Research Article
BibTex RIS Cite

Evaluation of Optical and Radiation Protection Parameters of High Refractive Index Polymers

Year 2023, Volume: 6 Issue: 2, 152 - 160, 18.12.2023
https://doi.org/10.54565/jphcfum.1324778

Abstract

The optical properties of the prescription and non-prescription (plano) samples of the MR-8 high index lens were examined by UV/VIS spectrometry. The results showed that the light transmittance of the two MR-8 lens samples examined was over 90%, and the transmittance at the wavelength (~550nm) to which the human eye is most sensitive was 83.437% and 84.602% for the prescription and non-prescription samples, respectively. In terms of quality of vision, it is expected that the visible light transmittance will be high and the ultraviolet light transmittance will be minimal. It is very important that both the prescription and non-prescription organic MR-8 lenses tested have no transmittance below approximately 398nm. This means that this lens material protects against UVA and UVB rays, even though it is uncoated. It is also important to reduce the dose to the lens, which is a radiosensitive tissue. In the study, the mass absorption coefficients of MR-8 and Ormix lens materials in the 0.15-2.00 MeV energy range were calculated using the web-based XCOM programme. LAC, HVL, TVL, MFP, RPE and TF values were calculated from the MAC values obtained. At energies below 0.05 MeV, the maximum MAC value was 0.974 and 4.416 for the MR-8 and Ormix lenses, respectively. The RPE and TF values were 0.807-16.235%, 0.996-0.992% for the MR-8 lens and 0.862-55.233%, 0.448-0.991% for the Ormix lens. The results showed that the photon absorption ability of the Ormix lens is relatively better in the region where the photoelectric interaction is dominant. This research is also important in terms of determining the optical and nuclear radiation parameters of the material used in the manufacture of high index lenses and investigating its effectiveness in reducing the dose to the eyepiece.

Supporting Institution

Tübitak 2209-A

Project Number

1919B012206231

Thanks

This study was supported by the TÜBİTAK 2209-A National University Students Research Projects Support Program.

References

  • R. Pillay, R. Hansraj, N. Rampersad, Historical development, applications and advances in materials used in spectacle lenses and contact lenses [response to letter], Clin. Optom. 12 (2020) 201–202. doi:10.2147/OPTO.S289792.
  • A.H. Alhamdani, H.H. Al-Aaraji, M.R. Abdul-Hussein, R.A. Madlool, Borosilicate and Polyurethane as Materials for Lenses to Correct Human Presbyopia, J. Phys. Conf. Ser. 1032 (2018). doi:10.1088/1742-6596/1032/1/012042.
  • M. Tyagi, G. Suri, P. Chhabra, G. Seshadri, A. Malik, S. Aggarwal, R.K. Khandal, Novel way of making high refractive index plastics; metal containing polymers for optical applications, E-Polymers. (2009). doi:10.1515/epoly.2009.9.1.1197.
  • H.Z. Büyükyıldız, Spectacle Lenses, Lens Materials and Personalized Spectacle Lenses, Turkish J. Ophthalmol. (2010). doi:10.4274/tjo.
  • M.G. Semercioğlu, Lens Designer’s Optical Lens Development Processes, Int. J. Innov. Approaches Sci. Res. 6 (2022) 116–132.
  • A. Chandrinos, A Review of Polymers and Plastic High Index Optical Materials, J. Mater. Sci. Res. Rev. 7 (2021) 1–14.
  • T. Higashihara, M. Ueda, Recent progress in high refractive index polymers, Macromolecules. 48 (2015) 1915–1929. doi:10.1021/ma502569r.
  • T. Okubo, S. Kohmoto, M. Yamamoto, Properties of Polymers Comprising 1 , 4-Dithiane-2 , 5-Bis ( thiomethyl ) Group, J. Appl. Polym. Sci. 68 (1997) 1791–1799.
  • G. Ateş, S. Bilici, Investigation of Spectral and Optical Properties of Some Organic Eyeglass Lenses, J. Inonu Univ. Heal. Serv. Vocat. Sch. 11 (2023) 1042–1053. doi:10.33715/inonusaglik.1197712.
  • H.Z. Büyükyıldız, Gözlük Camı Kaplamaları ve Renkli Camlar Coatings and Tints of Spectacle Lenses, Turkish J. Ophthalmol. (2012) 359–369.
  • B. Jaffrennou, N. Droger, F. Méchin, J.L. Halary, J.P. Pascault, Characterization, structural transitions and properties of a tightly crosslinked polythiourethane network for optical applications, E-Polymers. (2005) 1–19. doi:10.1515/epoly.2005.5.1.866.
  • G.S. Jha, G. Seshadri, A. Mohan, R.K. Khandal, Development of high refractive index plastics, E-Polymers. (2007) 1–25. doi:10.1515/epoly.2007.7.1.1384.
  • Y. Jia, B. Shi, J. Jin, J. Li, High refractive index polythiourethane networks with high mechanical property via thiol-isocyanate click reaction, Polymer (Guildf). 180 (2019). doi:10.1016/j.polymer.2019.121746.
  • H. Mutlu, E.B. Ceper, X. Li, J. Yang, W. Dong, M.M. Ozmen, P. Theato, Sulfur Chemistry in Polymer and Materials Science, Macromol. Rapid Commun. 40 (2019) 1–51. doi:10.1002/marc.201800650.
  • V. Prajzler, V. Chlupatý, Z. Šaršounová, The effect of gamma-ray irradiation on bulk optical plastic materials, J. Mater. Sci. Mater. Electron. 31 (2020) 22599–22615. doi:10.1007/s10854-020-04772-y.
  • D. Meslin, Materials & Treatments, 2010.
  • S. Tekerek, Production of SnO2:F Glass by Spray Pyrolysis Method and Calculation of Radiation Interaction Properties, Osmaniye Korkut Ata Univ. J. Inst. Sci. Technol. 4 (2021) 261–273.
  • S. Bilici, M. Kamislioglu, E.E. Altunsoy Guclu, A Monte Carlo simulation study on the evaluation of radiation protection properties of spectacle lens materials, Eur. Phys. J. Plus. 138 (2023). doi:10.1140/epjp/s13360-022-03579-6.
  • S. Tombuloğlu, Gözlük Camlarinda IşiGeçi̇rgenli̇Özelli̇kleri̇, Kırklareli Üniversitesi Mühendislik ve Fen Bilim. Derg. 1 (2022) 179–189. doi:10.34186/klujes.1126166.
  • A. Mikš, M. Šmejkal, Determination of the refractive index and Abbe number of glass of spherical lenses, Appl. Opt. 57 (2018) 4728. doi:10.1364/ao.57.004728.
  • R.A. Pratiwi, A.B.D. Nandiyanto, How to Read and Interpret UV-VIS Spectrophotometric Results in Determining the Structure of Chemical Compounds, Indones. J. Educ. Res. Technol. 2 (2022) 1–20. doi:10.17509/ijert.v2i1.35171.
  • M.I. Sayyed, F. Akman, M.R. Kaçal, A. Kumar, Radiation protective qualities of some selected lead and bismuth salts in the wide gamma energy region, Nucl. Eng. Technol. 51 (2019) 860–866. doi:10.1016/j.net.2018.12.018.
  • C. Eke, A. Yildirim, Investigation of Photon Attenuation Properties of CR-39 Lens, HNPS Proc. 27 (2020) 60. doi:10.12681/hnps.2475.
  • S. Bilici, A. Bilici, F. Külahcı, Comparison Photon Exposure and Energy Absorption Buildup Factors of CR-39 and Trivex Optical Lenses, Turkish J. Sci. Technol. 17 (2022) 23–35. doi:10.55525/tjst.1003130.
  • C. V. More, Z. Alsayed, M.S. Badawi, A.A. Thabet, P.P. Pawar, Polymeric composite materials for radiation shielding: a review, Springer International Publishing, 2021. doi:10.1007/s10311-021-01189-9.
  • R. Akdemir, Fatma; Turhan, M. Fatih; akman, Ferdi; Geçibesler, İ. Halil; Kaçal, M. Recep; Durak, Determination of Radiation Absorption Parameters of Some Plants in The Low Energy Range, J. Inst. Sci. Technol. 11 (2021) 1959–1969.
  • A. Alalawi, C. Eke, N. jamaan Alzahrani, S. Alomairy, O. Alsalmi, C. Sriwunkum, Z.A. Alrowaili, M.S. Al-Buriahi, Attenuation properties and radiation protection efficiency of Tb2O3-La2O3-P2O5 glass system, J. Aust. Ceram. Soc. 58 (2022) 511–519. doi:10.1007/s41779-022-00707-4.
  • M. Kamışlıoğlu, Beton-PbO-WO 3 Bileşiği için İyonlaştırıcı Radyasyon Etkileşim Parametrelerinden Kütle Durdurma Gücü ve Durdurma Mesafesinin 0 . 015-20 MeV Enerji A ralığında Hesaplanması Ionizing Radiation Interaction Parameters Calculation of Mass Stopping Power and Pr, Eur. J. Sci. Technol. (2020) 786–795. doi:10.31590/ejosat.710925.
  • I. Fleming, D. Williams, Spectroscopic Methods in Organic Chemistry, 2019. doi:10.1055/b000000049.
  • M. Kamışlıoğlu, Research on the effects of bismuth borate glass system on nuclear radiation shielding parameters, Results Phys. 22 (2021) 103844. doi:10.1016/j.rinp.2021.103844.
  • E. Kavaz, Investigation on Photon Interaction Properties of Some Polymers Used in Production of Hydrogels, Süleyman Demirel Üniversitesi Fen Edeb. Fakültesi Fen Derg. 13 (2018) 97–107. doi:10.29233/sdufeffd.453522.
  • K. Jez, M. Nabialek, K. Gruszka, M. Deka, S. Letkiewicz, B. Jez, Light transmittance by organic eyeglass lenses according to their class, Mater. Plast. 55 (2018) 438–441. doi:10.37358/mp.18.3.5046.
  • H. Demir, L.B. Taşyürek, E.K. Dindar Demiray, Organik Gözlük Lenslerinde Anti-Refle Kaplama, Tek. Bilim. Derg. (2023) 9–17. doi:10.35354/tbed.1083584.
  • T. Velpandian, A.K. Ravi, S.S. Kumari, N.R. Biswas, H.K. Tewari, S. Ghose, Protection from ultraviolet radiation by spectacle lenses available in India: A comparative study, Natl. Med. J. India. 26 (2005) 5–7.
  • H.O. Tekin, V.P. Singh, E.E. Altunsoy, T. Manici, M.I. Sayyed, Mass attenuation coefficients of human body Organs using MCNPX Monte Carlo Code, Iran. J. Med. Phys. 14 (2017) 229–240. doi:10.22038/ijmp.2017.23478.1230.
Year 2023, Volume: 6 Issue: 2, 152 - 160, 18.12.2023
https://doi.org/10.54565/jphcfum.1324778

Abstract

Project Number

1919B012206231

References

  • R. Pillay, R. Hansraj, N. Rampersad, Historical development, applications and advances in materials used in spectacle lenses and contact lenses [response to letter], Clin. Optom. 12 (2020) 201–202. doi:10.2147/OPTO.S289792.
  • A.H. Alhamdani, H.H. Al-Aaraji, M.R. Abdul-Hussein, R.A. Madlool, Borosilicate and Polyurethane as Materials for Lenses to Correct Human Presbyopia, J. Phys. Conf. Ser. 1032 (2018). doi:10.1088/1742-6596/1032/1/012042.
  • M. Tyagi, G. Suri, P. Chhabra, G. Seshadri, A. Malik, S. Aggarwal, R.K. Khandal, Novel way of making high refractive index plastics; metal containing polymers for optical applications, E-Polymers. (2009). doi:10.1515/epoly.2009.9.1.1197.
  • H.Z. Büyükyıldız, Spectacle Lenses, Lens Materials and Personalized Spectacle Lenses, Turkish J. Ophthalmol. (2010). doi:10.4274/tjo.
  • M.G. Semercioğlu, Lens Designer’s Optical Lens Development Processes, Int. J. Innov. Approaches Sci. Res. 6 (2022) 116–132.
  • A. Chandrinos, A Review of Polymers and Plastic High Index Optical Materials, J. Mater. Sci. Res. Rev. 7 (2021) 1–14.
  • T. Higashihara, M. Ueda, Recent progress in high refractive index polymers, Macromolecules. 48 (2015) 1915–1929. doi:10.1021/ma502569r.
  • T. Okubo, S. Kohmoto, M. Yamamoto, Properties of Polymers Comprising 1 , 4-Dithiane-2 , 5-Bis ( thiomethyl ) Group, J. Appl. Polym. Sci. 68 (1997) 1791–1799.
  • G. Ateş, S. Bilici, Investigation of Spectral and Optical Properties of Some Organic Eyeglass Lenses, J. Inonu Univ. Heal. Serv. Vocat. Sch. 11 (2023) 1042–1053. doi:10.33715/inonusaglik.1197712.
  • H.Z. Büyükyıldız, Gözlük Camı Kaplamaları ve Renkli Camlar Coatings and Tints of Spectacle Lenses, Turkish J. Ophthalmol. (2012) 359–369.
  • B. Jaffrennou, N. Droger, F. Méchin, J.L. Halary, J.P. Pascault, Characterization, structural transitions and properties of a tightly crosslinked polythiourethane network for optical applications, E-Polymers. (2005) 1–19. doi:10.1515/epoly.2005.5.1.866.
  • G.S. Jha, G. Seshadri, A. Mohan, R.K. Khandal, Development of high refractive index plastics, E-Polymers. (2007) 1–25. doi:10.1515/epoly.2007.7.1.1384.
  • Y. Jia, B. Shi, J. Jin, J. Li, High refractive index polythiourethane networks with high mechanical property via thiol-isocyanate click reaction, Polymer (Guildf). 180 (2019). doi:10.1016/j.polymer.2019.121746.
  • H. Mutlu, E.B. Ceper, X. Li, J. Yang, W. Dong, M.M. Ozmen, P. Theato, Sulfur Chemistry in Polymer and Materials Science, Macromol. Rapid Commun. 40 (2019) 1–51. doi:10.1002/marc.201800650.
  • V. Prajzler, V. Chlupatý, Z. Šaršounová, The effect of gamma-ray irradiation on bulk optical plastic materials, J. Mater. Sci. Mater. Electron. 31 (2020) 22599–22615. doi:10.1007/s10854-020-04772-y.
  • D. Meslin, Materials & Treatments, 2010.
  • S. Tekerek, Production of SnO2:F Glass by Spray Pyrolysis Method and Calculation of Radiation Interaction Properties, Osmaniye Korkut Ata Univ. J. Inst. Sci. Technol. 4 (2021) 261–273.
  • S. Bilici, M. Kamislioglu, E.E. Altunsoy Guclu, A Monte Carlo simulation study on the evaluation of radiation protection properties of spectacle lens materials, Eur. Phys. J. Plus. 138 (2023). doi:10.1140/epjp/s13360-022-03579-6.
  • S. Tombuloğlu, Gözlük Camlarinda IşiGeçi̇rgenli̇Özelli̇kleri̇, Kırklareli Üniversitesi Mühendislik ve Fen Bilim. Derg. 1 (2022) 179–189. doi:10.34186/klujes.1126166.
  • A. Mikš, M. Šmejkal, Determination of the refractive index and Abbe number of glass of spherical lenses, Appl. Opt. 57 (2018) 4728. doi:10.1364/ao.57.004728.
  • R.A. Pratiwi, A.B.D. Nandiyanto, How to Read and Interpret UV-VIS Spectrophotometric Results in Determining the Structure of Chemical Compounds, Indones. J. Educ. Res. Technol. 2 (2022) 1–20. doi:10.17509/ijert.v2i1.35171.
  • M.I. Sayyed, F. Akman, M.R. Kaçal, A. Kumar, Radiation protective qualities of some selected lead and bismuth salts in the wide gamma energy region, Nucl. Eng. Technol. 51 (2019) 860–866. doi:10.1016/j.net.2018.12.018.
  • C. Eke, A. Yildirim, Investigation of Photon Attenuation Properties of CR-39 Lens, HNPS Proc. 27 (2020) 60. doi:10.12681/hnps.2475.
  • S. Bilici, A. Bilici, F. Külahcı, Comparison Photon Exposure and Energy Absorption Buildup Factors of CR-39 and Trivex Optical Lenses, Turkish J. Sci. Technol. 17 (2022) 23–35. doi:10.55525/tjst.1003130.
  • C. V. More, Z. Alsayed, M.S. Badawi, A.A. Thabet, P.P. Pawar, Polymeric composite materials for radiation shielding: a review, Springer International Publishing, 2021. doi:10.1007/s10311-021-01189-9.
  • R. Akdemir, Fatma; Turhan, M. Fatih; akman, Ferdi; Geçibesler, İ. Halil; Kaçal, M. Recep; Durak, Determination of Radiation Absorption Parameters of Some Plants in The Low Energy Range, J. Inst. Sci. Technol. 11 (2021) 1959–1969.
  • A. Alalawi, C. Eke, N. jamaan Alzahrani, S. Alomairy, O. Alsalmi, C. Sriwunkum, Z.A. Alrowaili, M.S. Al-Buriahi, Attenuation properties and radiation protection efficiency of Tb2O3-La2O3-P2O5 glass system, J. Aust. Ceram. Soc. 58 (2022) 511–519. doi:10.1007/s41779-022-00707-4.
  • M. Kamışlıoğlu, Beton-PbO-WO 3 Bileşiği için İyonlaştırıcı Radyasyon Etkileşim Parametrelerinden Kütle Durdurma Gücü ve Durdurma Mesafesinin 0 . 015-20 MeV Enerji A ralığında Hesaplanması Ionizing Radiation Interaction Parameters Calculation of Mass Stopping Power and Pr, Eur. J. Sci. Technol. (2020) 786–795. doi:10.31590/ejosat.710925.
  • I. Fleming, D. Williams, Spectroscopic Methods in Organic Chemistry, 2019. doi:10.1055/b000000049.
  • M. Kamışlıoğlu, Research on the effects of bismuth borate glass system on nuclear radiation shielding parameters, Results Phys. 22 (2021) 103844. doi:10.1016/j.rinp.2021.103844.
  • E. Kavaz, Investigation on Photon Interaction Properties of Some Polymers Used in Production of Hydrogels, Süleyman Demirel Üniversitesi Fen Edeb. Fakültesi Fen Derg. 13 (2018) 97–107. doi:10.29233/sdufeffd.453522.
  • K. Jez, M. Nabialek, K. Gruszka, M. Deka, S. Letkiewicz, B. Jez, Light transmittance by organic eyeglass lenses according to their class, Mater. Plast. 55 (2018) 438–441. doi:10.37358/mp.18.3.5046.
  • H. Demir, L.B. Taşyürek, E.K. Dindar Demiray, Organik Gözlük Lenslerinde Anti-Refle Kaplama, Tek. Bilim. Derg. (2023) 9–17. doi:10.35354/tbed.1083584.
  • T. Velpandian, A.K. Ravi, S.S. Kumari, N.R. Biswas, H.K. Tewari, S. Ghose, Protection from ultraviolet radiation by spectacle lenses available in India: A comparative study, Natl. Med. J. India. 26 (2005) 5–7.
  • H.O. Tekin, V.P. Singh, E.E. Altunsoy, T. Manici, M.I. Sayyed, Mass attenuation coefficients of human body Organs using MCNPX Monte Carlo Code, Iran. J. Med. Phys. 14 (2017) 229–240. doi:10.22038/ijmp.2017.23478.1230.
There are 35 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Articles
Authors

Mehmet Kırbıyık 0009-0006-2337-7611

Sevim Bilici 0000-0002-7694-5081

Project Number 1919B012206231
Publication Date December 18, 2023
Submission Date July 9, 2023
Acceptance Date August 16, 2023
Published in Issue Year 2023 Volume: 6 Issue: 2

Cite

APA Kırbıyık, M., & Bilici, S. (2023). Evaluation of Optical and Radiation Protection Parameters of High Refractive Index Polymers. Journal of Physical Chemistry and Functional Materials, 6(2), 152-160. https://doi.org/10.54565/jphcfum.1324778
AMA Kırbıyık M, Bilici S. Evaluation of Optical and Radiation Protection Parameters of High Refractive Index Polymers. Journal of Physical Chemistry and Functional Materials. December 2023;6(2):152-160. doi:10.54565/jphcfum.1324778
Chicago Kırbıyık, Mehmet, and Sevim Bilici. “Evaluation of Optical and Radiation Protection Parameters of High Refractive Index Polymers”. Journal of Physical Chemistry and Functional Materials 6, no. 2 (December 2023): 152-60. https://doi.org/10.54565/jphcfum.1324778.
EndNote Kırbıyık M, Bilici S (December 1, 2023) Evaluation of Optical and Radiation Protection Parameters of High Refractive Index Polymers. Journal of Physical Chemistry and Functional Materials 6 2 152–160.
IEEE M. Kırbıyık and S. Bilici, “Evaluation of Optical and Radiation Protection Parameters of High Refractive Index Polymers”, Journal of Physical Chemistry and Functional Materials, vol. 6, no. 2, pp. 152–160, 2023, doi: 10.54565/jphcfum.1324778.
ISNAD Kırbıyık, Mehmet - Bilici, Sevim. “Evaluation of Optical and Radiation Protection Parameters of High Refractive Index Polymers”. Journal of Physical Chemistry and Functional Materials 6/2 (December 2023), 152-160. https://doi.org/10.54565/jphcfum.1324778.
JAMA Kırbıyık M, Bilici S. Evaluation of Optical and Radiation Protection Parameters of High Refractive Index Polymers. Journal of Physical Chemistry and Functional Materials. 2023;6:152–160.
MLA Kırbıyık, Mehmet and Sevim Bilici. “Evaluation of Optical and Radiation Protection Parameters of High Refractive Index Polymers”. Journal of Physical Chemistry and Functional Materials, vol. 6, no. 2, 2023, pp. 152-60, doi:10.54565/jphcfum.1324778.
Vancouver Kırbıyık M, Bilici S. Evaluation of Optical and Radiation Protection Parameters of High Refractive Index Polymers. Journal of Physical Chemistry and Functional Materials. 2023;6(2):152-60.