as Photocatalyst, Acta Chim. Pharm. Indica, 2015, 5(4), 143-150.
  • [23] A.B. Lavand, Y.S. Malghe, Synthesis, Characterization and Visible-Light Photocatalytic Activity of Nanosized Carbon Doped ZnO, Inter. J. Photochem, 2015, 2015(2015), 1-9.
  • [24] P.M. Perilla, M.A Atia, C-Doped Zno Nanorods for Photocatalytic Degradation of P-Aminobenzoic acid under Sunlight, Nano-Struct. Nano-Objects, 2017, 10, 125-130.
  • [25] M. Shanthi, V. Kuzhalosai, Photocatalytic Degradation of an Azo Dye Acid Red 27 in Aqueous Solution Using Nano ZnO, Indica. J. Chem, 2012, 51(3), 428-434.
  • [26] S. Mohammadzadeh, M.E. Olya, A.M. Arabi, A. Shariati, N.M.R. Khosravi, Synthesis, Charaterization and Application of ZnO-Ag as a Nanophotocatalyst for Organic Compounds Degradation, Mechanism and Economic Study, J. Environ. Sci, 2015, 35, 194-207.
  • [27] U.I. Gaya, Heterogeneous Photocatalysis using Inorganic Semiconductor Solids, Springer. Dordrecht, 2014.
  • [28] K. Yoshio, A. Onodera, H. Satoh, N. Sakagami, H. Yamashita, Crystal Structure of ZnO: Li At 293 K and 19 K by X-ray Diffraction, Ferroelectr, 2001, 264(1), 133-138.
  • [29] M. Bellardita, V. Augugliaro, V. Loddo, B. Megna, G. Palmisano, L. Palmisano, M.A Puma, Selective Oxidation of Phenol And Benzoic Acid In Water Via Home-Prepared TiO2 Photocatalysts: Distribution Of Hydroxylation Products, Applied Catalysis A General, 2012, 79– 89.
  • [30] A. Di Paola, E. Garcìa-López, S. Ikeda, G. Marcì, B. Ohtani, L. Palmisano, Photocatalytic Degradation of Organic Compounds in Aqeous Systems by Transition Metal Doped Polycrystalline TiO2, Catal. Today, 2002, 75, 87–93
  • [31] A.H. Yusuf, U.I. Gaya, Mechanochemical Synthesis and Characterization of N-Doped TiO2 for Photocatalytic Degradation of Caffeine, Nanochem. Res, 2018, 3(1), 29-35.
  • [32] A.S. Alshammari, L. Chi, X. Chen, A. Bagabas, D. Kramer, A. Alromaeh, Z. Jiang, Visible-Light Photocatalysis on C-doped ZnO Derived from Polymer-Asisted Pyrolysis. RSC. Adv, 2015, 5(35), 27690-27689.
  • [33] M. Kurban, I. Muz, Size-Dependent Adsorption Performance of ZnO Nanoclusters for Drug Delivery Applications. Structural Chemistry (Springer), 2022, 4: 2063-2 https:// doi.org/10.1007/s11224-022-02063-2.
  • [34] M. Maruthupandy, M. Anand, G. Maduraiveeran, S. Suresh, A. Hameedha R. J. Priya, Investigation on the Electrical Conductivity of ZnO Nanoparticles Decorated Bacterial Nanowires. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7(2016), 045011
  • [35] M.O Fatehah, H.A. Aziz, S. Stoll, Stability of ZnO Nanoparticles in Solution. Influence of pH, Dissolution, Aggregation and Disaggregation Effect, J. Cataly. Sci, 2014, 3(1), 75-84.
  • [36] M. Farrokhi, S.C. Hosseini, J.K Yang, S.M. Shirzad, Application of ZnO-Fe2O3 Nanocomposite on the Removal of Azo Dye from Aqueous Solutions, Kinetics And Equilibrium Studies, Water,Air. Sol. Pollut, 2014, 225(9), 115-118.
  • [37] C. Lu, Y. Wu, F. Mai, W. Chung, C. Wu, W. Lin, C. Chen, Degradation Efficiencies and Mechanism of ZnO –Mediated Photocatalytic Degradation of EBT under Visible-light Irradiation, Journal of Catalysis Chemical Engineering, 2009, 310(1-2), 159-165.
  • [38] R.H. Myers, D.C. Montgometry, Response Surface Methodology. Process and Product Optimization using Designed Experiments, John Wiley and Sons. Inc, 2002; 2nd edition.
  • [39] S. Chen, W. Zhao, W. Liu, H. Zhang, X. Yu, Preparation, Characterization and Activity Evaluation of p-n Junction Photocatalyst p-CaFeO4-ZnO, J. Chem. Eng., 2009, 155(1-2), 466-473.
  • [40] M.N. Chong, B. Jin, C.W.K. Chow, W.C. Saint, Recent Development in Photocatalytic Water Treatment Technology, Water Res, 2009, 44, 2997-3027.
  • [41] C. Shafiu, C. Lei, G. Shen, C. Gengyu, The Preparation of N-doped TiO2-xNx by Ball Milling, Chem. Phy. Lett, 2005, 413(4), 404-409.
  • [42] N. Daneshvar, D. Salari, R.R. Khataee, Photocatalytic Degradation of Azo Dye Acid Red 14 in Water on ZnO as an Alternative Catalyst to TiO2, J. Photochem. Photobio, 2004, 162(1-2), 317-322.
  • [43] A.H. Abdullah, H.J.M. Moey, H.Y. Azah, Response Surface Methodology Analysis of the Photocatalytic Removal of EBT using Bismuth Vanadate Prepared via Polyol Route, J. Environ. Sci, 2012, 24(9), 1694-701.
  • [44] E. Casbeer, V.K. Sharma, X.Z. Li, Synthesis and Photocatalytic Activity of Ferrites under Visible Light. A rev. Sep. Purif. Technol, 2011, 87, 1-14.
  • [45] A. Hamza, J.T. Fatuase, S.M. Waziri, O.A. Ajayi, Solar Photocatalytic Degradation of Phenol using Nanosized ZnO and α-Fe2O3, Journal of Chemical Engineering Material Science, 2013, 4(7), 87-92.
  • [46] Q. Q. Chang, Y, W. Cui, H. H. Zhang, F. Chang, B. H. Zhu, S. Y. Yu. C-doped ZnO decorated with Au Nanoparticles Constructed from the Metal Organic Framework ZIF-8 for Photodegradation of organic dye. RSC Adv, 2019, 9, 12689-12695.
  • [47] R. Tamilisa, P.N. Palanisamy, Review on the Photocatalytic Degradation of Textile Dyes and Antibacterial Activities of Pure and Doped ZnO. International Journal of Research and Innovation in Applied Science (IJRIAS), 2018; 3(8); 2454-6194.

Carbon-Tunable p-type ZnO Nanoparticles for Enhanced Photocatalytic Removal of Eriochrome Black T

Year 2023, Volume: 6 Issue: 1, 1 - 17, 21.06.2023
https://doi.org/10.54565/jphcfum.1253804

Abstract

Zinc oxide-mediated photocatalysis is a promising alternative to TiO2 photocatalysis, especially for the purpose of removal of recalcitrant organic dye pollutants. Highly crystalline, nanoscopic carbon-doped ZnO was successfully synthesized via combined precipitation and mechanochemical approach and characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray (EDX) and Fourier transform infrared (FTIR) spectrometry. The obtained photocatalysts depict plate-like morphology and hexagonal wurtzite structure. The XRD, SEM, and FTIR analyses were in good agreement with EDX results. The 5wt % C-doped ZnO showed remarkable visible light-photocatalytic activity based on the degradation of Eriochrome Black T (EBT), and exhibits the best point of zero charge (pHpzc) for a favorable adsorption equilibrium. This degradation process was optimized at 97 % using response surface methodology (RSM) using a 0.1 g C-ZnO, 5.00 mg/L EBT and pH 11. The associated kinetic data fit the pseudo-first-order kinetic model. The resulting C-ZnO was a p-type with a good pH at zero-point charge that permits the substantial removal of EBT by C-doped under visible light irradiation over a wide range of initial pH.

References

  • [1] V. Vaiano, M. Matarangolo, O. Sacco, D. Sannino, Photocatalytic Removal of Eriochrome Black T Dye over ZnO Nanoparticle Doped with Pr, Ce or Eu, Journal of Chemical Engineering. Trans., 2017, 57, 625-630.
  • [2] S. Kansal, S. Kumar, U. Swaiti, M.S.K. Ahmad, Photocatalytic Degradation of Eriochrome Black T Dye using well-Crystalline Anatase TiO2 Nanoparticles, Journal of. Alloys Compounds, 2013, 581, 392-397.
  • [3] J. Kaur, S. Singhal, Highly Robust Light Driven ZnO Catalyst for the Degradation of Eriochrome Black T at Room Temperature, Super lattices Microstructure, 2015, 83, 9-21.
  • [4] T.F. Saeid, F.F. Reza, A.R. Zolfa, Green Synthesis, Characterization and Photocatalytic Activity of Cobalt Chromite Spine Nanoparticles using Eriochrome Black T, Mater. Res. Express, 2019, 7(1), 2053-1591.
  • [5] U.G. Akpan, B.H. Hameed, Parameter Affecting the Photocatalytic Degradation of Dyes Using TiO2 - Based Photocatalysts: A Review. Journal of Hazardous Materials, 2009, 170, 520-529.
  • [6] S. Sharma, N. Chaturvedi, R.K. Chaturvedi, M.K. Sharma, Photocatalytic Degradation of Eriochrome Black T Using Ammonium Phosphomolybdate Semiconductor. International. Journal of Chemical Science, 2010, 8(3), 1580-1590.
  • [7] A.A. El-Bindary, A. Ismail, E.F. Eladi, Photocalytic Degradation of Reactive Blue 21 Using Ag Doped Zno Nanoparticle, Journal of Material Environmental Science., 2019, 10(12), 1258-1271.
  • [8] C. Tian, Q. Zhang, A. Wu, M. Jiang, M. Liang, B. Jiang, H. Fu, Cost-Effective Large-Scale Synthesis of Zno Photocatalyst with Excellent Performance for Dye Photodegradation, Chem. Commun, 2012, 48, 2858-2865.
  • [9] P. Franco, O. Sacco, I. Demarco, D. Sannino, V. Vaiano, Photocatalytic Degradation of Eriochrome Black T Azo Dye Using Eu-Doped Zno Prepared by Supercritical Antisolvent Precipitation Rout: A Preliminary Investigation, Top. Catalysis, 2020, 63(1), 1193-1205.
  • [10] N.F. Djaja, R. Saleh, Characteristic and Photocatalytic Activities of Ce-Doped Zno Nanoparticles. Materials of Science Applied, 2013, 04, 145-152.
  • [11] S. Liu, J. Yu, Q. Xiang, Improved Visible-Light Photocatalytic Activity of Porous Carbon Self-Doped Zno Nanosheet-Assembled Flowers, Cryst. Eng. Comm, 2011, 13(7), 2943-2949.
  • [12] S. Benkhaya, S. M’rabet, A. El-Harfi, Classifications, Properties, Resent Synthesis and Application of Azo Dyes, Heliyon, 2020, 6(1) e03271.
  • [13] R. Elshaarawy, T.M. Sayed, H.M. Khalifa, E.A.A. El-Sawi, Mild And Convenient Protocol For The Conversion of Toxic Acid Red 37 Into Pharmacological (Antibiotic and anticancer) Nominees:Organopalladium Architectures, Compt. Rendus Chem, 2017, 20, 934-941.
  • [14] G. Jethave, U. Fegade, S. Attarde, S. Ingle, Decontamination Study of Eriochrome Black T from Wastewater by Using Altipbo Nanoparticles for Sustainable Clean Environment. Journal of water Environmental Nanotechnologyl, 2019, 4(4): 263-274.
  • [15] I.N. Ismael, H.S Wahab, Adsorption of Eriochrome Black T Azo Dye onto Nanosized Anatase TiO2, Am. J. Environ. Eng. Sci, 2015, 2(6), 86-92.
  • [16] M.D.G. De-luna, E.D. Flores, D.A.D. Genuino, C.M. Futalan, M.W Wan, Adsorption of Eriochrome Black T Dye Using Activated Carbon Prepared from Waste Rice Hull-Optimisation, Isotherm and Kinetic Studies, J. Taiwan Inst. Chem. Eng., 2013, 44, 646- 653.
  • [17] A. Sadollahkhani, I. Kazeminezhad, Photocatalytic Degradation of Eriochrome Black T Dye Using ZnO Nanoparticles. Mater. Lett, 2014, 120, 267-270.
  • [18] K.M Lee, S.B. Abdulhamid, C.M. Lai, Multivariate Analysis of Photocatalytic –Mineralization of Eriochrome Black T Dye Using ZnO Catalyst and UV Irradiation, Mater. Sci. Semi. Proc, 2015, 39, 40-48.
  • [19] D. Zhang, M.M. Wang, G. Han, S. Li, H. Zhao, B. Zhao, Z. Tong, Enhanced Photocatalytic Ability from C-Doped ZnO Photocatalyst Synthesized Without an External Carbon Precursor, Fun. Mater. Lett. 2014, 7(3), 1450026-1450030.
  • [20] S. Yiwei, W. Hui, X. He, C. Lihui, H. Liulian, Preparation of Carbon Doped Zinc Oxide Induced by Nanocellulose and Its Photocatalytic Degradation Properties of Tetracyline. Chem. Ind. For. Prod, 2019, 39(5), 115-120.
  • [21] Y.Y.G. Lim, K. Hsu, Y-C. Chen, L-C. Chen, S-Y. Chen, K-H. Chen, Visible-Light Driven Photocatalytic Carbon Doped Porous ZnO Nanoarchitecture for Solar Water Splitting, Nanoscale, 2012, 4, 6515-6519.
  • [22] P. Rao, R.A. Chittora, B. Surbhi, Preparation and Application of Carbon Doped Zno as Photocatalyst, Acta Chim. Pharm. Indica, 2015, 5(4), 143-150.
  • [23] A.B. Lavand, Y.S. Malghe, Synthesis, Characterization and Visible-Light Photocatalytic Activity of Nanosized Carbon Doped ZnO, Inter. J. Photochem, 2015, 2015(2015), 1-9.
  • [24] P.M. Perilla, M.A Atia, C-Doped Zno Nanorods for Photocatalytic Degradation of P-Aminobenzoic acid under Sunlight, Nano-Struct. Nano-Objects, 2017, 10, 125-130.
  • [25] M. Shanthi, V. Kuzhalosai, Photocatalytic Degradation of an Azo Dye Acid Red 27 in Aqueous Solution Using Nano ZnO, Indica. J. Chem, 2012, 51(3), 428-434.
  • [26] S. Mohammadzadeh, M.E. Olya, A.M. Arabi, A. Shariati, N.M.R. Khosravi, Synthesis, Charaterization and Application of ZnO-Ag as a Nanophotocatalyst for Organic Compounds Degradation, Mechanism and Economic Study, J. Environ. Sci, 2015, 35, 194-207.
  • [27] U.I. Gaya, Heterogeneous Photocatalysis using Inorganic Semiconductor Solids, Springer. Dordrecht, 2014.
  • [28] K. Yoshio, A. Onodera, H. Satoh, N. Sakagami, H. Yamashita, Crystal Structure of ZnO: Li At 293 K and 19 K by X-ray Diffraction, Ferroelectr, 2001, 264(1), 133-138.
  • [29] M. Bellardita, V. Augugliaro, V. Loddo, B. Megna, G. Palmisano, L. Palmisano, M.A Puma, Selective Oxidation of Phenol And Benzoic Acid In Water Via Home-Prepared TiO2 Photocatalysts: Distribution Of Hydroxylation Products, Applied Catalysis A General, 2012, 79– 89.
  • [30] A. Di Paola, E. Garcìa-López, S. Ikeda, G. Marcì, B. Ohtani, L. Palmisano, Photocatalytic Degradation of Organic Compounds in Aqeous Systems by Transition Metal Doped Polycrystalline TiO2, Catal. Today, 2002, 75, 87–93
  • [31] A.H. Yusuf, U.I. Gaya, Mechanochemical Synthesis and Characterization of N-Doped TiO2 for Photocatalytic Degradation of Caffeine, Nanochem. Res, 2018, 3(1), 29-35.
  • [32] A.S. Alshammari, L. Chi, X. Chen, A. Bagabas, D. Kramer, A. Alromaeh, Z. Jiang, Visible-Light Photocatalysis on C-doped ZnO Derived from Polymer-Asisted Pyrolysis. RSC. Adv, 2015, 5(35), 27690-27689.
  • [33] M. Kurban, I. Muz, Size-Dependent Adsorption Performance of ZnO Nanoclusters for Drug Delivery Applications. Structural Chemistry (Springer), 2022, 4: 2063-2 https:// doi.org/10.1007/s11224-022-02063-2.
  • [34] M. Maruthupandy, M. Anand, G. Maduraiveeran, S. Suresh, A. Hameedha R. J. Priya, Investigation on the Electrical Conductivity of ZnO Nanoparticles Decorated Bacterial Nanowires. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7(2016), 045011
  • [35] M.O Fatehah, H.A. Aziz, S. Stoll, Stability of ZnO Nanoparticles in Solution. Influence of pH, Dissolution, Aggregation and Disaggregation Effect, J. Cataly. Sci, 2014, 3(1), 75-84.
  • [36] M. Farrokhi, S.C. Hosseini, J.K Yang, S.M. Shirzad, Application of ZnO-Fe2O3 Nanocomposite on the Removal of Azo Dye from Aqueous Solutions, Kinetics And Equilibrium Studies, Water,Air. Sol. Pollut, 2014, 225(9), 115-118.
  • [37] C. Lu, Y. Wu, F. Mai, W. Chung, C. Wu, W. Lin, C. Chen, Degradation Efficiencies and Mechanism of ZnO –Mediated Photocatalytic Degradation of EBT under Visible-light Irradiation, Journal of Catalysis Chemical Engineering, 2009, 310(1-2), 159-165.
  • [38] R.H. Myers, D.C. Montgometry, Response Surface Methodology. Process and Product Optimization using Designed Experiments, John Wiley and Sons. Inc, 2002; 2nd edition.
  • [39] S. Chen, W. Zhao, W. Liu, H. Zhang, X. Yu, Preparation, Characterization and Activity Evaluation of p-n Junction Photocatalyst p-CaFeO4-ZnO, J. Chem. Eng., 2009, 155(1-2), 466-473.
  • [40] M.N. Chong, B. Jin, C.W.K. Chow, W.C. Saint, Recent Development in Photocatalytic Water Treatment Technology, Water Res, 2009, 44, 2997-3027.
  • [41] C. Shafiu, C. Lei, G. Shen, C. Gengyu, The Preparation of N-doped TiO2-xNx by Ball Milling, Chem. Phy. Lett, 2005, 413(4), 404-409.
  • [42] N. Daneshvar, D. Salari, R.R. Khataee, Photocatalytic Degradation of Azo Dye Acid Red 14 in Water on ZnO as an Alternative Catalyst to TiO2, J. Photochem. Photobio, 2004, 162(1-2), 317-322.
  • [43] A.H. Abdullah, H.J.M. Moey, H.Y. Azah, Response Surface Methodology Analysis of the Photocatalytic Removal of EBT using Bismuth Vanadate Prepared via Polyol Route, J. Environ. Sci, 2012, 24(9), 1694-701.
  • [44] E. Casbeer, V.K. Sharma, X.Z. Li, Synthesis and Photocatalytic Activity of Ferrites under Visible Light. A rev. Sep. Purif. Technol, 2011, 87, 1-14.
  • [45] A. Hamza, J.T. Fatuase, S.M. Waziri, O.A. Ajayi, Solar Photocatalytic Degradation of Phenol using Nanosized ZnO and α-Fe2O3, Journal of Chemical Engineering Material Science, 2013, 4(7), 87-92.
  • [46] Q. Q. Chang, Y, W. Cui, H. H. Zhang, F. Chang, B. H. Zhu, S. Y. Yu. C-doped ZnO decorated with Au Nanoparticles Constructed from the Metal Organic Framework ZIF-8 for Photodegradation of organic dye. RSC Adv, 2019, 9, 12689-12695.
  • [47] R. Tamilisa, P.N. Palanisamy, Review on the Photocatalytic Degradation of Textile Dyes and Antibacterial Activities of Pure and Doped ZnO. International Journal of Research and Innovation in Applied Science (IJRIAS), 2018; 3(8); 2454-6194.
There are 47 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Articles
Authors

Auwal Yushau 0000-0002-1713-9434

Umar Gaya 0000-0002-2396-3761

Publication Date June 21, 2023
Submission Date February 22, 2023
Acceptance Date February 28, 2023
Published in Issue Year 2023 Volume: 6 Issue: 1

Cite

APA Yushau, A., & Gaya, U. (2023). Carbon-Tunable p-type ZnO Nanoparticles for Enhanced Photocatalytic Removal of Eriochrome Black T. Journal of Physical Chemistry and Functional Materials, 6(1), 1-17. https://doi.org/10.54565/jphcfum.1253804
AMA Yushau A, Gaya U. Carbon-Tunable p-type ZnO Nanoparticles for Enhanced Photocatalytic Removal of Eriochrome Black T. Journal of Physical Chemistry and Functional Materials. June 2023;6(1):1-17. doi:10.54565/jphcfum.1253804
Chicago Yushau, Auwal, and Umar Gaya. “Carbon-Tunable P-Type ZnO Nanoparticles for Enhanced Photocatalytic Removal of Eriochrome Black T”. Journal of Physical Chemistry and Functional Materials 6, no. 1 (June 2023): 1-17. https://doi.org/10.54565/jphcfum.1253804.
EndNote Yushau A, Gaya U (June 1, 2023) Carbon-Tunable p-type ZnO Nanoparticles for Enhanced Photocatalytic Removal of Eriochrome Black T. Journal of Physical Chemistry and Functional Materials 6 1 1–17.
IEEE A. Yushau and U. Gaya, “Carbon-Tunable p-type ZnO Nanoparticles for Enhanced Photocatalytic Removal of Eriochrome Black T”, Journal of Physical Chemistry and Functional Materials, vol. 6, no. 1, pp. 1–17, 2023, doi: 10.54565/jphcfum.1253804.
ISNAD Yushau, Auwal - Gaya, Umar. “Carbon-Tunable P-Type ZnO Nanoparticles for Enhanced Photocatalytic Removal of Eriochrome Black T”. Journal of Physical Chemistry and Functional Materials 6/1 (June 2023), 1-17. https://doi.org/10.54565/jphcfum.1253804.
JAMA Yushau A, Gaya U. Carbon-Tunable p-type ZnO Nanoparticles for Enhanced Photocatalytic Removal of Eriochrome Black T. Journal of Physical Chemistry and Functional Materials. 2023;6:1–17.
MLA Yushau, Auwal and Umar Gaya. “Carbon-Tunable P-Type ZnO Nanoparticles for Enhanced Photocatalytic Removal of Eriochrome Black T”. Journal of Physical Chemistry and Functional Materials, vol. 6, no. 1, 2023, pp. 1-17, doi:10.54565/jphcfum.1253804.
Vancouver Yushau A, Gaya U. Carbon-Tunable p-type ZnO Nanoparticles for Enhanced Photocatalytic Removal of Eriochrome Black T. Journal of Physical Chemistry and Functional Materials. 2023;6(1):1-17.

© 2018 Journal of Physical Chemistry and Functional Materials (JPCFM). All rights reserved.
For inquiries, submissions, and editorial support, please get in touch with nbulut@firat.edu.tr or visit our website at https://dergipark.org.tr/en/pub/jphcfum.

Stay connected with JPCFM for the latest research updates on physical chemistry and functional materials. Follow us on Social Media.

Published by DergiPark. Proudly supporting the advancement of science and innovation.https://dergipark.org.tr/en/pub/jphcfum