Research Article
BibTex RIS Cite
Year 2023, Volume: 6 Issue: 1, 1 - 17, 21.06.2023
https://doi.org/10.54565/jphcfum.1253804

Abstract

References

  • [1] V. Vaiano, M. Matarangolo, O. Sacco, D. Sannino, Photocatalytic Removal of Eriochrome Black T Dye over ZnO Nanoparticle Doped with Pr, Ce or Eu, Journal of Chemical Engineering. Trans., 2017, 57, 625-630.
  • [2] S. Kansal, S. Kumar, U. Swaiti, M.S.K. Ahmad, Photocatalytic Degradation of Eriochrome Black T Dye using well-Crystalline Anatase TiO2 Nanoparticles, Journal of. Alloys Compounds, 2013, 581, 392-397.
  • [3] J. Kaur, S. Singhal, Highly Robust Light Driven ZnO Catalyst for the Degradation of Eriochrome Black T at Room Temperature, Super lattices Microstructure, 2015, 83, 9-21.
  • [4] T.F. Saeid, F.F. Reza, A.R. Zolfa, Green Synthesis, Characterization and Photocatalytic Activity of Cobalt Chromite Spine Nanoparticles using Eriochrome Black T, Mater. Res. Express, 2019, 7(1), 2053-1591.
  • [5] U.G. Akpan, B.H. Hameed, Parameter Affecting the Photocatalytic Degradation of Dyes Using TiO2 - Based Photocatalysts: A Review. Journal of Hazardous Materials, 2009, 170, 520-529.
  • [6] S. Sharma, N. Chaturvedi, R.K. Chaturvedi, M.K. Sharma, Photocatalytic Degradation of Eriochrome Black T Using Ammonium Phosphomolybdate Semiconductor. International. Journal of Chemical Science, 2010, 8(3), 1580-1590.
  • [7] A.A. El-Bindary, A. Ismail, E.F. Eladi, Photocalytic Degradation of Reactive Blue 21 Using Ag Doped Zno Nanoparticle, Journal of Material Environmental Science., 2019, 10(12), 1258-1271.
  • [8] C. Tian, Q. Zhang, A. Wu, M. Jiang, M. Liang, B. Jiang, H. Fu, Cost-Effective Large-Scale Synthesis of Zno Photocatalyst with Excellent Performance for Dye Photodegradation, Chem. Commun, 2012, 48, 2858-2865.
  • [9] P. Franco, O. Sacco, I. Demarco, D. Sannino, V. Vaiano, Photocatalytic Degradation of Eriochrome Black T Azo Dye Using Eu-Doped Zno Prepared by Supercritical Antisolvent Precipitation Rout: A Preliminary Investigation, Top. Catalysis, 2020, 63(1), 1193-1205.
  • [10] N.F. Djaja, R. Saleh, Characteristic and Photocatalytic Activities of Ce-Doped Zno Nanoparticles. Materials of Science Applied, 2013, 04, 145-152.
  • [11] S. Liu, J. Yu, Q. Xiang, Improved Visible-Light Photocatalytic Activity of Porous Carbon Self-Doped Zno Nanosheet-Assembled Flowers, Cryst. Eng. Comm, 2011, 13(7), 2943-2949.
  • [12] S. Benkhaya, S. M’rabet, A. El-Harfi, Classifications, Properties, Resent Synthesis and Application of Azo Dyes, Heliyon, 2020, 6(1) e03271.
  • [13] R. Elshaarawy, T.M. Sayed, H.M. Khalifa, E.A.A. El-Sawi, Mild And Convenient Protocol For The Conversion of Toxic Acid Red 37 Into Pharmacological (Antibiotic and anticancer) Nominees:Organopalladium Architectures, Compt. Rendus Chem, 2017, 20, 934-941.
  • [14] G. Jethave, U. Fegade, S. Attarde, S. Ingle, Decontamination Study of Eriochrome Black T from Wastewater by Using Altipbo Nanoparticles for Sustainable Clean Environment. Journal of water Environmental Nanotechnologyl, 2019, 4(4): 263-274.
  • [15] I.N. Ismael, H.S Wahab, Adsorption of Eriochrome Black T Azo Dye onto Nanosized Anatase TiO2, Am. J. Environ. Eng. Sci, 2015, 2(6), 86-92.
  • [16] M.D.G. De-luna, E.D. Flores, D.A.D. Genuino, C.M. Futalan, M.W Wan, Adsorption of Eriochrome Black T Dye Using Activated Carbon Prepared from Waste Rice Hull-Optimisation, Isotherm and Kinetic Studies, J. Taiwan Inst. Chem. Eng., 2013, 44, 646- 653.
  • [17] A. Sadollahkhani, I. Kazeminezhad, Photocatalytic Degradation of Eriochrome Black T Dye Using ZnO Nanoparticles. Mater. Lett, 2014, 120, 267-270.
  • [18] K.M Lee, S.B. Abdulhamid, C.M. Lai, Multivariate Analysis of Photocatalytic –Mineralization of Eriochrome Black T Dye Using ZnO Catalyst and UV Irradiation, Mater. Sci. Semi. Proc, 2015, 39, 40-48.
  • [19] D. Zhang, M.M. Wang, G. Han, S. Li, H. Zhao, B. Zhao, Z. Tong, Enhanced Photocatalytic Ability from C-Doped ZnO Photocatalyst Synthesized Without an External Carbon Precursor, Fun. Mater. Lett. 2014, 7(3), 1450026-1450030.
  • [20] S. Yiwei, W. Hui, X. He, C. Lihui, H. Liulian, Preparation of Carbon Doped Zinc Oxide Induced by Nanocellulose and Its Photocatalytic Degradation Properties of Tetracyline. Chem. Ind. For. Prod, 2019, 39(5), 115-120.
  • [21] Y.Y.G. Lim, K. Hsu, Y-C. Chen, L-C. Chen, S-Y. Chen, K-H. Chen, Visible-Light Driven Photocatalytic Carbon Doped Porous ZnO Nanoarchitecture for Solar Water Splitting, Nanoscale, 2012, 4, 6515-6519.
  • [22] P. Rao, R.A. Chittora, B. Surbhi, Preparation and Application of Carbon Doped Zno as Photocatalyst, Acta Chim. Pharm. Indica, 2015, 5(4), 143-150.
  • [23] A.B. Lavand, Y.S. Malghe, Synthesis, Characterization and Visible-Light Photocatalytic Activity of Nanosized Carbon Doped ZnO, Inter. J. Photochem, 2015, 2015(2015), 1-9.
  • [24] P.M. Perilla, M.A Atia, C-Doped Zno Nanorods for Photocatalytic Degradation of P-Aminobenzoic acid under Sunlight, Nano-Struct. Nano-Objects, 2017, 10, 125-130.
  • [25] M. Shanthi, V. Kuzhalosai, Photocatalytic Degradation of an Azo Dye Acid Red 27 in Aqueous Solution Using Nano ZnO, Indica. J. Chem, 2012, 51(3), 428-434.
  • [26] S. Mohammadzadeh, M.E. Olya, A.M. Arabi, A. Shariati, N.M.R. Khosravi, Synthesis, Charaterization and Application of ZnO-Ag as a Nanophotocatalyst for Organic Compounds Degradation, Mechanism and Economic Study, J. Environ. Sci, 2015, 35, 194-207.
  • [27] U.I. Gaya, Heterogeneous Photocatalysis using Inorganic Semiconductor Solids, Springer. Dordrecht, 2014.
  • [28] K. Yoshio, A. Onodera, H. Satoh, N. Sakagami, H. Yamashita, Crystal Structure of ZnO: Li At 293 K and 19 K by X-ray Diffraction, Ferroelectr, 2001, 264(1), 133-138.
  • [29] M. Bellardita, V. Augugliaro, V. Loddo, B. Megna, G. Palmisano, L. Palmisano, M.A Puma, Selective Oxidation of Phenol And Benzoic Acid In Water Via Home-Prepared TiO2 Photocatalysts: Distribution Of Hydroxylation Products, Applied Catalysis A General, 2012, 79– 89.
  • [30] A. Di Paola, E. Garcìa-López, S. Ikeda, G. Marcì, B. Ohtani, L. Palmisano, Photocatalytic Degradation of Organic Compounds in Aqeous Systems by Transition Metal Doped Polycrystalline TiO2, Catal. Today, 2002, 75, 87–93
  • [31] A.H. Yusuf, U.I. Gaya, Mechanochemical Synthesis and Characterization of N-Doped TiO2 for Photocatalytic Degradation of Caffeine, Nanochem. Res, 2018, 3(1), 29-35.
  • [32] A.S. Alshammari, L. Chi, X. Chen, A. Bagabas, D. Kramer, A. Alromaeh, Z. Jiang, Visible-Light Photocatalysis on C-doped ZnO Derived from Polymer-Asisted Pyrolysis. RSC. Adv, 2015, 5(35), 27690-27689.
  • [33] M. Kurban, I. Muz, Size-Dependent Adsorption Performance of ZnO Nanoclusters for Drug Delivery Applications. Structural Chemistry (Springer), 2022, 4: 2063-2 https:// doi.org/10.1007/s11224-022-02063-2.
  • [34] M. Maruthupandy, M. Anand, G. Maduraiveeran, S. Suresh, A. Hameedha R. J. Priya, Investigation on the Electrical Conductivity of ZnO Nanoparticles Decorated Bacterial Nanowires. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7(2016), 045011
  • [35] M.O Fatehah, H.A. Aziz, S. Stoll, Stability of ZnO Nanoparticles in Solution. Influence of pH, Dissolution, Aggregation and Disaggregation Effect, J. Cataly. Sci, 2014, 3(1), 75-84.
  • [36] M. Farrokhi, S.C. Hosseini, J.K Yang, S.M. Shirzad, Application of ZnO-Fe2O3 Nanocomposite on the Removal of Azo Dye from Aqueous Solutions, Kinetics And Equilibrium Studies, Water,Air. Sol. Pollut, 2014, 225(9), 115-118.
  • [37] C. Lu, Y. Wu, F. Mai, W. Chung, C. Wu, W. Lin, C. Chen, Degradation Efficiencies and Mechanism of ZnO –Mediated Photocatalytic Degradation of EBT under Visible-light Irradiation, Journal of Catalysis Chemical Engineering, 2009, 310(1-2), 159-165.
  • [38] R.H. Myers, D.C. Montgometry, Response Surface Methodology. Process and Product Optimization using Designed Experiments, John Wiley and Sons. Inc, 2002; 2nd edition.
  • [39] S. Chen, W. Zhao, W. Liu, H. Zhang, X. Yu, Preparation, Characterization and Activity Evaluation of p-n Junction Photocatalyst p-CaFeO4-ZnO, J. Chem. Eng., 2009, 155(1-2), 466-473.
  • [40] M.N. Chong, B. Jin, C.W.K. Chow, W.C. Saint, Recent Development in Photocatalytic Water Treatment Technology, Water Res, 2009, 44, 2997-3027.
  • [41] C. Shafiu, C. Lei, G. Shen, C. Gengyu, The Preparation of N-doped TiO2-xNx by Ball Milling, Chem. Phy. Lett, 2005, 413(4), 404-409.
  • [42] N. Daneshvar, D. Salari, R.R. Khataee, Photocatalytic Degradation of Azo Dye Acid Red 14 in Water on ZnO as an Alternative Catalyst to TiO2, J. Photochem. Photobio, 2004, 162(1-2), 317-322.
  • [43] A.H. Abdullah, H.J.M. Moey, H.Y. Azah, Response Surface Methodology Analysis of the Photocatalytic Removal of EBT using Bismuth Vanadate Prepared via Polyol Route, J. Environ. Sci, 2012, 24(9), 1694-701.
  • [44] E. Casbeer, V.K. Sharma, X.Z. Li, Synthesis and Photocatalytic Activity of Ferrites under Visible Light. A rev. Sep. Purif. Technol, 2011, 87, 1-14.
  • [45] A. Hamza, J.T. Fatuase, S.M. Waziri, O.A. Ajayi, Solar Photocatalytic Degradation of Phenol using Nanosized ZnO and α-Fe2O3, Journal of Chemical Engineering Material Science, 2013, 4(7), 87-92.
  • [46] Q. Q. Chang, Y, W. Cui, H. H. Zhang, F. Chang, B. H. Zhu, S. Y. Yu. C-doped ZnO decorated with Au Nanoparticles Constructed from the Metal Organic Framework ZIF-8 for Photodegradation of organic dye. RSC Adv, 2019, 9, 12689-12695.
  • [47] R. Tamilisa, P.N. Palanisamy, Review on the Photocatalytic Degradation of Textile Dyes and Antibacterial Activities of Pure and Doped ZnO. International Journal of Research and Innovation in Applied Science (IJRIAS), 2018; 3(8); 2454-6194.

Carbon-Tunable p-type ZnO Nanoparticles for Enhanced Photocatalytic Removal of Eriochrome Black T

Year 2023, Volume: 6 Issue: 1, 1 - 17, 21.06.2023
https://doi.org/10.54565/jphcfum.1253804

Abstract

Zinc oxide-mediated photocatalysis is a promising alternative to TiO2 photocatalysis, especially for the purpose of removal of recalcitrant organic dye pollutants. Highly crystalline, nanoscopic carbon-doped ZnO was successfully synthesized via combined precipitation and mechanochemical approach and characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray (EDX) and Fourier transform infrared (FTIR) spectrometry. The obtained photocatalysts depict plate-like morphology and hexagonal wurtzite structure. The XRD, SEM, and FTIR analyses were in good agreement with EDX results. The 5wt % C-doped ZnO showed remarkable visible light-photocatalytic activity based on the degradation of Eriochrome Black T (EBT), and exhibits the best point of zero charge (pHpzc) for a favorable adsorption equilibrium. This degradation process was optimized at 97 % using response surface methodology (RSM) using a 0.1 g C-ZnO, 5.00 mg/L EBT and pH 11. The associated kinetic data fit the pseudo-first-order kinetic model. The resulting C-ZnO was a p-type with a good pH at zero-point charge that permits the substantial removal of EBT by C-doped under visible light irradiation over a wide range of initial pH.

References

  • [1] V. Vaiano, M. Matarangolo, O. Sacco, D. Sannino, Photocatalytic Removal of Eriochrome Black T Dye over ZnO Nanoparticle Doped with Pr, Ce or Eu, Journal of Chemical Engineering. Trans., 2017, 57, 625-630.
  • [2] S. Kansal, S. Kumar, U. Swaiti, M.S.K. Ahmad, Photocatalytic Degradation of Eriochrome Black T Dye using well-Crystalline Anatase TiO2 Nanoparticles, Journal of. Alloys Compounds, 2013, 581, 392-397.
  • [3] J. Kaur, S. Singhal, Highly Robust Light Driven ZnO Catalyst for the Degradation of Eriochrome Black T at Room Temperature, Super lattices Microstructure, 2015, 83, 9-21.
  • [4] T.F. Saeid, F.F. Reza, A.R. Zolfa, Green Synthesis, Characterization and Photocatalytic Activity of Cobalt Chromite Spine Nanoparticles using Eriochrome Black T, Mater. Res. Express, 2019, 7(1), 2053-1591.
  • [5] U.G. Akpan, B.H. Hameed, Parameter Affecting the Photocatalytic Degradation of Dyes Using TiO2 - Based Photocatalysts: A Review. Journal of Hazardous Materials, 2009, 170, 520-529.
  • [6] S. Sharma, N. Chaturvedi, R.K. Chaturvedi, M.K. Sharma, Photocatalytic Degradation of Eriochrome Black T Using Ammonium Phosphomolybdate Semiconductor. International. Journal of Chemical Science, 2010, 8(3), 1580-1590.
  • [7] A.A. El-Bindary, A. Ismail, E.F. Eladi, Photocalytic Degradation of Reactive Blue 21 Using Ag Doped Zno Nanoparticle, Journal of Material Environmental Science., 2019, 10(12), 1258-1271.
  • [8] C. Tian, Q. Zhang, A. Wu, M. Jiang, M. Liang, B. Jiang, H. Fu, Cost-Effective Large-Scale Synthesis of Zno Photocatalyst with Excellent Performance for Dye Photodegradation, Chem. Commun, 2012, 48, 2858-2865.
  • [9] P. Franco, O. Sacco, I. Demarco, D. Sannino, V. Vaiano, Photocatalytic Degradation of Eriochrome Black T Azo Dye Using Eu-Doped Zno Prepared by Supercritical Antisolvent Precipitation Rout: A Preliminary Investigation, Top. Catalysis, 2020, 63(1), 1193-1205.
  • [10] N.F. Djaja, R. Saleh, Characteristic and Photocatalytic Activities of Ce-Doped Zno Nanoparticles. Materials of Science Applied, 2013, 04, 145-152.
  • [11] S. Liu, J. Yu, Q. Xiang, Improved Visible-Light Photocatalytic Activity of Porous Carbon Self-Doped Zno Nanosheet-Assembled Flowers, Cryst. Eng. Comm, 2011, 13(7), 2943-2949.
  • [12] S. Benkhaya, S. M’rabet, A. El-Harfi, Classifications, Properties, Resent Synthesis and Application of Azo Dyes, Heliyon, 2020, 6(1) e03271.
  • [13] R. Elshaarawy, T.M. Sayed, H.M. Khalifa, E.A.A. El-Sawi, Mild And Convenient Protocol For The Conversion of Toxic Acid Red 37 Into Pharmacological (Antibiotic and anticancer) Nominees:Organopalladium Architectures, Compt. Rendus Chem, 2017, 20, 934-941.
  • [14] G. Jethave, U. Fegade, S. Attarde, S. Ingle, Decontamination Study of Eriochrome Black T from Wastewater by Using Altipbo Nanoparticles for Sustainable Clean Environment. Journal of water Environmental Nanotechnologyl, 2019, 4(4): 263-274.
  • [15] I.N. Ismael, H.S Wahab, Adsorption of Eriochrome Black T Azo Dye onto Nanosized Anatase TiO2, Am. J. Environ. Eng. Sci, 2015, 2(6), 86-92.
  • [16] M.D.G. De-luna, E.D. Flores, D.A.D. Genuino, C.M. Futalan, M.W Wan, Adsorption of Eriochrome Black T Dye Using Activated Carbon Prepared from Waste Rice Hull-Optimisation, Isotherm and Kinetic Studies, J. Taiwan Inst. Chem. Eng., 2013, 44, 646- 653.
  • [17] A. Sadollahkhani, I. Kazeminezhad, Photocatalytic Degradation of Eriochrome Black T Dye Using ZnO Nanoparticles. Mater. Lett, 2014, 120, 267-270.
  • [18] K.M Lee, S.B. Abdulhamid, C.M. Lai, Multivariate Analysis of Photocatalytic –Mineralization of Eriochrome Black T Dye Using ZnO Catalyst and UV Irradiation, Mater. Sci. Semi. Proc, 2015, 39, 40-48.
  • [19] D. Zhang, M.M. Wang, G. Han, S. Li, H. Zhao, B. Zhao, Z. Tong, Enhanced Photocatalytic Ability from C-Doped ZnO Photocatalyst Synthesized Without an External Carbon Precursor, Fun. Mater. Lett. 2014, 7(3), 1450026-1450030.
  • [20] S. Yiwei, W. Hui, X. He, C. Lihui, H. Liulian, Preparation of Carbon Doped Zinc Oxide Induced by Nanocellulose and Its Photocatalytic Degradation Properties of Tetracyline. Chem. Ind. For. Prod, 2019, 39(5), 115-120.
  • [21] Y.Y.G. Lim, K. Hsu, Y-C. Chen, L-C. Chen, S-Y. Chen, K-H. Chen, Visible-Light Driven Photocatalytic Carbon Doped Porous ZnO Nanoarchitecture for Solar Water Splitting, Nanoscale, 2012, 4, 6515-6519.
  • [22] P. Rao, R.A. Chittora, B. Surbhi, Preparation and Application of Carbon Doped Zno as Photocatalyst, Acta Chim. Pharm. Indica, 2015, 5(4), 143-150.
  • [23] A.B. Lavand, Y.S. Malghe, Synthesis, Characterization and Visible-Light Photocatalytic Activity of Nanosized Carbon Doped ZnO, Inter. J. Photochem, 2015, 2015(2015), 1-9.
  • [24] P.M. Perilla, M.A Atia, C-Doped Zno Nanorods for Photocatalytic Degradation of P-Aminobenzoic acid under Sunlight, Nano-Struct. Nano-Objects, 2017, 10, 125-130.
  • [25] M. Shanthi, V. Kuzhalosai, Photocatalytic Degradation of an Azo Dye Acid Red 27 in Aqueous Solution Using Nano ZnO, Indica. J. Chem, 2012, 51(3), 428-434.
  • [26] S. Mohammadzadeh, M.E. Olya, A.M. Arabi, A. Shariati, N.M.R. Khosravi, Synthesis, Charaterization and Application of ZnO-Ag as a Nanophotocatalyst for Organic Compounds Degradation, Mechanism and Economic Study, J. Environ. Sci, 2015, 35, 194-207.
  • [27] U.I. Gaya, Heterogeneous Photocatalysis using Inorganic Semiconductor Solids, Springer. Dordrecht, 2014.
  • [28] K. Yoshio, A. Onodera, H. Satoh, N. Sakagami, H. Yamashita, Crystal Structure of ZnO: Li At 293 K and 19 K by X-ray Diffraction, Ferroelectr, 2001, 264(1), 133-138.
  • [29] M. Bellardita, V. Augugliaro, V. Loddo, B. Megna, G. Palmisano, L. Palmisano, M.A Puma, Selective Oxidation of Phenol And Benzoic Acid In Water Via Home-Prepared TiO2 Photocatalysts: Distribution Of Hydroxylation Products, Applied Catalysis A General, 2012, 79– 89.
  • [30] A. Di Paola, E. Garcìa-López, S. Ikeda, G. Marcì, B. Ohtani, L. Palmisano, Photocatalytic Degradation of Organic Compounds in Aqeous Systems by Transition Metal Doped Polycrystalline TiO2, Catal. Today, 2002, 75, 87–93
  • [31] A.H. Yusuf, U.I. Gaya, Mechanochemical Synthesis and Characterization of N-Doped TiO2 for Photocatalytic Degradation of Caffeine, Nanochem. Res, 2018, 3(1), 29-35.
  • [32] A.S. Alshammari, L. Chi, X. Chen, A. Bagabas, D. Kramer, A. Alromaeh, Z. Jiang, Visible-Light Photocatalysis on C-doped ZnO Derived from Polymer-Asisted Pyrolysis. RSC. Adv, 2015, 5(35), 27690-27689.
  • [33] M. Kurban, I. Muz, Size-Dependent Adsorption Performance of ZnO Nanoclusters for Drug Delivery Applications. Structural Chemistry (Springer), 2022, 4: 2063-2 https:// doi.org/10.1007/s11224-022-02063-2.
  • [34] M. Maruthupandy, M. Anand, G. Maduraiveeran, S. Suresh, A. Hameedha R. J. Priya, Investigation on the Electrical Conductivity of ZnO Nanoparticles Decorated Bacterial Nanowires. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7(2016), 045011
  • [35] M.O Fatehah, H.A. Aziz, S. Stoll, Stability of ZnO Nanoparticles in Solution. Influence of pH, Dissolution, Aggregation and Disaggregation Effect, J. Cataly. Sci, 2014, 3(1), 75-84.
  • [36] M. Farrokhi, S.C. Hosseini, J.K Yang, S.M. Shirzad, Application of ZnO-Fe2O3 Nanocomposite on the Removal of Azo Dye from Aqueous Solutions, Kinetics And Equilibrium Studies, Water,Air. Sol. Pollut, 2014, 225(9), 115-118.
  • [37] C. Lu, Y. Wu, F. Mai, W. Chung, C. Wu, W. Lin, C. Chen, Degradation Efficiencies and Mechanism of ZnO –Mediated Photocatalytic Degradation of EBT under Visible-light Irradiation, Journal of Catalysis Chemical Engineering, 2009, 310(1-2), 159-165.
  • [38] R.H. Myers, D.C. Montgometry, Response Surface Methodology. Process and Product Optimization using Designed Experiments, John Wiley and Sons. Inc, 2002; 2nd edition.
  • [39] S. Chen, W. Zhao, W. Liu, H. Zhang, X. Yu, Preparation, Characterization and Activity Evaluation of p-n Junction Photocatalyst p-CaFeO4-ZnO, J. Chem. Eng., 2009, 155(1-2), 466-473.
  • [40] M.N. Chong, B. Jin, C.W.K. Chow, W.C. Saint, Recent Development in Photocatalytic Water Treatment Technology, Water Res, 2009, 44, 2997-3027.
  • [41] C. Shafiu, C. Lei, G. Shen, C. Gengyu, The Preparation of N-doped TiO2-xNx by Ball Milling, Chem. Phy. Lett, 2005, 413(4), 404-409.
  • [42] N. Daneshvar, D. Salari, R.R. Khataee, Photocatalytic Degradation of Azo Dye Acid Red 14 in Water on ZnO as an Alternative Catalyst to TiO2, J. Photochem. Photobio, 2004, 162(1-2), 317-322.
  • [43] A.H. Abdullah, H.J.M. Moey, H.Y. Azah, Response Surface Methodology Analysis of the Photocatalytic Removal of EBT using Bismuth Vanadate Prepared via Polyol Route, J. Environ. Sci, 2012, 24(9), 1694-701.
  • [44] E. Casbeer, V.K. Sharma, X.Z. Li, Synthesis and Photocatalytic Activity of Ferrites under Visible Light. A rev. Sep. Purif. Technol, 2011, 87, 1-14.
  • [45] A. Hamza, J.T. Fatuase, S.M. Waziri, O.A. Ajayi, Solar Photocatalytic Degradation of Phenol using Nanosized ZnO and α-Fe2O3, Journal of Chemical Engineering Material Science, 2013, 4(7), 87-92.
  • [46] Q. Q. Chang, Y, W. Cui, H. H. Zhang, F. Chang, B. H. Zhu, S. Y. Yu. C-doped ZnO decorated with Au Nanoparticles Constructed from the Metal Organic Framework ZIF-8 for Photodegradation of organic dye. RSC Adv, 2019, 9, 12689-12695.
  • [47] R. Tamilisa, P.N. Palanisamy, Review on the Photocatalytic Degradation of Textile Dyes and Antibacterial Activities of Pure and Doped ZnO. International Journal of Research and Innovation in Applied Science (IJRIAS), 2018; 3(8); 2454-6194.
There are 47 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Articles
Authors

Auwal Yushau 0000-0002-1713-9434

Umar Gaya 0000-0002-2396-3761

Publication Date June 21, 2023
Submission Date February 22, 2023
Acceptance Date February 28, 2023
Published in Issue Year 2023 Volume: 6 Issue: 1

Cite

APA Yushau, A., & Gaya, U. (2023). Carbon-Tunable p-type ZnO Nanoparticles for Enhanced Photocatalytic Removal of Eriochrome Black T. Journal of Physical Chemistry and Functional Materials, 6(1), 1-17. https://doi.org/10.54565/jphcfum.1253804
AMA Yushau A, Gaya U. Carbon-Tunable p-type ZnO Nanoparticles for Enhanced Photocatalytic Removal of Eriochrome Black T. Journal of Physical Chemistry and Functional Materials. June 2023;6(1):1-17. doi:10.54565/jphcfum.1253804
Chicago Yushau, Auwal, and Umar Gaya. “Carbon-Tunable P-Type ZnO Nanoparticles for Enhanced Photocatalytic Removal of Eriochrome Black T”. Journal of Physical Chemistry and Functional Materials 6, no. 1 (June 2023): 1-17. https://doi.org/10.54565/jphcfum.1253804.
EndNote Yushau A, Gaya U (June 1, 2023) Carbon-Tunable p-type ZnO Nanoparticles for Enhanced Photocatalytic Removal of Eriochrome Black T. Journal of Physical Chemistry and Functional Materials 6 1 1–17.
IEEE A. Yushau and U. Gaya, “Carbon-Tunable p-type ZnO Nanoparticles for Enhanced Photocatalytic Removal of Eriochrome Black T”, Journal of Physical Chemistry and Functional Materials, vol. 6, no. 1, pp. 1–17, 2023, doi: 10.54565/jphcfum.1253804.
ISNAD Yushau, Auwal - Gaya, Umar. “Carbon-Tunable P-Type ZnO Nanoparticles for Enhanced Photocatalytic Removal of Eriochrome Black T”. Journal of Physical Chemistry and Functional Materials 6/1 (June 2023), 1-17. https://doi.org/10.54565/jphcfum.1253804.
JAMA Yushau A, Gaya U. Carbon-Tunable p-type ZnO Nanoparticles for Enhanced Photocatalytic Removal of Eriochrome Black T. Journal of Physical Chemistry and Functional Materials. 2023;6:1–17.
MLA Yushau, Auwal and Umar Gaya. “Carbon-Tunable P-Type ZnO Nanoparticles for Enhanced Photocatalytic Removal of Eriochrome Black T”. Journal of Physical Chemistry and Functional Materials, vol. 6, no. 1, 2023, pp. 1-17, doi:10.54565/jphcfum.1253804.
Vancouver Yushau A, Gaya U. Carbon-Tunable p-type ZnO Nanoparticles for Enhanced Photocatalytic Removal of Eriochrome Black T. Journal of Physical Chemistry and Functional Materials. 2023;6(1):1-17.