Research Article
BibTex RIS Cite

Akıllı Şebekelerde Yenilenebilir Enerji Kaynakları Uygulamaları

Year 2024, Volume: 2024 Issue: 21, 18 - 29, 01.01.2025

Abstract

Küresel enerjinin mevcut durumu göz önüne alındığında, iklim değişikliği, enerji güvenliği ve dünya genelinde ekonomilerin sürdürülebilir büyümesi gibi acil sorunlarla etkin bir şekilde mücadele edebilmek için yenilenebilir enerji kaynaklarına geçiş büyük önem taşımaktadır. Güneş, rüzgar, hidro ve biyoyakıt gibi yenilenebilir enerji kaynakları fosil yakıtlara karşı sürdürülebilir bir seçenek sunmaktadır. Sera gazı emisyonlarını büyük ölçüde azaltma ve bizi daha temiz ve daha esnek bir enerji geleceğine doğru götürme potansiyeline sahiptirler. Bununla birlikte, bu doğal olarak dalgalanan ve dağınık enerji kaynaklarının mevcut elektrik şebekelerine dahil edilmesi, çok yönlü bir dizi teknolojik, ekonomik ve düzenleyici engel ortaya çıkarmaktadır. Gelişmiş bilgi ve iletişim teknolojileriyle öne çıkan akıllı şebekeler, bu zorluklara devrim niteliğinde bir yanıt sunmaktadır. Anlık izleme ve kontrolü, talebe yanıt vermeyi ve dağıtık üretimi kolaylaştırarak elektrik sistemlerinin etkinliğini ve güvenilirliğini artırırlar. Akıllı şebekeler sadece farklı enerji kaynaklarını entegre etmenin ötesine geçme yeteneğine sahiptir. Yenilenebilir enerji kaynaklarının değişen ve öngörülemeyen doğasıyla başa çıkabilen, uyarlanabilir ve güçlü bir enerji altyapısı oluşturabilirler. Bu çalışma, akıllı şebekelerin temiz enerji kaynaklarının tüm yeteneklerini en üst düzeye çıkarmadaki temel işlevini araştırmaktadır. Yenilenebilir kaynakların değişkenliği, sağlam depolama çözümlerine duyulan ihtiyaç ve dağıtık bir üretim ortamını yönetmenin karmaşıklıkları da dahil olmak üzere, bunların entegrasyonuyla ilgili çok yönlü zorlukları araştırmaktadır. Ayrıca, teknolojik yeniliklerden, politika çerçevelerinden ve piyasa mekanizmalarından yararlanarak bu zorlukların üstesinden gelmek için stratejik yaklaşımların ana hatlarını çizmektedir. Makale ayrıca, yenilenebilir enerji kaynakları ile akıllı şebekeler arasındaki ortak yaşamı daha da geliştirmeyi vaat eden yeni trendleri ve teknolojileri vurgulayarak gelecekteki beklentilere yönelik bir vizyon ortaya koymaktadır. Bu çalışma, sürdürülebilir, verimli ve dirençli bir enerji geleceği yaratma söylemine katkıda bulunmayı amaçlamaktadır.

References

  • [1] Liutak O., Baula O., Kutsenko V., Ivantsov S. (2023). Energy transformation in the global paradigm of sustainable development. Actual Problems of Economics, pp. 69–76, DOI:10.32752/1993-6788-2023-1-264-69-76.
  • [2] Petrenko L.D. (2021). Green trend in global energy development: tendencies and opportunities. International Journal of Energy Economics and Policy, 11(5), 1–7. https://doi.org/10.32479/ijeep.11094.
  • [3] Mangla A. (2023). Geopolitics of Renewable Energy: Shaping the Global Power Landscape. Gyan Management Journal, 17(2), 75–80, https://doi.org/10.48165/gmj.2022.17.2.9.
  • [4] Udalov I. (2021). The transition to renewable energy sources as a threat to resource economies. International Journal of Energy Economics and Policy, 11(3), 460–467, https://doi.org/10.32479/ijeep.10902.
  • [5] Androniceanu A., Sabie O.M. (2022). Overview of Green Energy as a Real Strategic Option for Sustainable Development. Energies, 15(22), 8573, https://doi.org/10.3390/en15228573.
  • [6] Kapse M.M., Patel N.R., Narayankar S.K., Malvekar S.A., Liyakat K.K.S. (2022). Smart Grid Technology. International Journal of Information Technology and Computer Engineering, 26, 10–17. https://doi.org/10.55529/ijitc.26.10.17.
  • [7] Hentea M. (2021). Smart Power Grid. Chapter 8, 289–324. https://doi.org/10.1002/9781119070740.ch8.
  • [8] Nasrallah M., Ismeil M. (2022). Smart Grid - reliability, Security, Self-healing standpoint, and state of the art. SVU-International Journal of Engineering Sciences and Applications (Online), 3(2), 87–92. https://doi.org/10.21608/svusrc.2022.149457.1058.
  • [9] Kawoosa A.I., Prashar D. (2021). A Review of Cyber Securities in Smart Grid Technology. 2nd International Conference on Computation, Automation and Knowledge Management (ICCAKM), https://doi.org/10.1109/iccakm50778.2021.9357698.
  • [10] Neffati O.S., Sengan S., Thangavelu K.D., Dilip Kumar S., Setiawan R., Elangovan M., Mani D., Velayutham P. (2021). Migrating from traditional grid to smart grid in smart cities promoted in developing country. Sustainable Energy Technologies and Assessments, 45, 101125. https://doi.org/10.1016/j.seta.2021.101125.
  • [11] Zhukovskiy Y.L., Yu A., Buldysko A.D. (2021). Energy demand side management in standalone power supply system with renewable energy sources. Journal of Physics: Conference Series, 1753(1), 012059–012059. https://doi.org/10.1088/1742-6596/1753/1/012059.
  • [12] Koul B., Singh K., Brar Y.S. (2021). An introduction to smart grid and demand-side management with its integration with renewable energy. Elsevier EBooks, 73–101. https://doi.org/10.1016/b978-0-12- 824337-4.00004-7.
  • [13] Banerjee K., Sen S., Chanda S., Sengupta S. (2021). A Review on Demand Response Techniques of Load Management in Smart Grid. 2021 IEEE International Power and Renewable Energy Conference (IPRECON), https://doi.org/10.1109/iprecon52453.2021.9640693.
  • [14] Groppi D., Pfeifer A., Garcia D.A., Krajačić G., Duić N. (2021). A review on energy storage and demand side management solutions in smart energy islands. Renewable and Sustainable Energy Reviews, 135, 110183. https://doi.org/10.1016/j.rser.2020.110183.
  • [15] Soumya C., Deepanraj B., Ranjitha J. (2021). A review on solar photovoltaic systems and its application in electricity generation. INTERNATIONAL CONFERENCE on ENERGY and ENVIRONMENT (ICEE 2021), https://doi.org/10.1063/5.0066291.
  • [16] Borghini E., Giannetti C., Flynn J., Todeschini G. (2021). Data-Driven Energy Storage Scheduling to Minimise Peak Demand on Distribution Systems with PV Generation. Energies, 14(12), 3453. https://doi.org/10.3390/en14123453.
  • [17] Tafarte P., Kanngieber A., Dotzauer M., Meyer B., Grevé A., Millinger M. (2020). Interaction of Electrical Energy Storage, Flexible Bioenergy Plants and System-friendly Renewables in Wind- or Solar PV-dominated Regions. Energies, 13(5), 1133. https://doi.org/10.3390/en13051133
  • [18] Alsaidan I., Rizwan M., Alaraj M. (2022). Solar energy forecasting using intelligent techniques: A step towards sustainable power generating system. Journal of Intelligent & Fuzzy Systems, 42(2), 885–896. https://doi.org/10.3233/jifs-189757.
  • [19] Chung P.L., Wang J.C., Chou C.Y., Lin M.J., Liang W.C., Wu L.C., Jiang J.A. (2020). An intelligent control strategy for energy storage systems in solar power generation based on long-short-term power prediction. 8th International Electrical Engineering Congress (iEECON), Chiang Mai, Thailand, pp. 1-4, doi: 10.1109/iEECON48109.2020.229485.
  • [20] Jiang D., Zhu W., Muthu B., Seetharam T.G. (2021). Importance of implementing smart renewable energy system using heuristic neural decision support system. Sustainable Energy Technologies and Assessments, 45, 101185. https://doi.org/10.1016/j.seta.2021.101185.
  • [21] Slay T., Bass R.B. (2021). An Energy Service Interface for Distributed Energy Resources. OSTI OAI (U.S.) Department of Energy Office of Scientific and Technical Information), https://doi.org/10.1109/sustech51236.2021.9467416
  • [22] Patnaik R.K., Bharathi P.S., Mathiyalagan S., Thumma R., Saravanan G., Alanazi M., Sivaraman V., Elfasakhany A., Belay A. (2022). The Potential Role of PV Solar Power System to Improve the Integration of Electric Energy Storage System. International Journal of Photoenergy, 1–11. https://doi.org/10.1155/2022/8735562
  • [23] Kablar N.A. (2019). Renewable Energy: Wind Turbines, Solar Cells, Small Hydroelectric Plants, Biomass, and Geothermal Sources of Energy. Journal of Energy and Power Engineering, 13(4), https://doi.org/10.17265/1934-8975/2019.04.004
  • [24] Zohuri B. (2018). Types of Renewable Energy. Hybrid Energy Systems, pp. 105-133 DOI:10.1007/978-3-319-70721-1-4
  • [25] Nikolaidis P. (2023). Solar Energy Harnessing Technologies towards De-Carbonization: A Systematic Review of Processes and Systems. Energies, 16(17), 6153–6153, https://doi.org/10.3390/en16176153.
  • [26] Demir H. (2022). Application of Thermal Energy Harvesting from Photovoltaic Panels. Energies, 15(21), 8211, https://doi.org/10.3390/en15218211.
  • [27] Karim S., Faissal N., Azizoureddine E.B. (2022). National Renewable Energy Laboratory. Elsevier EBooks, 599–613. https://doi.org/10.1016/b978-0-12-823764-9.00006-6.
  • [28] Albatayneh A., Albadaineh R., Juaidi A., Abdallah R., Zabalo A., Manzano-Agugliaro F. (2022). Enhancing the Energy Efficiency of Buildings by Shading with PV Panels in Semi-Arid Climate Zone. Sustainability, 14(24), 17040, https://doi.org/10.3390/su142417040.
  • [29] Kaur T. (2015). Solar PV Integration in Smart Grid - Issues and Challenges. International journal of advanced research in electrical, electronics and instrumentation engineering, 4, 5861-5865.
  • [30] Volker P.J.H., Hahmann A.N., Badger J., Jørgensen H.E. (2017). Prospects for generating electricity by large onshore and offshore wind farms. Environmental Research Letters, 12(3), 034022. https://doi.org/10.1088/1748-9326/aa5d86.
  • [31] Gasch R., Twele J. (2011). Offshore wind farms. Springer EBooks, 520–539. https://doi.org/10.1007/978-3-642-22938-1-16.
  • [32] Bilgili M., Yasar A., Simsek E. (2011). Offshore wind power development in Europe and its comparison with onshore counterpart. Renewable and Sustainable Energy Reviews, 15(2), 905–915, https://doi.org/10.1016/j.rser.2010.11.006.
  • [33] King M. (2022). The Wind Power Sector. Morgan King, https://www.morganking.co.uk/blogposts/thewind-power-sector/ (accessed 19.08.2024).
  • [34] Turner S.W.D., Voisin N. (2022). Simulation of hydropower at subcontinental to global scales: a stateof-the-art review. Environmental Research Letters, 17(2), 023002. https://doi.org/10.1088/1748- 9326/ac4e38.
  • [35] Khokhani A., Kalavadiya P., Taviya R., Morker Z., Sibi J. (2022). A Review for an Effective Approach towards Hydroelectric Power Generation Using In-Pipe Mesoscale Submersible Turbine. International Journal for Research in Applied Science and Engineering Technology, 10(3), 1260–1274. https://doi.org/10.22214/ijraset.2022.40859.
  • [36] US Department of Energy (2023). Types of Hydropower Plants. https://www.energy.gov/eere/water/types-hydropower-plants (accessed 29.08.2024).
  • [37] Szyba M., Mikulik J. (2022). Energy Production from Biodegradable Waste as an Example of the Circular Economy. Energies, 15(4), 1269, https://doi.org/10.3390/en15041269.
  • [38] Nguyen T.B.N., Le N.V.L. (2023). Biomass resources and thermal conversion biomass to biofuel for cleaner energy: A review. Journal of Emerging Science and Engineering, 1(1), 6–13, https://doi.org/10.61435/jese.2023.2
  • [39] Eko E. (2024). Harnessing Biomass Energy: A Sustainable Solution in Electrical and Mechanical Fields. https://www.linkedin.com/pulse/harnessing-biomass-energy-sustainable (accessed 01.09.2024).
  • [40] Ahmed A.A., Assadi M., Kalantar A., Sliwa T., Sapińska-Śliwa A. (2022). A Critical Review on the Use of Shallow Geothermal Energy Systems for Heating and Cooling Purposes. Energies, 15(12), 4281. https://doi.org/10.3390/en15124281
  • [41] Dreamstime (2024). Geothermal Energy Stock Illustrations, 2,656 Geothermal Energy Stock Illustrations, Vectors & Clipart – Dreamstime, https://www.dreamstime.com/illustration/geothermal-energy.html (accessed 10.09.2024)
  • [42] Bahaj A.S. (2011). Generating electricity from the oceans. Renewable and Sustainable Energy Reviews, 15(7), 3399–3416. https://doi.org/10.1016/j.rser.2011.04.032
  • [43] Quora, “What is the source of energy in causes of tides and waves?” 2020, https://www.quora.com/What-is-the-source-of-energy-in-causes-of-tides-and-waves (accessed 10.09.2024)
  • [44] Phuangpornpitak N., Tia S. (2013). Opportunities and Challenges of Integrating Renewable Energy in Smart Grid System. Energy Procedia, 34, 282–290. https://doi.org/10.1016/j.egypro.2013.06.756
  • [45] Bitar E., Khargonekar P.P., Poolla K. (2011). Systems and Control Opportunities in the Integration of Renewable Energy into the Smart Grid. IFAC Proceedings, Volumes, 44(1), 4927–4932. https://doi.org/10.3182/20110828-6-it-1002.01244
  • [46] Saha T. (2018). Challenges And Opportunities of Renewable Energy Integrations to National Grids. 2018 10th International Conference on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh, pp. 1-2, doi: 10.1109/ICECE.2018.8636752.
  • [47] Admin (2016). Why Smart Grids are the Smart Move – UtiliSave, https://www.utilisave.com/why-smart-grids-are-the-smart-move/ (accessed 10.09.2024)
  • [48] Paul B., Palit R. (2021). Smart Metering in Infrastructure-Less Communication Environments and Applicability of LoRa Technology. IntechOpen EBooks, https://doi.org/10.5772/intechopen.97147.
  • [49] Chantzis G., Giama E., Nizetic S., Papadopoulos A.M. (2022). The potential of Demand Response as a tool for decarbonization in the energy transition. 7th International Conference on Smart and Sustainable Technologies (SpliTech),https://doi.org/10.23919/splitech55088.2022.9854217.
  • [50] Arya Y., Guha D., Sarangi S. (2023). Special issue on: AI/data‐based modeling, control, and operation of smart grid power systems. International Journal of Numerical Modelling (Print), 36(5). https://doi.org/10.1002/jnm.3156

Applications of Renewable Energy Sources in Smart Grids

Year 2024, Volume: 2024 Issue: 21, 18 - 29, 01.01.2025

Abstract

Given the present state of global energy, it is crucial to transition to renewable energy sources in order to effectively tackle the urgent issues of climate change, security of energy, & the sustainable growth of economies throughout the globe. Renewable energy sources such as solar, wind, hydro, and biofuel provide a sustainable option to fossil fuels. They have the potential to greatly decrease emissions of greenhouse gases and lead us towards a cleaner and more resilient energy future. Nevertheless, incorporating these naturally fluctuating and dispersed energy sources into current power networks poses a multifaceted array of technological, economic, and regulatory obstacles. Smart grids, which are distinguished by their sophisticated information and communication technology, provide a revolutionary answer to these difficulties. They improve the effectiveness and dependability of electricity systems by facilitating instantaneous monitoring and control, response to demand, and distributed generation. Smart grids have the ability to go beyond just integrating different energy sources. They can create an energy infrastructure that is adaptable and strong, capable of handling the changing and unpredictable nature of renewable energy sources. This study explores the essential function of smart grids in maximizing the whole capabilities of clean energy sources. It explores the multifaceted challenges associated with their integration, including the variability of renewable sources, the need for robust storage solutions, and the complexities of managing a distributed generation landscape. Furthermore, it outlines strategic approaches for overcoming these challenges, leveraging technological innovations, policy frameworks, and market mechanisms. The paper also casts a vision toward future prospects, highlighting emerging trends and technologies that promise to further enhance the symbiosis between renewable energy sources and smart grids. Through this exploration, the paper aims to contribute to the discourse on creating a sustainable, efficient, and resilient energy future.

References

  • [1] Liutak O., Baula O., Kutsenko V., Ivantsov S. (2023). Energy transformation in the global paradigm of sustainable development. Actual Problems of Economics, pp. 69–76, DOI:10.32752/1993-6788-2023-1-264-69-76.
  • [2] Petrenko L.D. (2021). Green trend in global energy development: tendencies and opportunities. International Journal of Energy Economics and Policy, 11(5), 1–7. https://doi.org/10.32479/ijeep.11094.
  • [3] Mangla A. (2023). Geopolitics of Renewable Energy: Shaping the Global Power Landscape. Gyan Management Journal, 17(2), 75–80, https://doi.org/10.48165/gmj.2022.17.2.9.
  • [4] Udalov I. (2021). The transition to renewable energy sources as a threat to resource economies. International Journal of Energy Economics and Policy, 11(3), 460–467, https://doi.org/10.32479/ijeep.10902.
  • [5] Androniceanu A., Sabie O.M. (2022). Overview of Green Energy as a Real Strategic Option for Sustainable Development. Energies, 15(22), 8573, https://doi.org/10.3390/en15228573.
  • [6] Kapse M.M., Patel N.R., Narayankar S.K., Malvekar S.A., Liyakat K.K.S. (2022). Smart Grid Technology. International Journal of Information Technology and Computer Engineering, 26, 10–17. https://doi.org/10.55529/ijitc.26.10.17.
  • [7] Hentea M. (2021). Smart Power Grid. Chapter 8, 289–324. https://doi.org/10.1002/9781119070740.ch8.
  • [8] Nasrallah M., Ismeil M. (2022). Smart Grid - reliability, Security, Self-healing standpoint, and state of the art. SVU-International Journal of Engineering Sciences and Applications (Online), 3(2), 87–92. https://doi.org/10.21608/svusrc.2022.149457.1058.
  • [9] Kawoosa A.I., Prashar D. (2021). A Review of Cyber Securities in Smart Grid Technology. 2nd International Conference on Computation, Automation and Knowledge Management (ICCAKM), https://doi.org/10.1109/iccakm50778.2021.9357698.
  • [10] Neffati O.S., Sengan S., Thangavelu K.D., Dilip Kumar S., Setiawan R., Elangovan M., Mani D., Velayutham P. (2021). Migrating from traditional grid to smart grid in smart cities promoted in developing country. Sustainable Energy Technologies and Assessments, 45, 101125. https://doi.org/10.1016/j.seta.2021.101125.
  • [11] Zhukovskiy Y.L., Yu A., Buldysko A.D. (2021). Energy demand side management in standalone power supply system with renewable energy sources. Journal of Physics: Conference Series, 1753(1), 012059–012059. https://doi.org/10.1088/1742-6596/1753/1/012059.
  • [12] Koul B., Singh K., Brar Y.S. (2021). An introduction to smart grid and demand-side management with its integration with renewable energy. Elsevier EBooks, 73–101. https://doi.org/10.1016/b978-0-12- 824337-4.00004-7.
  • [13] Banerjee K., Sen S., Chanda S., Sengupta S. (2021). A Review on Demand Response Techniques of Load Management in Smart Grid. 2021 IEEE International Power and Renewable Energy Conference (IPRECON), https://doi.org/10.1109/iprecon52453.2021.9640693.
  • [14] Groppi D., Pfeifer A., Garcia D.A., Krajačić G., Duić N. (2021). A review on energy storage and demand side management solutions in smart energy islands. Renewable and Sustainable Energy Reviews, 135, 110183. https://doi.org/10.1016/j.rser.2020.110183.
  • [15] Soumya C., Deepanraj B., Ranjitha J. (2021). A review on solar photovoltaic systems and its application in electricity generation. INTERNATIONAL CONFERENCE on ENERGY and ENVIRONMENT (ICEE 2021), https://doi.org/10.1063/5.0066291.
  • [16] Borghini E., Giannetti C., Flynn J., Todeschini G. (2021). Data-Driven Energy Storage Scheduling to Minimise Peak Demand on Distribution Systems with PV Generation. Energies, 14(12), 3453. https://doi.org/10.3390/en14123453.
  • [17] Tafarte P., Kanngieber A., Dotzauer M., Meyer B., Grevé A., Millinger M. (2020). Interaction of Electrical Energy Storage, Flexible Bioenergy Plants and System-friendly Renewables in Wind- or Solar PV-dominated Regions. Energies, 13(5), 1133. https://doi.org/10.3390/en13051133
  • [18] Alsaidan I., Rizwan M., Alaraj M. (2022). Solar energy forecasting using intelligent techniques: A step towards sustainable power generating system. Journal of Intelligent & Fuzzy Systems, 42(2), 885–896. https://doi.org/10.3233/jifs-189757.
  • [19] Chung P.L., Wang J.C., Chou C.Y., Lin M.J., Liang W.C., Wu L.C., Jiang J.A. (2020). An intelligent control strategy for energy storage systems in solar power generation based on long-short-term power prediction. 8th International Electrical Engineering Congress (iEECON), Chiang Mai, Thailand, pp. 1-4, doi: 10.1109/iEECON48109.2020.229485.
  • [20] Jiang D., Zhu W., Muthu B., Seetharam T.G. (2021). Importance of implementing smart renewable energy system using heuristic neural decision support system. Sustainable Energy Technologies and Assessments, 45, 101185. https://doi.org/10.1016/j.seta.2021.101185.
  • [21] Slay T., Bass R.B. (2021). An Energy Service Interface for Distributed Energy Resources. OSTI OAI (U.S.) Department of Energy Office of Scientific and Technical Information), https://doi.org/10.1109/sustech51236.2021.9467416
  • [22] Patnaik R.K., Bharathi P.S., Mathiyalagan S., Thumma R., Saravanan G., Alanazi M., Sivaraman V., Elfasakhany A., Belay A. (2022). The Potential Role of PV Solar Power System to Improve the Integration of Electric Energy Storage System. International Journal of Photoenergy, 1–11. https://doi.org/10.1155/2022/8735562
  • [23] Kablar N.A. (2019). Renewable Energy: Wind Turbines, Solar Cells, Small Hydroelectric Plants, Biomass, and Geothermal Sources of Energy. Journal of Energy and Power Engineering, 13(4), https://doi.org/10.17265/1934-8975/2019.04.004
  • [24] Zohuri B. (2018). Types of Renewable Energy. Hybrid Energy Systems, pp. 105-133 DOI:10.1007/978-3-319-70721-1-4
  • [25] Nikolaidis P. (2023). Solar Energy Harnessing Technologies towards De-Carbonization: A Systematic Review of Processes and Systems. Energies, 16(17), 6153–6153, https://doi.org/10.3390/en16176153.
  • [26] Demir H. (2022). Application of Thermal Energy Harvesting from Photovoltaic Panels. Energies, 15(21), 8211, https://doi.org/10.3390/en15218211.
  • [27] Karim S., Faissal N., Azizoureddine E.B. (2022). National Renewable Energy Laboratory. Elsevier EBooks, 599–613. https://doi.org/10.1016/b978-0-12-823764-9.00006-6.
  • [28] Albatayneh A., Albadaineh R., Juaidi A., Abdallah R., Zabalo A., Manzano-Agugliaro F. (2022). Enhancing the Energy Efficiency of Buildings by Shading with PV Panels in Semi-Arid Climate Zone. Sustainability, 14(24), 17040, https://doi.org/10.3390/su142417040.
  • [29] Kaur T. (2015). Solar PV Integration in Smart Grid - Issues and Challenges. International journal of advanced research in electrical, electronics and instrumentation engineering, 4, 5861-5865.
  • [30] Volker P.J.H., Hahmann A.N., Badger J., Jørgensen H.E. (2017). Prospects for generating electricity by large onshore and offshore wind farms. Environmental Research Letters, 12(3), 034022. https://doi.org/10.1088/1748-9326/aa5d86.
  • [31] Gasch R., Twele J. (2011). Offshore wind farms. Springer EBooks, 520–539. https://doi.org/10.1007/978-3-642-22938-1-16.
  • [32] Bilgili M., Yasar A., Simsek E. (2011). Offshore wind power development in Europe and its comparison with onshore counterpart. Renewable and Sustainable Energy Reviews, 15(2), 905–915, https://doi.org/10.1016/j.rser.2010.11.006.
  • [33] King M. (2022). The Wind Power Sector. Morgan King, https://www.morganking.co.uk/blogposts/thewind-power-sector/ (accessed 19.08.2024).
  • [34] Turner S.W.D., Voisin N. (2022). Simulation of hydropower at subcontinental to global scales: a stateof-the-art review. Environmental Research Letters, 17(2), 023002. https://doi.org/10.1088/1748- 9326/ac4e38.
  • [35] Khokhani A., Kalavadiya P., Taviya R., Morker Z., Sibi J. (2022). A Review for an Effective Approach towards Hydroelectric Power Generation Using In-Pipe Mesoscale Submersible Turbine. International Journal for Research in Applied Science and Engineering Technology, 10(3), 1260–1274. https://doi.org/10.22214/ijraset.2022.40859.
  • [36] US Department of Energy (2023). Types of Hydropower Plants. https://www.energy.gov/eere/water/types-hydropower-plants (accessed 29.08.2024).
  • [37] Szyba M., Mikulik J. (2022). Energy Production from Biodegradable Waste as an Example of the Circular Economy. Energies, 15(4), 1269, https://doi.org/10.3390/en15041269.
  • [38] Nguyen T.B.N., Le N.V.L. (2023). Biomass resources and thermal conversion biomass to biofuel for cleaner energy: A review. Journal of Emerging Science and Engineering, 1(1), 6–13, https://doi.org/10.61435/jese.2023.2
  • [39] Eko E. (2024). Harnessing Biomass Energy: A Sustainable Solution in Electrical and Mechanical Fields. https://www.linkedin.com/pulse/harnessing-biomass-energy-sustainable (accessed 01.09.2024).
  • [40] Ahmed A.A., Assadi M., Kalantar A., Sliwa T., Sapińska-Śliwa A. (2022). A Critical Review on the Use of Shallow Geothermal Energy Systems for Heating and Cooling Purposes. Energies, 15(12), 4281. https://doi.org/10.3390/en15124281
  • [41] Dreamstime (2024). Geothermal Energy Stock Illustrations, 2,656 Geothermal Energy Stock Illustrations, Vectors & Clipart – Dreamstime, https://www.dreamstime.com/illustration/geothermal-energy.html (accessed 10.09.2024)
  • [42] Bahaj A.S. (2011). Generating electricity from the oceans. Renewable and Sustainable Energy Reviews, 15(7), 3399–3416. https://doi.org/10.1016/j.rser.2011.04.032
  • [43] Quora, “What is the source of energy in causes of tides and waves?” 2020, https://www.quora.com/What-is-the-source-of-energy-in-causes-of-tides-and-waves (accessed 10.09.2024)
  • [44] Phuangpornpitak N., Tia S. (2013). Opportunities and Challenges of Integrating Renewable Energy in Smart Grid System. Energy Procedia, 34, 282–290. https://doi.org/10.1016/j.egypro.2013.06.756
  • [45] Bitar E., Khargonekar P.P., Poolla K. (2011). Systems and Control Opportunities in the Integration of Renewable Energy into the Smart Grid. IFAC Proceedings, Volumes, 44(1), 4927–4932. https://doi.org/10.3182/20110828-6-it-1002.01244
  • [46] Saha T. (2018). Challenges And Opportunities of Renewable Energy Integrations to National Grids. 2018 10th International Conference on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh, pp. 1-2, doi: 10.1109/ICECE.2018.8636752.
  • [47] Admin (2016). Why Smart Grids are the Smart Move – UtiliSave, https://www.utilisave.com/why-smart-grids-are-the-smart-move/ (accessed 10.09.2024)
  • [48] Paul B., Palit R. (2021). Smart Metering in Infrastructure-Less Communication Environments and Applicability of LoRa Technology. IntechOpen EBooks, https://doi.org/10.5772/intechopen.97147.
  • [49] Chantzis G., Giama E., Nizetic S., Papadopoulos A.M. (2022). The potential of Demand Response as a tool for decarbonization in the energy transition. 7th International Conference on Smart and Sustainable Technologies (SpliTech),https://doi.org/10.23919/splitech55088.2022.9854217.
  • [50] Arya Y., Guha D., Sarangi S. (2023). Special issue on: AI/data‐based modeling, control, and operation of smart grid power systems. International Journal of Numerical Modelling (Print), 36(5). https://doi.org/10.1002/jnm.3156
There are 50 citations in total.

Details

Primary Language English
Subjects Electrical Energy Generation (Incl. Renewables, Excl. Photovoltaics)
Journal Section Research Article
Authors

Cem Emeksiz 0000-0002-4817-9607

Early Pub Date December 23, 2024
Publication Date January 1, 2025
Submission Date November 5, 2024
Acceptance Date December 16, 2024
Published in Issue Year 2024 Volume: 2024 Issue: 21

Cite

APA Emeksiz, C. (2025). Applications of Renewable Energy Sources in Smart Grids. Journal of New Results in Engineering and Natural Sciences, 2024(21), 18-29.