Zinc oxide-mediated photocatalysis is a promising alternative to TiO2 photocatalysis, especially for the purpose of removal of recalcitrant organic dye pollutants. Highly crystalline, nanoscopic carbon-doped ZnO was successfully synthesized via combined precipitation and mechanochemical approach and characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray (EDX) and Fourier transform infrared (FTIR) spectrometry. The obtained photocatalysts depict plate-like morphology and hexagonal wurtzite structure. The XRD, SEM, and FTIR analyses were in good agreement with EDX results. The 5wt % C-doped ZnO showed remarkable visible light-photocatalytic activity based on the degradation of Eriochrome Black T (EBT), and exhibits the best point of zero charge (pHpzc) for a favorable adsorption equilibrium. This degradation process was optimized at 97 % using response surface methodology (RSM) using a 0.1 g C-ZnO, 5.00 mg/L EBT and pH 11. The associated kinetic data fit the pseudo-first-order kinetic model. The resulting C-ZnO was a p-type with a good pH at zero-point charge that permits the substantial removal of EBT by C-doped under visible light irradiation over a wide range of initial pH.
Primary Language | English |
---|---|
Subjects | Material Production Technologies |
Journal Section | Articles |
Authors | |
Publication Date | June 21, 2023 |
Submission Date | February 22, 2023 |
Acceptance Date | February 28, 2023 |
Published in Issue | Year 2023 Volume: 6 Issue: 1 |
© 2018 Journal of Physical Chemistry and Functional Materials (JPCFM). All rights reserved.
For inquiries, submissions, and editorial support, please get in touch with nbulut@firat.edu.tr or visit our website at https://dergipark.org.tr/en/pub/jphcfum.
Stay connected with JPCFM for the latest research updates on physical chemistry and functional materials. Follow us on Social Media.
Published by DergiPark. Proudly supporting the advancement of science and innovation.https://dergipark.org.tr/en/pub/jphcfum