Research Article
BibTex RIS Cite

Ileal Villi Morphological Characteristics of Cobb 500 Broilers Fed Phytase and Tannase Treated Sorghum Based Diets

Year 2023, Volume: 20 Issue: 1, 32 - 41, 23.06.2023
https://doi.org/10.34233/jpr.1317771

Abstract

The effects of phytase and tannase enzyme treatment of sorghum-based broiler diets on ileal villi characteristics were evaluated in Cobb 500 broilers. A total of three sorghum levels, 0, 50, and 100%, with 4 enzyme levels; 0, 5% phytase, 5% tannase and 5% phytase+tannase combination were used to develop 12 different dietary treatments. Three hundred and sixty broilers were randomly allocated to the 12 dietary treatments in a completely randomized design experiment. On day 42, two birds from each replicate were randomly selected and slaughtered for ileal villi morphometry analyses. A 2cm tissue sample of the ileum was cut and prepared for histological analyses. Villus height and width, muscularis externa thickness, and crypt depth were measured on a light microscope using a calibrated eyepiece graticule. The total villi surface area was calculated, which indicates the digestive and absorptive capacity of the ileum. The General Linear Models (GLM) procedure of the Statistical Analysis System ver 9.4 (SAS Institute Inc., 2011) was used to analyse the data. All tests were performed at p < 0.05 significance. Villus height, width, and muscularis externa thickness significantly increased with increasing levels of sorghum in the diet (p<0.001). Birds fed complete sorghum diets supplemented with phytase enzyme had the longest villi (p<0.001). The 0% and 100% sorghum levels exhibited comparable crypt depth. Treatment significantly affected the apparent villi surface area (p<0.0001). The apparent villi surface area increased with increasing sorghum inclusion. Birds fed a complete sorghum diet supplemented with phytase had the highest villi surface area (15.48±0.241 mm). It can be concluded that phytase and tannase can be added to complete sorghum broiler diets without compromising ileal villi integrity. Hence, we recommend the addition of phytase and tannase in sorghum-based broiler diets to counteract the effects of sorghum antinutrients.

Supporting Institution

This work was funded by the Ministry of Higher and Tertiary Education Innovation Science and Technology Development through the University of Zimbabwe Vice Chancellor Research Fund. The University of Zimbabwe’s Vice Chancellor Prof. P. Mapfumo played a role in the sourcing of funds.

Thanks

The authors would like to express their sincere gratitude to Dr. A. Nhamo, Dr. E. Nyakudya, and Prof F. Mutambanengwe and Prof. P. Mapfumo for their unwavering support toward the success of this work.

References

  • Ali, A. E. E., Husselmann, L. H., Tabb, D. L., & Ludidi, N. (2023). Comparative Proteomics Analysis between Maize and Sorghum Uncovers Important Proteins and Metabolic Pathways Mediating Drought Tolerance. Life, 13, 170.
  • Amelework, B., Shimelis, H., Tongoona, P., & Laing, M. (2017). Physiological mechanisms of drought tolerance in sorghum, genetic basis and breeding methods: A review. African Journal of Agricultural Research, 10, 3029-3040.
  • Amerah, A. M., Plumstead, P. W., Barnard, L.P., & Kumar, A. (2014). Effect of calcium level and phytase addition on ileal phytate degradation and amino acid digestibility of broilers fed maize-based diets. Poultry Science, 93, 906–915.
  • Amponsah, S. K., Otoo, D., Kwaku, P. E., & Ampofo, S. D. (2015). Modelling the feed mix for poultry production, the case of Adama Musa farms, in Ghana. International Journal of Applied Mathematical Research, 4, 404.
  • AOAC (Association of Analytical Chemists). (1995). Official methods of analysis. 16th Ed. Association of official analytical chemists. Washington DC, USA.
  • Avila, D., Nino, A., Parra, A, Tarazona, J., Rodriguez, P., &Torres, G. (2009). Description morfometrica de Las vellosidades intestinales en bovine. Cultural cientifica, 7, 57-60.
  • Barbut, S., & Leishman, E. M. (2022). Quality and Processability of Modern Poultry Meat. Animals, 12, 2766.
  • Brudnicki, A., Brudnicki, W., Szymeczko, R., Bednarczyk, M., Pietruszynska, D., & Kirkillo Stacewicz K. (2017). Histo-morphometric adaptation in the small intestine of broiler chicken, after embryonic exposure to A Galactosides. Journal of Animal and Plant Science, 27(4), 1075–1082.
  • Brus, M., Gradišnik, L., Trapecar, M., Škorjanc, D., & Frange, Ž. R. (2018). Beneficial effects of water-soluble chestnut (Castanea sativa Mill) tannin extract on chicken small intestinal epithelial cell culture. Poultry Science, 97, 1271–82.
  • Buyse, K., Noten, N. V., Delezie, E., Goethals, L., Janssens, G. P. J., & Lourenço, M. (2022). Chestnut tannins in broiler diets: Affecting intestinal development in different feeding phases. Frontiers in Veterinary Science, 9, 996524.
  • Challinor, A. J., Watson, J., Lobell, D. B., Howden, S. M., Smith, D. R., & Chhetri N. (2014). A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change, 4, 287–291.
  • Choi, J., & Kim, W. K. (2020). Dietary application of tannins as a potential mitigation strategy for current challenges in poultry production: A review. Animals, 10, 2389.
  • Choct, M. (2009). Managing gut health through nutrition. British Poultry Science, 50, 9-15.
  • De Verdal, H., Nancy, A., Bastianelli, D., Charles, H., Meme, N., Urvoix, S., Le Bihan-Duval, E., & Migonon-Grasteau, S. (2011). Improving the efficiency of feed utilization in poultry by selection. Genetic parameters of anatomy of the gastro-intestinal tract and digestive efficiency. BMC Genetics, 12, 59.
  • Drozdowski, L. A., Clandon, T., & Thompson, A. B. R. (2010). Oncogene, growth and development of the small intestine: Understanding pediatric gastroenterology. World Journal of Gastroenterology, 16, 787-799.
  • Farrell, D. (2022). The role of poultry in human nutrition: The nutritional benefits of chicken meat compared with other meats. Food and Agriculture Organization. https://www.fao.org/3/al714e/al714e.pdf. Accessed on March 21. 2023.
  • Hamedi, S., Rezaian, M., & Shomali, T. (2011). Histological changes of small intestinal mucosa of cocks due to sunflower meal single feeding. American Journal of Animal and Veterinary Science, 6, 171-175.
  • Incharoen, T., Yamauchi, K., Erikawa, T., & Gotoh, H. (2010). Histology of intestinal villi and epithelial cells in chickens fed low-crude protein or low crude fat diets. Italian Journal of Animal Science, 9, 82.
  • Itza-Ortiz, M., Seguru-Correa, J., Parra-Suescun, J., Aguilar-Urquizo, E., & Escobar-Gordillo, N. (2019). Correlation between body weight and intestinal villi morphology in finishing pigs. Acta Universitaria, 29.
  • Iwashita, J., Yukita, S., Hiroko, S., Nagatomo, T., Hiroshi, S., &Tatsuya, A. (2003). mRNA of MUC2 is stimulated by IL-4, IL-13 or TNF-alpha through a mitogen- activated protein kinase pathway in human cancer cells. Immunology and Cell Biology, 81, 275-282.
  • Jamroz, D., Wiliczkiewicz, A., Skorupińska, J., Orda, J., Kuryszko, J., & Tschirch, H. (2009). Effect of sweet chestnut tannin (SCT) on the performance, microbial status of intestine and histological characteristics of intestine wall in chickens. British Poultry Science Journal, 50, 687–99.
  • Jayaraman, S., Thangavel, G., Kurian, H., Mani, R., Mukkalil, R., & Chiraķkal, H. (2013). Bacillus subtilis PB6 improves intestinal health of broiler chickens challenged with Clostridium perfiringens-induced necrotic enteritis. Poultry Science, 92, 370 374.
  • Karami, M., Karimi, A., Zentel, J., & Boroojeni, F. G. (2020). Evaluation of interactive effects of phytase and benzoic acid supplementation on performance, digestibility, tibia mineralisation, gut morphology and serum traits in male broiler chickens. Italian Journal of Animal Science, 19, 1428-1438.
  • Kogut, M. H., &Arsenault, R. J. (2016). Gut health: The new paradigm in food animal production. Frontiers in Veterinary Science, 31, 71.
  • Kunisawa, J., & Kiyono, H. (2013). Vitamin-mediated regulation of intestinal immunity. Frontiers in Immunology, 4, 189.
  • Manyelo, T. G., Ng’ambi, J. W., Norris, D., & Mabelebele, M. (2019). Substitution of Zea mays by Sorghum bicolor on Performance and Gut histo-morphology of Ross 308 broiler chickens aged 1-42d. Journal of Applied Poultry Research, 28, 647-657.
  • Mavhura, E., Manyangadze, T., & Aryl, K. R. (2021). Perceived impacts of climate variability and change: an exploration of farmers’ adaptation strategies in Zimbabwe’s intensive farming regions. Geo Journal, 87, 3669-3684.
  • Moita, V. H. C., Duarte, M. E., & Kim, S. W. (2011). Supplemental effects of phytase on modulation of mucosa-associated microbiota in the jejunum and the impacts on nutrient digestibility, intestinal morphology, and bone parameters in broiler chickens. Animals, 11, 3351.
  • Mutibvu, T. (2016). Behaviour, physiological responses, meat yield and gut morphology of free-range chickens raised in hot environment. PhD Thesis, University of KwaZulu Natal, South Africa.
  • Nain, S., Renema, R. A., Zuidhof, M. J., & Korver, D. R. (2012). Effect of metabolic efficiency and intestinal morphology on variability in n-3 polyunsaturated fatty acid enrichment of eggs. Poultry Science, 91, 888–898.
  • Ncube, S., Halimani, T. E., Mwale, M., & Saidi, P. T. (2017). Effect of Acacia angustissima Leaf Meal on the Physiology of Broiler Intestines. Journal of Agricultural Science, 9, 53.
  • NRC (National Research Council). (1994). Nutrient requirements of broilers. 9th Rev. Ed. National Academy Press. Washington D. C., USA
  • Ntuli, V., & Oladele, O. I. (2013). Analysis of constraints faced by small scale broiler farmers in Capricon District in Limpopo province. Life Sciences Journal, 10, 3990-3996.
  • Nyamambi, B., Ndlovu, L. R., Naik, Y. S., & Kock, N. D. (2007). Intestinal growth and function of broiler chicks fed sorghum-based diets differing in condensed tannins levels. South African Journal of Animal Science, 37, 202-213.
  • OECD. (2021). https://data.oecd.org/. Accessed March 20. 2023.
  • Paiva, D., Walk, C., & Melrose, A. (2014). Dietary calcium, phosphorus and phytase effects on bird performance, intestinal morphology, mineral digestibility and bone ash during a natural necrotic enteritis episode. Poultry Science, 93, 2752-2762. Pekel, A. Y., Horn, N. L., & Adeola, O. (2017). The efficacy of dietary xylanase and phytase in broiler chickens fed expeller-extracted camelina meal. Poultry Science, 96, 98–107.
  • Pratik, D. T., Prakash, D. T., & Chandrashekhar, K. C. (2016). Quantitative estimation of tannins from Pueraria the berosa by UV spectrophotometry. International Journal of Pharmaceutical Sciences Review and Research, 37, 210-212.
  • Ptak, A., Bedford, M. R., Swiatkiewicz, S., Zyła, K., & Józefiak, D. (2015). Phytase modulates ileal microbiota and enhances growth performance of the broiler chickens. PLoS ONE, 10, 770.
  • Rahman, I. E. A., & Osman, M. A. W. (2011). Effect of sorghum type (Sorghum bicolor) and traditional fermentation on tannins and phytic acid contents and trypsin inhibitor activity. Journal of Food Agriculture and Environment, 9, 163-166.
  • Statistical Analysis System (SAS). (2011). Statistical Analysis System User's guide version 9.2. SAS Institute Inc, North Carolina, USA.
  • Selle, P. H., Macelline, S. P., Chrystal, P. V., & Liu, S. Y. (2023). The Contribution of Phytate Degrading Enzymes to Chicken-Meat Production. Animals, 13, 603.
  • Silva, M. C. A., Caroline, A. C. X. G., Litz, F. H., Fagundes, N. S., Fernandes E de, A., & Mendonca, G. A. (2015). Effects of sorghum on broilers gastrointestinal tract. Brazilian Journal of Poultry Science, 17, 95-102.
  • Torres, K. A. A., Pizauro, J. M., Soares, C. P., Silva, T. G. A., Nogueira, W. C. L., Campos, D. M. B., Furlan, R. L., & Macari, M. (2013). Effects of maize replacement by sorghum in broiler diets on performance and intestinal mucosa integrity. Poultry Science, 92, 1564-1571.
  • Tosi, G., Massi, P., Antongiovanni, M., Buccioni, A., Minieri, S., & Marenchino, L. (2013). Efficacy test of a hydrolysable tannin extract against necrotic enteritis in challenged broiler chickens. Italian Journal of Animal Science, 12, 62.
  • Widiyono, W., Nugrohob, S., Sudianaa, M., & Sulistyowatia, D. D. (2021). Water stress and water requirement of sorghum: case study of dry areas in east nusa tenggara province. The 5th SATREPS Conference, 72-78.
  • Wijtten, P. G. A., Langhout, D. J. & Verstegen, W. A. (2012). Small intestine development in chicks after hatch and in pigs around time of weaning in relation with nutrition: Aa review. Acta Agricultural Scandavian Sect. A Animal Science, 62, 1-12.
  • Xu, H., Fu, J., Luo, Y., Li, P., Song, B., Lv, Z., & Guo, Y. (2023). Effects of tannic acid on the immunity and intestinal health of broiler chickens with Clostridium perfringens induced necrotic enteritis. Journal of Animal Science and and Biotechnology, 14.
Year 2023, Volume: 20 Issue: 1, 32 - 41, 23.06.2023
https://doi.org/10.34233/jpr.1317771

Abstract

References

  • Ali, A. E. E., Husselmann, L. H., Tabb, D. L., & Ludidi, N. (2023). Comparative Proteomics Analysis between Maize and Sorghum Uncovers Important Proteins and Metabolic Pathways Mediating Drought Tolerance. Life, 13, 170.
  • Amelework, B., Shimelis, H., Tongoona, P., & Laing, M. (2017). Physiological mechanisms of drought tolerance in sorghum, genetic basis and breeding methods: A review. African Journal of Agricultural Research, 10, 3029-3040.
  • Amerah, A. M., Plumstead, P. W., Barnard, L.P., & Kumar, A. (2014). Effect of calcium level and phytase addition on ileal phytate degradation and amino acid digestibility of broilers fed maize-based diets. Poultry Science, 93, 906–915.
  • Amponsah, S. K., Otoo, D., Kwaku, P. E., & Ampofo, S. D. (2015). Modelling the feed mix for poultry production, the case of Adama Musa farms, in Ghana. International Journal of Applied Mathematical Research, 4, 404.
  • AOAC (Association of Analytical Chemists). (1995). Official methods of analysis. 16th Ed. Association of official analytical chemists. Washington DC, USA.
  • Avila, D., Nino, A., Parra, A, Tarazona, J., Rodriguez, P., &Torres, G. (2009). Description morfometrica de Las vellosidades intestinales en bovine. Cultural cientifica, 7, 57-60.
  • Barbut, S., & Leishman, E. M. (2022). Quality and Processability of Modern Poultry Meat. Animals, 12, 2766.
  • Brudnicki, A., Brudnicki, W., Szymeczko, R., Bednarczyk, M., Pietruszynska, D., & Kirkillo Stacewicz K. (2017). Histo-morphometric adaptation in the small intestine of broiler chicken, after embryonic exposure to A Galactosides. Journal of Animal and Plant Science, 27(4), 1075–1082.
  • Brus, M., Gradišnik, L., Trapecar, M., Škorjanc, D., & Frange, Ž. R. (2018). Beneficial effects of water-soluble chestnut (Castanea sativa Mill) tannin extract on chicken small intestinal epithelial cell culture. Poultry Science, 97, 1271–82.
  • Buyse, K., Noten, N. V., Delezie, E., Goethals, L., Janssens, G. P. J., & Lourenço, M. (2022). Chestnut tannins in broiler diets: Affecting intestinal development in different feeding phases. Frontiers in Veterinary Science, 9, 996524.
  • Challinor, A. J., Watson, J., Lobell, D. B., Howden, S. M., Smith, D. R., & Chhetri N. (2014). A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change, 4, 287–291.
  • Choi, J., & Kim, W. K. (2020). Dietary application of tannins as a potential mitigation strategy for current challenges in poultry production: A review. Animals, 10, 2389.
  • Choct, M. (2009). Managing gut health through nutrition. British Poultry Science, 50, 9-15.
  • De Verdal, H., Nancy, A., Bastianelli, D., Charles, H., Meme, N., Urvoix, S., Le Bihan-Duval, E., & Migonon-Grasteau, S. (2011). Improving the efficiency of feed utilization in poultry by selection. Genetic parameters of anatomy of the gastro-intestinal tract and digestive efficiency. BMC Genetics, 12, 59.
  • Drozdowski, L. A., Clandon, T., & Thompson, A. B. R. (2010). Oncogene, growth and development of the small intestine: Understanding pediatric gastroenterology. World Journal of Gastroenterology, 16, 787-799.
  • Farrell, D. (2022). The role of poultry in human nutrition: The nutritional benefits of chicken meat compared with other meats. Food and Agriculture Organization. https://www.fao.org/3/al714e/al714e.pdf. Accessed on March 21. 2023.
  • Hamedi, S., Rezaian, M., & Shomali, T. (2011). Histological changes of small intestinal mucosa of cocks due to sunflower meal single feeding. American Journal of Animal and Veterinary Science, 6, 171-175.
  • Incharoen, T., Yamauchi, K., Erikawa, T., & Gotoh, H. (2010). Histology of intestinal villi and epithelial cells in chickens fed low-crude protein or low crude fat diets. Italian Journal of Animal Science, 9, 82.
  • Itza-Ortiz, M., Seguru-Correa, J., Parra-Suescun, J., Aguilar-Urquizo, E., & Escobar-Gordillo, N. (2019). Correlation between body weight and intestinal villi morphology in finishing pigs. Acta Universitaria, 29.
  • Iwashita, J., Yukita, S., Hiroko, S., Nagatomo, T., Hiroshi, S., &Tatsuya, A. (2003). mRNA of MUC2 is stimulated by IL-4, IL-13 or TNF-alpha through a mitogen- activated protein kinase pathway in human cancer cells. Immunology and Cell Biology, 81, 275-282.
  • Jamroz, D., Wiliczkiewicz, A., Skorupińska, J., Orda, J., Kuryszko, J., & Tschirch, H. (2009). Effect of sweet chestnut tannin (SCT) on the performance, microbial status of intestine and histological characteristics of intestine wall in chickens. British Poultry Science Journal, 50, 687–99.
  • Jayaraman, S., Thangavel, G., Kurian, H., Mani, R., Mukkalil, R., & Chiraķkal, H. (2013). Bacillus subtilis PB6 improves intestinal health of broiler chickens challenged with Clostridium perfiringens-induced necrotic enteritis. Poultry Science, 92, 370 374.
  • Karami, M., Karimi, A., Zentel, J., & Boroojeni, F. G. (2020). Evaluation of interactive effects of phytase and benzoic acid supplementation on performance, digestibility, tibia mineralisation, gut morphology and serum traits in male broiler chickens. Italian Journal of Animal Science, 19, 1428-1438.
  • Kogut, M. H., &Arsenault, R. J. (2016). Gut health: The new paradigm in food animal production. Frontiers in Veterinary Science, 31, 71.
  • Kunisawa, J., & Kiyono, H. (2013). Vitamin-mediated regulation of intestinal immunity. Frontiers in Immunology, 4, 189.
  • Manyelo, T. G., Ng’ambi, J. W., Norris, D., & Mabelebele, M. (2019). Substitution of Zea mays by Sorghum bicolor on Performance and Gut histo-morphology of Ross 308 broiler chickens aged 1-42d. Journal of Applied Poultry Research, 28, 647-657.
  • Mavhura, E., Manyangadze, T., & Aryl, K. R. (2021). Perceived impacts of climate variability and change: an exploration of farmers’ adaptation strategies in Zimbabwe’s intensive farming regions. Geo Journal, 87, 3669-3684.
  • Moita, V. H. C., Duarte, M. E., & Kim, S. W. (2011). Supplemental effects of phytase on modulation of mucosa-associated microbiota in the jejunum and the impacts on nutrient digestibility, intestinal morphology, and bone parameters in broiler chickens. Animals, 11, 3351.
  • Mutibvu, T. (2016). Behaviour, physiological responses, meat yield and gut morphology of free-range chickens raised in hot environment. PhD Thesis, University of KwaZulu Natal, South Africa.
  • Nain, S., Renema, R. A., Zuidhof, M. J., & Korver, D. R. (2012). Effect of metabolic efficiency and intestinal morphology on variability in n-3 polyunsaturated fatty acid enrichment of eggs. Poultry Science, 91, 888–898.
  • Ncube, S., Halimani, T. E., Mwale, M., & Saidi, P. T. (2017). Effect of Acacia angustissima Leaf Meal on the Physiology of Broiler Intestines. Journal of Agricultural Science, 9, 53.
  • NRC (National Research Council). (1994). Nutrient requirements of broilers. 9th Rev. Ed. National Academy Press. Washington D. C., USA
  • Ntuli, V., & Oladele, O. I. (2013). Analysis of constraints faced by small scale broiler farmers in Capricon District in Limpopo province. Life Sciences Journal, 10, 3990-3996.
  • Nyamambi, B., Ndlovu, L. R., Naik, Y. S., & Kock, N. D. (2007). Intestinal growth and function of broiler chicks fed sorghum-based diets differing in condensed tannins levels. South African Journal of Animal Science, 37, 202-213.
  • OECD. (2021). https://data.oecd.org/. Accessed March 20. 2023.
  • Paiva, D., Walk, C., & Melrose, A. (2014). Dietary calcium, phosphorus and phytase effects on bird performance, intestinal morphology, mineral digestibility and bone ash during a natural necrotic enteritis episode. Poultry Science, 93, 2752-2762. Pekel, A. Y., Horn, N. L., & Adeola, O. (2017). The efficacy of dietary xylanase and phytase in broiler chickens fed expeller-extracted camelina meal. Poultry Science, 96, 98–107.
  • Pratik, D. T., Prakash, D. T., & Chandrashekhar, K. C. (2016). Quantitative estimation of tannins from Pueraria the berosa by UV spectrophotometry. International Journal of Pharmaceutical Sciences Review and Research, 37, 210-212.
  • Ptak, A., Bedford, M. R., Swiatkiewicz, S., Zyła, K., & Józefiak, D. (2015). Phytase modulates ileal microbiota and enhances growth performance of the broiler chickens. PLoS ONE, 10, 770.
  • Rahman, I. E. A., & Osman, M. A. W. (2011). Effect of sorghum type (Sorghum bicolor) and traditional fermentation on tannins and phytic acid contents and trypsin inhibitor activity. Journal of Food Agriculture and Environment, 9, 163-166.
  • Statistical Analysis System (SAS). (2011). Statistical Analysis System User's guide version 9.2. SAS Institute Inc, North Carolina, USA.
  • Selle, P. H., Macelline, S. P., Chrystal, P. V., & Liu, S. Y. (2023). The Contribution of Phytate Degrading Enzymes to Chicken-Meat Production. Animals, 13, 603.
  • Silva, M. C. A., Caroline, A. C. X. G., Litz, F. H., Fagundes, N. S., Fernandes E de, A., & Mendonca, G. A. (2015). Effects of sorghum on broilers gastrointestinal tract. Brazilian Journal of Poultry Science, 17, 95-102.
  • Torres, K. A. A., Pizauro, J. M., Soares, C. P., Silva, T. G. A., Nogueira, W. C. L., Campos, D. M. B., Furlan, R. L., & Macari, M. (2013). Effects of maize replacement by sorghum in broiler diets on performance and intestinal mucosa integrity. Poultry Science, 92, 1564-1571.
  • Tosi, G., Massi, P., Antongiovanni, M., Buccioni, A., Minieri, S., & Marenchino, L. (2013). Efficacy test of a hydrolysable tannin extract against necrotic enteritis in challenged broiler chickens. Italian Journal of Animal Science, 12, 62.
  • Widiyono, W., Nugrohob, S., Sudianaa, M., & Sulistyowatia, D. D. (2021). Water stress and water requirement of sorghum: case study of dry areas in east nusa tenggara province. The 5th SATREPS Conference, 72-78.
  • Wijtten, P. G. A., Langhout, D. J. & Verstegen, W. A. (2012). Small intestine development in chicks after hatch and in pigs around time of weaning in relation with nutrition: Aa review. Acta Agricultural Scandavian Sect. A Animal Science, 62, 1-12.
  • Xu, H., Fu, J., Luo, Y., Li, P., Song, B., Lv, Z., & Guo, Y. (2023). Effects of tannic acid on the immunity and intestinal health of broiler chickens with Clostridium perfringens induced necrotic enteritis. Journal of Animal Science and and Biotechnology, 14.
There are 47 citations in total.

Details

Primary Language English
Subjects Poultry Farming and Treatment
Journal Section Research Article
Authors

Rutendo Paidamoyo Magaya This is me 0000-0001-9194-7993

Tonderai Mutibvu This is me 0000-0002-7319-9167

Sharai Ncube This is me 0000-0002-2076-6359

Emmanuel T Nyahangare This is me 0000-0001-5957-5464

Paul Mapfumo This is me 0000-0001-5580-4135

Florence Mtambanengwe This is me 0000-0002-8250-9075

Elijah Nyakudya This is me 0000-0002-2846-4427

Ancilla Nhamo This is me 0009-0005-3531-8638

Publication Date June 23, 2023
Published in Issue Year 2023 Volume: 20 Issue: 1

Cite

APA Magaya, R. P., Mutibvu, T., Ncube, S., T Nyahangare, E., et al. (2023). Ileal Villi Morphological Characteristics of Cobb 500 Broilers Fed Phytase and Tannase Treated Sorghum Based Diets. Journal of Poultry Research, 20(1), 32-41. https://doi.org/10.34233/jpr.1317771
AMA Magaya RP, Mutibvu T, Ncube S, T Nyahangare E, Mapfumo P, Mtambanengwe F, Nyakudya E, Nhamo A. Ileal Villi Morphological Characteristics of Cobb 500 Broilers Fed Phytase and Tannase Treated Sorghum Based Diets. JPR. June 2023;20(1):32-41. doi:10.34233/jpr.1317771
Chicago Magaya, Rutendo Paidamoyo, Tonderai Mutibvu, Sharai Ncube, Emmanuel T Nyahangare, Paul Mapfumo, Florence Mtambanengwe, Elijah Nyakudya, and Ancilla Nhamo. “Ileal Villi Morphological Characteristics of Cobb 500 Broilers Fed Phytase and Tannase Treated Sorghum Based Diets”. Journal of Poultry Research 20, no. 1 (June 2023): 32-41. https://doi.org/10.34233/jpr.1317771.
EndNote Magaya RP, Mutibvu T, Ncube S, T Nyahangare E, Mapfumo P, Mtambanengwe F, Nyakudya E, Nhamo A (June 1, 2023) Ileal Villi Morphological Characteristics of Cobb 500 Broilers Fed Phytase and Tannase Treated Sorghum Based Diets. Journal of Poultry Research 20 1 32–41.
IEEE R. P. Magaya, “Ileal Villi Morphological Characteristics of Cobb 500 Broilers Fed Phytase and Tannase Treated Sorghum Based Diets”, JPR, vol. 20, no. 1, pp. 32–41, 2023, doi: 10.34233/jpr.1317771.
ISNAD Magaya, Rutendo Paidamoyo et al. “Ileal Villi Morphological Characteristics of Cobb 500 Broilers Fed Phytase and Tannase Treated Sorghum Based Diets”. Journal of Poultry Research 20/1 (June 2023), 32-41. https://doi.org/10.34233/jpr.1317771.
JAMA Magaya RP, Mutibvu T, Ncube S, T Nyahangare E, Mapfumo P, Mtambanengwe F, Nyakudya E, Nhamo A. Ileal Villi Morphological Characteristics of Cobb 500 Broilers Fed Phytase and Tannase Treated Sorghum Based Diets. JPR. 2023;20:32–41.
MLA Magaya, Rutendo Paidamoyo et al. “Ileal Villi Morphological Characteristics of Cobb 500 Broilers Fed Phytase and Tannase Treated Sorghum Based Diets”. Journal of Poultry Research, vol. 20, no. 1, 2023, pp. 32-41, doi:10.34233/jpr.1317771.
Vancouver Magaya RP, Mutibvu T, Ncube S, T Nyahangare E, Mapfumo P, Mtambanengwe F, Nyakudya E, Nhamo A. Ileal Villi Morphological Characteristics of Cobb 500 Broilers Fed Phytase and Tannase Treated Sorghum Based Diets. JPR. 2023;20(1):32-41.

204x63 Creative Commons License
This work is licensed under Creative Commons Attribution 4.0 International License 
Print ISSN:1302-3209 - Online ISSN:2147-9003

Journal of Poultry Research is indexed by the following national and international scientific indexing services

14964166171665216684166851668616687


166881668916692


1669016691