Review
BibTex RIS Cite

Yumurta Ağırlığını Etkileyen Faktörler

Year 2019, Volume: 16 Issue: 2, 39 - 47, 31.12.2019
https://doi.org/10.34233/jpr.595162

Abstract

Yumurta tavukçuluğu
sektöründe, yumurta ağırlığı her zaman ekonomik olarak önemli bir özelliktir ve
çeşitli tercihler nedeniyle tüketim üzerinde önemli bir etkiye sahiptir. Bu
makalenin amacı; yumurta ağırlığını etkileyen faktörler üzerinde yapılmış bazı
araştırmaları gözden geçirmektir. Yumurtacı tavuklar genetik olarak ortalama
bir yumurta ağırlığına sahiptir fakat bu ağırlık üzerinde; canlı ağırlık,
besleme ve aydınlatma programlarının da önemli etkisi olmaktadır. Optimum
yumurta ağırlığını sağlayabilmek için, genetik olmayan faktörler yumurta
üreticileri tarafından kontrol edilebilir.  Cinsel olgunluk ağırlığı ile
yumurta ağırlığı arasında pozitif genetik korelasyon olduğundan, yumurta
ağırlığını etkileyen önemli faktörlerden biri, tavukların cinsel olgunluk
ağırlığıdır. Cinsel olgunluk ağırlığı belirli seviyenin altında olan tavukların
yumurtaları küçük olmaktadır. Tavuklar aydınlığa ve karanlığa karşı duyarlıdır
ve bunun yumurta sayısı ve yumurta ağırlığı üzerinde önemli etkisi vardır.
Yumurta ağırlığı üzerinde rasyonun enerji, yağ,  protein ve amino asit
düzeyleri de etkili olmaktadır. Günümüzde moleküler genetikteki gelişmelere
bağlı olarak, yumurta ağırlığının genetik temelini aydınlatmak amacıyla
araştırmalar yapılmaktadır. Bu derleme, tavukların yumurta ağırlığı ile genetik
yapısı arasındaki ilişkileri araştıran çalışmaları da içermektedir.

References

  • 1. Koelkebeck, K.W., Bell,D.D., Carey, J. B., Anderson, K. E., Darre,M. J., 2001. Egg marketing in national supermarkets: products, packaging, and prices–part 3. Poult. Sci. 80, 396–400. doi: 10.1093/ps/80.4.396.
  • 2. Mızrak, C., Durmuş, İ., Kamanli, S., Demirtaş, Ş. E., Kalebaşı, S., Karademir, E., Doğu, M., 2012. Determination of egg consumption and consumer habits in Turkey. Turkish Journal of Veterinary and Animal Sciences, 36(6), 592-601.
  • 3. Nangsuay, A., Ruangpanit, Y., Meijerhof, R., and Attamangkune, S., 2011. Yolk absorption and embryo development of small and large eggs originating from young and old breeder hens. Poult. Sci. 90, 2648–2655. doi: 10.3382/ps.2011-01415.
  • 4. Sasaki, O., Odawara, S., Takahashi, H., Nirasawa, K., Oyamada, Y., Yamamoto, R., Ishii, K., Nagamine, Y., Takeda, H., Kobayashi, E., Furukawa, T., 2004. Genetic mapping of quantitative trait loci affecting body weight, egg character and egg production in F2 intercross chickens. Anim. Genet. 35, 188–194. doi: 10.1111/j.1365-2052.2004.01133.x.
  • 5. Savegnago, R. P., Caetano, S. L., Ramos, S. B., Nascimento, G. B., Schmidt, G. S., Ledur, M. C., Munari, D.P., 2011. Estimates of genetic parameters, and cluster and principal components analyses of breeding values related to egg production traits in a White Leghorn population. Poult. Sci. 90, 2174–2188. doi: 10.3382/ps.2011-01474.
  • 6. Wolc, A., Arango, J., Settar, P., Fulton, J. E., O’Sullivan, N. P., Preisinger, R., Habier, D., Fernando, R., Garrick, D.J., Hill, W.G., Dekkers, J.C., 2012. Genome-wide association analysis and genetic architecture of egg weight and egg uniformity in layer chickens. Anim. Genet. 43(Suppl. 1), 87–96. doi: 10.1111/j.1365-2052.2012.02381.x.
  • 7. Yi, G., Liu, W., Li, J., Zheng, J., Qu, L., Xu, G., Yang, N., 2014. Genetic analysis for dynamic changes of egg weight in 2 chicken lines. Poult. Sci. 93, 2963–2969. doi: 10.3382/ps.2014-04178.
  • 8. Schulte-Drüggelte, R., Thiele, H.H., 2013. Determining the optimum replacement schedule for commercial layers:does molting pay off? Available online at: http://www.thepoultrysite.com/ articles/2831/determining-theoptimum- replacement-schedule-for-commercial-layers-does-moulting-payoff/.
  • 9. Bain, M. M., Nys, Y., Dunn, I. C., 2016. Increasing persistency in lay and stabilising egg quality in longer laying cycles.What are the challenges? Br. Poult. Sci. 57, 330–338. doi: 10.1080/00071668.2016.1161727.
  • 10. Göger, H., Demirtaş, Ş. E., Yurtoğulları, Ş., 2014. Developments in the performance of brown egg layer parental stocks for superior hybrid. Turkish Journal of Veterinary and Animal Sciences, 38(5), 546-551.
  • 11. Göger, H., Demirtaş, Ş. E., Yurtoğulları, Ş., 2016. A selection study for improving eggshell colour in two parent lines of laying hens and their hybrids. Italian Journal of Animal Science, 15(3), 390-395.
  • 12. Christians, J. K., 2002. Avian egg size: variation within species and inflexibility within individuals. Biological reviews, 77(1), 1-26.
  • 13. Yi, G., Shen, M., Yuan, J., Sun, C., Duan, Z., Qu, L., Wang, K., Yang, N., 2015. Genomewide association study dissects genetic architecture underlying longitudinal egg weights in chickens. BMC Genomics 16, 746. doi: 10.1186/s12864-015-1945-y.
  • 14. Schreiweis, M. A., Hester, P. Y., Settar, P., Moody, D. E., 2006. Identification of quantitative trait loci associated with egg quality, egg production, and body weight in an F2 resource population of chickens. Anim. Genet. 37, 106–112. doi: 10.1111/j.1365-2052.2005.01394.x.
  • 15. Wright, D., Kerje, S., Lundstrom, K., Babol, J., Schutz, K., Jensen, P., Andersson, L., 2006. Quantitative trait loci analysis of egg and meat production traits in a red junglefowl x White Leghorn cross. Anim. Genet. 37, 529–534. doi: 10.1111/j.1365-2052.2006.01515.x.
  • 16. Liu, W., Li, D., Liu, J., Chen, S., Qu, L., Zheng, J., Xu, G., Yang, N., 2011. A genome-wide SNP scan reveals novel loci for egg production and quality traits in white leghorn and brown-egg dwarf layers. PLoS ONE 6:e28600. doi: 10.1371/journal.pone.0028600.
  • 17. Liao R, Zhang X, Chen Q, Wang Z, Wang, Q., Yang, C., Pan, Y., 2016. Genome-wide association study reveals novel variants for growth and egg traits in Dongxiang blue-shelled and White Leghorn chickens. Anim. Genet. 47: 588-596. http://dx.doi.org/10.1111/age.12456.
  • 18. Dos Santos, A. L., De Faria, D. E., De Oliveira, R. P., Pavesi, M., Rizzo Silva, M. F., Buranelo Toral, F. L., ... & Buxade Carbo, C., 2017. Growth and Body Composition of Laying Hens under Different Feeding Programs up to 72 Weeks. Journal of Animal Science and Research, 1(1), 1-6.
  • 19. Whitehead , C. C., 1995. Plasma oestrogen and the regulation of egg weight in laying hens by dietary fats. Animal feed science and technology, 53(2), 91-98.
  • 20. Emmans , G.C.,1997. A method to predict the food intake of domestic animals from birth to maturity as a function of time. J. Theor. Biol. 186:189–200. doi:10.1006/jtbi.1996.0357.
  • 21. Joly , P., 2005. Energylevels in feedsforlayinghens: effects on performanceandintake. XIX. CongressoLatinoAmericano deAvicultura Panama 5-7th Octubre 2015.
  • 22. Bouvarel, I., Nys, Y., 2013. Optimizing eggmassandqualitytraits in modern layinghensthroughnutrition. In: Proceedings19th EuropeanSymposium on PoultryNutriton. Presented at 19th EuropeanSymposium on PoultryNutrition (ESPN) Potsdam,DEU.
  • 23. Perez Bonilla, A., Jabbour, C., Frıkha, M., Mırzaıe, S., Garcıa, J., Mateos, G. G., 2012. Effect of crudeprotein andfatcontent of diet on productiveperformanceandeggqualitytraits of brownegg-laying hens with differentinitial bodyweight. PoultryScience 91: 1400-1405.
  • 24. De Persio, S., Utterback, P. L., Utterback, C. W., Rochell, S. J., O’sullıvan, N., Bregendahl, K.,Arango, J., Parsons, C. M., Koelkebeck, K. W., 2015. Effects of feedingdietsvarying in energyandnutrientdensitytoHy-Line W-36. layinghens on productionperformanceandeconomics. PoultryScience94:195–206.
  • 25. Whitehead , C. C., 1981. Theresponse of eggweighttotheinclusion of differentamounts of vegetableoilandlinoleicacid inthediet of layinghens, British PoultryScience, 22, 525–532.
  • 26. Perez-Bonilla, A., Frikha, M., Mirzaie,S., J. Garcia,J., Mateos, G.G., 2011. Effects of the main cereal and type of fat of the diet on productive performance and egg quality of brown egg-lay-ing hens from twenty-two to fifty-four weeks of age. Poult. Sci. 90:1801–1810.
  • 27. Silva , E.P., N.K.Sakomura,L.Hauschild, and R.M.Gous., 2014. A model to estimate the amino acid requirements for growth and sexual development in laying pullets. In: Sakomura N.K. R.M. GousI.Kyriazakis, and L.Hauschild, editors.Nutritional modelling in pigs and poultry . Wallingford (UK): CAB International. p.223-233.
  • 28. Bregendahl, K., Roberts, S. A., Kerr, B., Hoehler, D., 2008. Ideal ratios of isoleucine, methionine, methionine plus cystine, threonine, tryptophan, and valine relative to lysine for white leghorn-type laying hens of twenty-eight to thirty-four weeks of age. Poultry Science, 87(4), 744-758.
  • 29. Sakomura, N. K., Reis, M. D. P., Ferreira, N. T.,Gous, R. M., 2019. Modeling egg production as a means of optimizing dietary nutrient contents for laying hens. Animal Frontiers, 9(2), 45-51.
  • 30. Qu, L., Shen, M., Guo, J., Wang, X., Dou, T., Hu, Y., Li, Y., Ma, M., Wang, K., Liu, H., 2019. Identification of potential genomic regions and candidate genes for egg albumen quality by a genome-wide association study, Arch. Anim. Breed., 62, 113-123, https://doi.org/10.5194/aab-62-113-2019.
  • 31. Star, L., Juul-Madsen, H.R., Decuypere, E., Nieuwland, M.G., de Vries Reilingh, G., van den Brand, H., Kemp, B., Parmentier, H.K., 2009. Effect of early life thermal conditioning and immune challenge on thermotolerance and humoral immune competence in adult laying hens. Poult. Sci. 88, 2253–2261.
  • 32. Ebeid, T.A., Suzuki, T., Sugiyama, T., 2012. High temperature influences eggshell quality and calbindin-D28k localization of eggshell gland and all intestinal segments of laying hens. Poult. Sci. 91, 2282–2287.
  • 33. Lara, L., Rostagno, M., 2013. Impact of heat stress on poultry production. Animals, 3(2), 356-369.
  • 34. Mack, L.A.; Felver-Gant, J.N.; Dennis, R.L.; Cheng, H.W., 2013. Genetic variation alter production and behavioral responses following heat stress in 2 strains of laying hens. Poult. Sci. 92, 285–294.
  • 35. Lewis, P.D., Morris, T.R., 2006. Poultry lighting: The theory and practice. Hampshire (UK). Northcot.
  • 36. Yuri, F. M., Souza, C. D., Schneider, A. F., Gewehr, C. E., 2016. Intermittent lighting programs for layers with different photophases in the beginning of the laying phase. Ciência Rural, 46(11), 2012-2017.
  • 37. Wan, Y., Jin, S., Ma, C., Wang, Z., Fang, Q., Jiang, R., 2019. Effect of strain and age on the thick-to-thin albumen ratio and egg composition traits in layer hens. Animal Production Science, 59(3), 416-419.
  • 38. International Chicken Genome Sequencing Consortium, 2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432: 695–716.
  • 39. Liu, Z., Sun, C., Yan, Y., Li, G., Wu, G., Liu, A., Yang, N., 2018. Genome-wide association analysis of age-dependent egg weights in chickens. Frontiers in Genetics, 9, 128.
  • 40. Tuiskula-Haavisto, M., Honkatukia, M., Vilkki, J., de Koning, D.J., Schulman, N.F., Mäki-Tanila, A., 2002. Mapping of quantitative trait loci affecting quality and production traits in egg layers. Poult. Sci. 81: 919-927. http://dx.doi.org/10.1093/ps/81.7.919.
  • 41. Fan, Q. C., Wu, P. F., Dai, G. J., Zhang, G. X., Zhang, T., Xue, Q., Shi, H.Q., Wang, J. Y., 2017. Identification of 19 loci for reproductive traits in a local Chinese chicken by genome-wide study. Genet Mol Res, 16(1).
  • 42. Lee, S. H., DeCandia, T. R., Ripke, S.,Yang, J., 2012. Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nat. Genet. 44, 247–250. doi: 10.1038/ng.1108.
  • 43. Zhou, X., Stephens, M., 2012. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44, 821–824. doi: 10.1038/ ng.2310.
  • 44. Sun, C., Lu, J., Yi, G., Yuan, J., Duan, Z., Qu, L., Xu, G., Wang, K., Yang, N,. 2015. Promising loci and genes for yolk and ovary weight in chickens revealed by a genome-wide association study. PLoS ONE 10:e0137145. doi: 10.1371/journal.pone.0137145.
  • 45. Andersen, D. C., Jensen, C. H., Schneider, M., Nossent, A. Y., Eskildsen, T., Hansen, J. L., Teisner, B., Sheikh, S.P., 2010. MicroRNA-15a fine-tunes the level of Delta-like 1 homolog (DLK1) in proliferating 3T3-L1 preadipocytes. Exp. Cell Res. 316, 1681–1691. doi: 10.1016/j.yexcr.2010.04.002.
  • 46. Sun, L. L., Jiang, B. G., Li, W. T., Zou, J. J., Shi, Y. Q., Liu, Z. M., 2011. MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Res. Clin. Pract. 91, 94–100. doi: 10.1016/j.diabres.2010.11.006.
  • 47. Yuan, Y., Kasar, S., Underbayev, C., Vollenweider, D., Salerno, E., Kotenko, S. V., Raveche, E., 2012. Role of microRNA-15a in autoantibody production in interferon-augmented murine model of lupus. Mol. Immunol. 52, 61–70. doi: 10.1016/j.molimm.2012.04.007.
  • 48. Spinetti, G., Fortunato, O., Caporali, A., Shantikumar, S., Marchetti, M., Meloni, M., Descamps, B., Floris, I., Sangalli, E., Vono, R., Faglia, E., Specchia, C., Pintus, G., Madeddu, P., Emanueli, C., 2013. MicroRNA-15a and microRNA-16 impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia. Circ. Res. 112, 335–346. doi: 10.1161/CIRCRESAHA.111.300418.
  • 49. Hao, R., Hu, X., Wu, C., Li, N., 2014. Hypoxia-induced miR-15a promotes mesenchymal ablation and adaptation to hypoxia during lung development in chicken. PLoS ONE 9:e98868. doi: 10.1371/journal.pone.0098868.
  • 50. Yuan, J., Chen, S., Shi, F., Wu, G., Liu, A., Yang, N., Sun, C., 2017. Genome-wide association study reveals putative role of gga-miR-15a in controlling feed conversion ratio in layer chickens. BMC Genomics 18:699. doi: 10.1186/s12864-017-4092-9.
  • 51. Kim, D. H., Sarbassov, D. D., Ali, S. M., King, J. E., Latek, R. R., Erdjument- Bromage, H., Tempst, P., Sabatini, D.M., 2002. mTOR interacts with raptor to form a nutrientsensitive complex that signals to the cell growth machinery. Cell 110, 163–175. doi: 10.1016/S0092-8674(02)00808-5.
  • 52. Footz, T. K., Brinkman-Mills, P., Banting, G. S., Maier, S. A., Riazi, M. A., Bridgland, L., Song, Hu, S., Birren, B., Minoshima,S., Shimizu, N., Pan, H., Nguyen, T., Fang, F., Fu, Y., Ray, L., Wu, H., Shaull, S., Phan, S., Yao, Z., Chen, F., Huan, A., Hu, P., Wang, Q., Loh, P., Qi, S., Roe, B. R., McDermid, H. E.,, 2002. Analysis of the cat eye syndrome critical region in humans and the region of conserved synteny in mice: a search for candidate genes at or near the human chromosome 22 pericentromere. Genome Res. 12, 47–56. doi: 10.1101/gr.154901.
  • 53. Banting, G. S., Barak, O., Ames, T. M., Burnham, A. C., Kardel, M. D., Cooch, N. S., Davidson, C.E., Godbout, R., McDermid, H. E., Shiekhattar, R., 2005. CECR2, a protein involved in neurulation, forms a novel chromatin remodeling complex with SNF2L. Hum. Mol. Genet. 14, 513–524. doi: 10.1093/hmg/ddi048.
  • 54. Chen, J., Morosan-Puopolo, G., Dai, F., Wang, J., Brand-Saberi, B., 2010. Molecular cloning of chicken Cecr2 and its expression during chicken embryo development. Int. J. Dev. Biol. 54, 925–929. doi: 10.1387/ijdb.092933jc.
  • 55. Sánchez-Guardado, L.Ó., Ferran, J. L., Rodríguez-Gallardo, L., Puelles, L., Hidalgo-Sánchez, M., 2011. Meis gene expression patterns in the developing chicken inner ear. J. Comp. Neurol. 519, 125–147. doi: 10.1002/cne.22508.
  • 56. Bessa, J., Tavares, M. J., Santos, J., Kikuta, H., Laplante, M., Becker, T. S., Gomez-Skarmeta, J. L., Casares F., 2008. Meis1 regulates cyclin D1 and c-myc expression, and controls the proliferation of the multipotent cells in the early developing zebrafish eye. Development 135, 799–803. doi: 10.1242/dev.011932.
  • 57. Heine, P., Dohle, E., Bumsted-O’Brien, K., Engelkamp, D., and Schulte, D., 2008. Evidence for an evolutionary conserved role of homothorax/Meis1/2 during vertebrate retina development. Development 135, 805–811. doi: 10.1242/dev.012088.
  • 58. Sanchez-Guardado, L.O, Irimia, M., Sanchez-Arrones, L., Burguera, D., Rodriguez-Gallardo, L., Garcia-Fernandez, J., Puelles, L., Ferran, J. L., Hidalgo-Sanchez, M., 2011. Distinct and redundant expression and transcriptional diversity of MEIS gene paralogs during chicken development. Dev. Dyn. 240, 1475–1492.doi: 10.1002/dvdy.22621.
  • 59. Bundschu, K., Walter, U., and Schuh, K., 2007. Getting a first clue about SPRED functions. Bioessays 29, 897–907. doi: 10.1002/bies.20632.
  • 60. Kato, R., Nonami, A., Taketomi, T., Wakioka, T., Kuroiwa, A., Matsuda, Y., Yoshimura, A., 2003. Molecular cloning of mammalian Spred-3 which suppresses tyrosine kinase-mediated Erk activation. Biochem. Biophys. Res. Comm. 302, 767–772. doi: 10.1016/S0006-291X(03)00259-6.
  • 61. Ma, X. N., Liu, X. Y., Yang, Y. F., Xiao, F. J., Li, Q. F., Yan, J., Zhang, Q. W., Wang, L. S., Li, X. Y., Wang, H., 2011. Regulation of human hepatocellular carcinoma cells by Spred2 and correlative studies on its mechanism. Biochem. Biophys. Res. Commun. 410, 803–808. doi: 10.1016/j.bbrc.2011.06.068.
  • 62. Düzgüneş O., Eliçin A., Akman N., 2012. Hayvan Islahı. (5. Baskı) A.Ü. Ziraat Fakültesi Yayınları: 1212/349.
  • 63. Wolc, A., Arango, J., Jankowski, T., Dunn, I., Settar, P., Fulton, J. E., O'Sullivan, N. P., Preisinger, R., Fernando, R. L., Garrick, D. J., Dekkers, J. C., 2014. Genome-wide association study for egg production and quality in layer chickens. J. Anim. Breed. Genet. 131, 173–182. doi: 10.1111/jbg.12086.
  • 64. Göger, H., Erkuş, T., 2000. Tavuk ıslahında biyoteknoloji.Tavukçuluk Araştırma Dergisi, 2 (2), 55-61.
  • 65. Zhang, S., Meng, L., Wang, J., and Zhang, L., 2017. Background controlled QTL mapping in pure-line genetic populations derived from four-way crosses. Heredity 119, 256–264. doi: 10.1038/hdy.2017.42.
  • 66. Alipanah, M., Deljo, J., Rokouie, M., Mohammadnia, R., 2013. Heritabilities and genetic and phenotypic correaltions of egg quality traits in KHAZAK layers. Trakia J. Sci. 175–180.
  • 67. Lu, D., Sargolzaei, M., Kelly, M., Li, C., Vander Voort, G., Wang, Z., Plastow, G., Moore, S., Miller, S. P., 2012. Linkage disequilibrium in angus, charolais, and crossbred beef cattle. Front. Genet. 3:152. doi: 10.3389/fgene.2012.00152.
  • 68. Fu, W., Dekkers, J. C., Lee, W. R., and Abasht, B., 2015. Linkage disequilibrium in crossbred and pure line chickens. Genet. Sel. Evol. 47:11. doi: 10.1186/s12711-015-0098-4.
  • 69. Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., McCarthy, M. I., Ramos, E. M., Cardon, L. R., Chakravarti, A., Cho, J. H., Guttmacher, A. E., Kong, A., Kruglyak, L., Mardis, E., Rotimi, C. N., Slatkin, M., Valle, D., Whittemore, A. S., Boehnke, M., Clark, A. G., Eichler, E. E., Gibson, G., Haines, J. L., Mackay, T. F., McCarroll, S. A., Visscher, P. M., 2009. Finding the missing heritability of complex diseases. Nature 461, 747–753. doi: 10.1038/nature08494.

Affecting Factors of Egg Weight

Year 2019, Volume: 16 Issue: 2, 39 - 47, 31.12.2019
https://doi.org/10.34233/jpr.595162

Abstract

In layer sector, egg weight is always an
economically important feature and has a critical impact on consumption due to
various preferences. The purpose of this article is to review some researches
on the factors affecting egg weight. Laying hens genetically have an average
egg weight, but on this trait live weight, feeding and lighting programs also
have an important effect. In order to achieve optimal egg weight, non-genetic
factors can be controlled by egg producers. Because there is a positive genetic
correlation between body weight at first egg and egg weight, one of the
important factors that affects egg weight is the hen’s body weight at first
egg. Hens had low body weight at first egg produce small eggs. Hens are
sensitive to light and dark; this
phenomenon has a significant effect on number of
produced egg and egg weight. Energy, lipid, protein and amino acid levels of
feed have effects on egg weight. As a result of the advances in molecular
genetics recently, researches have been carried out to elucidate the genetic
basis of egg weight. In addition, this review is including information which
researches on the relationship between egg weight and genetic structure of
chickens.

References

  • 1. Koelkebeck, K.W., Bell,D.D., Carey, J. B., Anderson, K. E., Darre,M. J., 2001. Egg marketing in national supermarkets: products, packaging, and prices–part 3. Poult. Sci. 80, 396–400. doi: 10.1093/ps/80.4.396.
  • 2. Mızrak, C., Durmuş, İ., Kamanli, S., Demirtaş, Ş. E., Kalebaşı, S., Karademir, E., Doğu, M., 2012. Determination of egg consumption and consumer habits in Turkey. Turkish Journal of Veterinary and Animal Sciences, 36(6), 592-601.
  • 3. Nangsuay, A., Ruangpanit, Y., Meijerhof, R., and Attamangkune, S., 2011. Yolk absorption and embryo development of small and large eggs originating from young and old breeder hens. Poult. Sci. 90, 2648–2655. doi: 10.3382/ps.2011-01415.
  • 4. Sasaki, O., Odawara, S., Takahashi, H., Nirasawa, K., Oyamada, Y., Yamamoto, R., Ishii, K., Nagamine, Y., Takeda, H., Kobayashi, E., Furukawa, T., 2004. Genetic mapping of quantitative trait loci affecting body weight, egg character and egg production in F2 intercross chickens. Anim. Genet. 35, 188–194. doi: 10.1111/j.1365-2052.2004.01133.x.
  • 5. Savegnago, R. P., Caetano, S. L., Ramos, S. B., Nascimento, G. B., Schmidt, G. S., Ledur, M. C., Munari, D.P., 2011. Estimates of genetic parameters, and cluster and principal components analyses of breeding values related to egg production traits in a White Leghorn population. Poult. Sci. 90, 2174–2188. doi: 10.3382/ps.2011-01474.
  • 6. Wolc, A., Arango, J., Settar, P., Fulton, J. E., O’Sullivan, N. P., Preisinger, R., Habier, D., Fernando, R., Garrick, D.J., Hill, W.G., Dekkers, J.C., 2012. Genome-wide association analysis and genetic architecture of egg weight and egg uniformity in layer chickens. Anim. Genet. 43(Suppl. 1), 87–96. doi: 10.1111/j.1365-2052.2012.02381.x.
  • 7. Yi, G., Liu, W., Li, J., Zheng, J., Qu, L., Xu, G., Yang, N., 2014. Genetic analysis for dynamic changes of egg weight in 2 chicken lines. Poult. Sci. 93, 2963–2969. doi: 10.3382/ps.2014-04178.
  • 8. Schulte-Drüggelte, R., Thiele, H.H., 2013. Determining the optimum replacement schedule for commercial layers:does molting pay off? Available online at: http://www.thepoultrysite.com/ articles/2831/determining-theoptimum- replacement-schedule-for-commercial-layers-does-moulting-payoff/.
  • 9. Bain, M. M., Nys, Y., Dunn, I. C., 2016. Increasing persistency in lay and stabilising egg quality in longer laying cycles.What are the challenges? Br. Poult. Sci. 57, 330–338. doi: 10.1080/00071668.2016.1161727.
  • 10. Göger, H., Demirtaş, Ş. E., Yurtoğulları, Ş., 2014. Developments in the performance of brown egg layer parental stocks for superior hybrid. Turkish Journal of Veterinary and Animal Sciences, 38(5), 546-551.
  • 11. Göger, H., Demirtaş, Ş. E., Yurtoğulları, Ş., 2016. A selection study for improving eggshell colour in two parent lines of laying hens and their hybrids. Italian Journal of Animal Science, 15(3), 390-395.
  • 12. Christians, J. K., 2002. Avian egg size: variation within species and inflexibility within individuals. Biological reviews, 77(1), 1-26.
  • 13. Yi, G., Shen, M., Yuan, J., Sun, C., Duan, Z., Qu, L., Wang, K., Yang, N., 2015. Genomewide association study dissects genetic architecture underlying longitudinal egg weights in chickens. BMC Genomics 16, 746. doi: 10.1186/s12864-015-1945-y.
  • 14. Schreiweis, M. A., Hester, P. Y., Settar, P., Moody, D. E., 2006. Identification of quantitative trait loci associated with egg quality, egg production, and body weight in an F2 resource population of chickens. Anim. Genet. 37, 106–112. doi: 10.1111/j.1365-2052.2005.01394.x.
  • 15. Wright, D., Kerje, S., Lundstrom, K., Babol, J., Schutz, K., Jensen, P., Andersson, L., 2006. Quantitative trait loci analysis of egg and meat production traits in a red junglefowl x White Leghorn cross. Anim. Genet. 37, 529–534. doi: 10.1111/j.1365-2052.2006.01515.x.
  • 16. Liu, W., Li, D., Liu, J., Chen, S., Qu, L., Zheng, J., Xu, G., Yang, N., 2011. A genome-wide SNP scan reveals novel loci for egg production and quality traits in white leghorn and brown-egg dwarf layers. PLoS ONE 6:e28600. doi: 10.1371/journal.pone.0028600.
  • 17. Liao R, Zhang X, Chen Q, Wang Z, Wang, Q., Yang, C., Pan, Y., 2016. Genome-wide association study reveals novel variants for growth and egg traits in Dongxiang blue-shelled and White Leghorn chickens. Anim. Genet. 47: 588-596. http://dx.doi.org/10.1111/age.12456.
  • 18. Dos Santos, A. L., De Faria, D. E., De Oliveira, R. P., Pavesi, M., Rizzo Silva, M. F., Buranelo Toral, F. L., ... & Buxade Carbo, C., 2017. Growth and Body Composition of Laying Hens under Different Feeding Programs up to 72 Weeks. Journal of Animal Science and Research, 1(1), 1-6.
  • 19. Whitehead , C. C., 1995. Plasma oestrogen and the regulation of egg weight in laying hens by dietary fats. Animal feed science and technology, 53(2), 91-98.
  • 20. Emmans , G.C.,1997. A method to predict the food intake of domestic animals from birth to maturity as a function of time. J. Theor. Biol. 186:189–200. doi:10.1006/jtbi.1996.0357.
  • 21. Joly , P., 2005. Energylevels in feedsforlayinghens: effects on performanceandintake. XIX. CongressoLatinoAmericano deAvicultura Panama 5-7th Octubre 2015.
  • 22. Bouvarel, I., Nys, Y., 2013. Optimizing eggmassandqualitytraits in modern layinghensthroughnutrition. In: Proceedings19th EuropeanSymposium on PoultryNutriton. Presented at 19th EuropeanSymposium on PoultryNutrition (ESPN) Potsdam,DEU.
  • 23. Perez Bonilla, A., Jabbour, C., Frıkha, M., Mırzaıe, S., Garcıa, J., Mateos, G. G., 2012. Effect of crudeprotein andfatcontent of diet on productiveperformanceandeggqualitytraits of brownegg-laying hens with differentinitial bodyweight. PoultryScience 91: 1400-1405.
  • 24. De Persio, S., Utterback, P. L., Utterback, C. W., Rochell, S. J., O’sullıvan, N., Bregendahl, K.,Arango, J., Parsons, C. M., Koelkebeck, K. W., 2015. Effects of feedingdietsvarying in energyandnutrientdensitytoHy-Line W-36. layinghens on productionperformanceandeconomics. PoultryScience94:195–206.
  • 25. Whitehead , C. C., 1981. Theresponse of eggweighttotheinclusion of differentamounts of vegetableoilandlinoleicacid inthediet of layinghens, British PoultryScience, 22, 525–532.
  • 26. Perez-Bonilla, A., Frikha, M., Mirzaie,S., J. Garcia,J., Mateos, G.G., 2011. Effects of the main cereal and type of fat of the diet on productive performance and egg quality of brown egg-lay-ing hens from twenty-two to fifty-four weeks of age. Poult. Sci. 90:1801–1810.
  • 27. Silva , E.P., N.K.Sakomura,L.Hauschild, and R.M.Gous., 2014. A model to estimate the amino acid requirements for growth and sexual development in laying pullets. In: Sakomura N.K. R.M. GousI.Kyriazakis, and L.Hauschild, editors.Nutritional modelling in pigs and poultry . Wallingford (UK): CAB International. p.223-233.
  • 28. Bregendahl, K., Roberts, S. A., Kerr, B., Hoehler, D., 2008. Ideal ratios of isoleucine, methionine, methionine plus cystine, threonine, tryptophan, and valine relative to lysine for white leghorn-type laying hens of twenty-eight to thirty-four weeks of age. Poultry Science, 87(4), 744-758.
  • 29. Sakomura, N. K., Reis, M. D. P., Ferreira, N. T.,Gous, R. M., 2019. Modeling egg production as a means of optimizing dietary nutrient contents for laying hens. Animal Frontiers, 9(2), 45-51.
  • 30. Qu, L., Shen, M., Guo, J., Wang, X., Dou, T., Hu, Y., Li, Y., Ma, M., Wang, K., Liu, H., 2019. Identification of potential genomic regions and candidate genes for egg albumen quality by a genome-wide association study, Arch. Anim. Breed., 62, 113-123, https://doi.org/10.5194/aab-62-113-2019.
  • 31. Star, L., Juul-Madsen, H.R., Decuypere, E., Nieuwland, M.G., de Vries Reilingh, G., van den Brand, H., Kemp, B., Parmentier, H.K., 2009. Effect of early life thermal conditioning and immune challenge on thermotolerance and humoral immune competence in adult laying hens. Poult. Sci. 88, 2253–2261.
  • 32. Ebeid, T.A., Suzuki, T., Sugiyama, T., 2012. High temperature influences eggshell quality and calbindin-D28k localization of eggshell gland and all intestinal segments of laying hens. Poult. Sci. 91, 2282–2287.
  • 33. Lara, L., Rostagno, M., 2013. Impact of heat stress on poultry production. Animals, 3(2), 356-369.
  • 34. Mack, L.A.; Felver-Gant, J.N.; Dennis, R.L.; Cheng, H.W., 2013. Genetic variation alter production and behavioral responses following heat stress in 2 strains of laying hens. Poult. Sci. 92, 285–294.
  • 35. Lewis, P.D., Morris, T.R., 2006. Poultry lighting: The theory and practice. Hampshire (UK). Northcot.
  • 36. Yuri, F. M., Souza, C. D., Schneider, A. F., Gewehr, C. E., 2016. Intermittent lighting programs for layers with different photophases in the beginning of the laying phase. Ciência Rural, 46(11), 2012-2017.
  • 37. Wan, Y., Jin, S., Ma, C., Wang, Z., Fang, Q., Jiang, R., 2019. Effect of strain and age on the thick-to-thin albumen ratio and egg composition traits in layer hens. Animal Production Science, 59(3), 416-419.
  • 38. International Chicken Genome Sequencing Consortium, 2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432: 695–716.
  • 39. Liu, Z., Sun, C., Yan, Y., Li, G., Wu, G., Liu, A., Yang, N., 2018. Genome-wide association analysis of age-dependent egg weights in chickens. Frontiers in Genetics, 9, 128.
  • 40. Tuiskula-Haavisto, M., Honkatukia, M., Vilkki, J., de Koning, D.J., Schulman, N.F., Mäki-Tanila, A., 2002. Mapping of quantitative trait loci affecting quality and production traits in egg layers. Poult. Sci. 81: 919-927. http://dx.doi.org/10.1093/ps/81.7.919.
  • 41. Fan, Q. C., Wu, P. F., Dai, G. J., Zhang, G. X., Zhang, T., Xue, Q., Shi, H.Q., Wang, J. Y., 2017. Identification of 19 loci for reproductive traits in a local Chinese chicken by genome-wide study. Genet Mol Res, 16(1).
  • 42. Lee, S. H., DeCandia, T. R., Ripke, S.,Yang, J., 2012. Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nat. Genet. 44, 247–250. doi: 10.1038/ng.1108.
  • 43. Zhou, X., Stephens, M., 2012. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44, 821–824. doi: 10.1038/ ng.2310.
  • 44. Sun, C., Lu, J., Yi, G., Yuan, J., Duan, Z., Qu, L., Xu, G., Wang, K., Yang, N,. 2015. Promising loci and genes for yolk and ovary weight in chickens revealed by a genome-wide association study. PLoS ONE 10:e0137145. doi: 10.1371/journal.pone.0137145.
  • 45. Andersen, D. C., Jensen, C. H., Schneider, M., Nossent, A. Y., Eskildsen, T., Hansen, J. L., Teisner, B., Sheikh, S.P., 2010. MicroRNA-15a fine-tunes the level of Delta-like 1 homolog (DLK1) in proliferating 3T3-L1 preadipocytes. Exp. Cell Res. 316, 1681–1691. doi: 10.1016/j.yexcr.2010.04.002.
  • 46. Sun, L. L., Jiang, B. G., Li, W. T., Zou, J. J., Shi, Y. Q., Liu, Z. M., 2011. MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Res. Clin. Pract. 91, 94–100. doi: 10.1016/j.diabres.2010.11.006.
  • 47. Yuan, Y., Kasar, S., Underbayev, C., Vollenweider, D., Salerno, E., Kotenko, S. V., Raveche, E., 2012. Role of microRNA-15a in autoantibody production in interferon-augmented murine model of lupus. Mol. Immunol. 52, 61–70. doi: 10.1016/j.molimm.2012.04.007.
  • 48. Spinetti, G., Fortunato, O., Caporali, A., Shantikumar, S., Marchetti, M., Meloni, M., Descamps, B., Floris, I., Sangalli, E., Vono, R., Faglia, E., Specchia, C., Pintus, G., Madeddu, P., Emanueli, C., 2013. MicroRNA-15a and microRNA-16 impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia. Circ. Res. 112, 335–346. doi: 10.1161/CIRCRESAHA.111.300418.
  • 49. Hao, R., Hu, X., Wu, C., Li, N., 2014. Hypoxia-induced miR-15a promotes mesenchymal ablation and adaptation to hypoxia during lung development in chicken. PLoS ONE 9:e98868. doi: 10.1371/journal.pone.0098868.
  • 50. Yuan, J., Chen, S., Shi, F., Wu, G., Liu, A., Yang, N., Sun, C., 2017. Genome-wide association study reveals putative role of gga-miR-15a in controlling feed conversion ratio in layer chickens. BMC Genomics 18:699. doi: 10.1186/s12864-017-4092-9.
  • 51. Kim, D. H., Sarbassov, D. D., Ali, S. M., King, J. E., Latek, R. R., Erdjument- Bromage, H., Tempst, P., Sabatini, D.M., 2002. mTOR interacts with raptor to form a nutrientsensitive complex that signals to the cell growth machinery. Cell 110, 163–175. doi: 10.1016/S0092-8674(02)00808-5.
  • 52. Footz, T. K., Brinkman-Mills, P., Banting, G. S., Maier, S. A., Riazi, M. A., Bridgland, L., Song, Hu, S., Birren, B., Minoshima,S., Shimizu, N., Pan, H., Nguyen, T., Fang, F., Fu, Y., Ray, L., Wu, H., Shaull, S., Phan, S., Yao, Z., Chen, F., Huan, A., Hu, P., Wang, Q., Loh, P., Qi, S., Roe, B. R., McDermid, H. E.,, 2002. Analysis of the cat eye syndrome critical region in humans and the region of conserved synteny in mice: a search for candidate genes at or near the human chromosome 22 pericentromere. Genome Res. 12, 47–56. doi: 10.1101/gr.154901.
  • 53. Banting, G. S., Barak, O., Ames, T. M., Burnham, A. C., Kardel, M. D., Cooch, N. S., Davidson, C.E., Godbout, R., McDermid, H. E., Shiekhattar, R., 2005. CECR2, a protein involved in neurulation, forms a novel chromatin remodeling complex with SNF2L. Hum. Mol. Genet. 14, 513–524. doi: 10.1093/hmg/ddi048.
  • 54. Chen, J., Morosan-Puopolo, G., Dai, F., Wang, J., Brand-Saberi, B., 2010. Molecular cloning of chicken Cecr2 and its expression during chicken embryo development. Int. J. Dev. Biol. 54, 925–929. doi: 10.1387/ijdb.092933jc.
  • 55. Sánchez-Guardado, L.Ó., Ferran, J. L., Rodríguez-Gallardo, L., Puelles, L., Hidalgo-Sánchez, M., 2011. Meis gene expression patterns in the developing chicken inner ear. J. Comp. Neurol. 519, 125–147. doi: 10.1002/cne.22508.
  • 56. Bessa, J., Tavares, M. J., Santos, J., Kikuta, H., Laplante, M., Becker, T. S., Gomez-Skarmeta, J. L., Casares F., 2008. Meis1 regulates cyclin D1 and c-myc expression, and controls the proliferation of the multipotent cells in the early developing zebrafish eye. Development 135, 799–803. doi: 10.1242/dev.011932.
  • 57. Heine, P., Dohle, E., Bumsted-O’Brien, K., Engelkamp, D., and Schulte, D., 2008. Evidence for an evolutionary conserved role of homothorax/Meis1/2 during vertebrate retina development. Development 135, 805–811. doi: 10.1242/dev.012088.
  • 58. Sanchez-Guardado, L.O, Irimia, M., Sanchez-Arrones, L., Burguera, D., Rodriguez-Gallardo, L., Garcia-Fernandez, J., Puelles, L., Ferran, J. L., Hidalgo-Sanchez, M., 2011. Distinct and redundant expression and transcriptional diversity of MEIS gene paralogs during chicken development. Dev. Dyn. 240, 1475–1492.doi: 10.1002/dvdy.22621.
  • 59. Bundschu, K., Walter, U., and Schuh, K., 2007. Getting a first clue about SPRED functions. Bioessays 29, 897–907. doi: 10.1002/bies.20632.
  • 60. Kato, R., Nonami, A., Taketomi, T., Wakioka, T., Kuroiwa, A., Matsuda, Y., Yoshimura, A., 2003. Molecular cloning of mammalian Spred-3 which suppresses tyrosine kinase-mediated Erk activation. Biochem. Biophys. Res. Comm. 302, 767–772. doi: 10.1016/S0006-291X(03)00259-6.
  • 61. Ma, X. N., Liu, X. Y., Yang, Y. F., Xiao, F. J., Li, Q. F., Yan, J., Zhang, Q. W., Wang, L. S., Li, X. Y., Wang, H., 2011. Regulation of human hepatocellular carcinoma cells by Spred2 and correlative studies on its mechanism. Biochem. Biophys. Res. Commun. 410, 803–808. doi: 10.1016/j.bbrc.2011.06.068.
  • 62. Düzgüneş O., Eliçin A., Akman N., 2012. Hayvan Islahı. (5. Baskı) A.Ü. Ziraat Fakültesi Yayınları: 1212/349.
  • 63. Wolc, A., Arango, J., Jankowski, T., Dunn, I., Settar, P., Fulton, J. E., O'Sullivan, N. P., Preisinger, R., Fernando, R. L., Garrick, D. J., Dekkers, J. C., 2014. Genome-wide association study for egg production and quality in layer chickens. J. Anim. Breed. Genet. 131, 173–182. doi: 10.1111/jbg.12086.
  • 64. Göger, H., Erkuş, T., 2000. Tavuk ıslahında biyoteknoloji.Tavukçuluk Araştırma Dergisi, 2 (2), 55-61.
  • 65. Zhang, S., Meng, L., Wang, J., and Zhang, L., 2017. Background controlled QTL mapping in pure-line genetic populations derived from four-way crosses. Heredity 119, 256–264. doi: 10.1038/hdy.2017.42.
  • 66. Alipanah, M., Deljo, J., Rokouie, M., Mohammadnia, R., 2013. Heritabilities and genetic and phenotypic correaltions of egg quality traits in KHAZAK layers. Trakia J. Sci. 175–180.
  • 67. Lu, D., Sargolzaei, M., Kelly, M., Li, C., Vander Voort, G., Wang, Z., Plastow, G., Moore, S., Miller, S. P., 2012. Linkage disequilibrium in angus, charolais, and crossbred beef cattle. Front. Genet. 3:152. doi: 10.3389/fgene.2012.00152.
  • 68. Fu, W., Dekkers, J. C., Lee, W. R., and Abasht, B., 2015. Linkage disequilibrium in crossbred and pure line chickens. Genet. Sel. Evol. 47:11. doi: 10.1186/s12711-015-0098-4.
  • 69. Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., McCarthy, M. I., Ramos, E. M., Cardon, L. R., Chakravarti, A., Cho, J. H., Guttmacher, A. E., Kong, A., Kruglyak, L., Mardis, E., Rotimi, C. N., Slatkin, M., Valle, D., Whittemore, A. S., Boehnke, M., Clark, A. G., Eichler, E. E., Gibson, G., Haines, J. L., Mackay, T. F., McCarroll, S. A., Visscher, P. M., 2009. Finding the missing heritability of complex diseases. Nature 461, 747–753. doi: 10.1038/nature08494.
There are 69 citations in total.

Details

Primary Language Turkish
Subjects Zootechny (Other)
Journal Section Collection
Authors

Hüseyin Göger

Publication Date December 31, 2019
Published in Issue Year 2019 Volume: 16 Issue: 2

Cite

APA Göger, H. (2019). Yumurta Ağırlığını Etkileyen Faktörler. Journal of Poultry Research, 16(2), 39-47. https://doi.org/10.34233/jpr.595162
AMA Göger H. Yumurta Ağırlığını Etkileyen Faktörler. JPR. December 2019;16(2):39-47. doi:10.34233/jpr.595162
Chicago Göger, Hüseyin. “Yumurta Ağırlığını Etkileyen Faktörler”. Journal of Poultry Research 16, no. 2 (December 2019): 39-47. https://doi.org/10.34233/jpr.595162.
EndNote Göger H (December 1, 2019) Yumurta Ağırlığını Etkileyen Faktörler. Journal of Poultry Research 16 2 39–47.
IEEE H. Göger, “Yumurta Ağırlığını Etkileyen Faktörler”, JPR, vol. 16, no. 2, pp. 39–47, 2019, doi: 10.34233/jpr.595162.
ISNAD Göger, Hüseyin. “Yumurta Ağırlığını Etkileyen Faktörler”. Journal of Poultry Research 16/2 (December 2019), 39-47. https://doi.org/10.34233/jpr.595162.
JAMA Göger H. Yumurta Ağırlığını Etkileyen Faktörler. JPR. 2019;16:39–47.
MLA Göger, Hüseyin. “Yumurta Ağırlığını Etkileyen Faktörler”. Journal of Poultry Research, vol. 16, no. 2, 2019, pp. 39-47, doi:10.34233/jpr.595162.
Vancouver Göger H. Yumurta Ağırlığını Etkileyen Faktörler. JPR. 2019;16(2):39-47.

204x63 Creative Commons License
This work is licensed under Creative Commons Attribution 4.0 International License 
Print ISSN:1302-3209 - Online ISSN:2147-9003

Journal of Poultry Research is indexed by the following national and international scientific indexing services

14964166171665216684166851668616687


166881668916692


1669016691