Research Article
BibTex RIS Cite

Çift Statorlu Eksenel Akılı Sürekli Mıknatıslı Senkron Motor Tasarımı

Year 2024, Volume: 2024 Issue: 21, 30 - 46

Abstract

Bu çalışmada, Çift Statorlu Tek Rotorlu Eksenel Akılı Sürekli Mıknatıslı Senkron Motor (DS AFSM) tasarımı ele alınmıştır. Motor tasarımı analitik bir yaklaşımla gerçekleştirilmiş, ardından motorun 3D katı modeli oluşturulmuştur. Motorun performansı, Sonlu Elemanlar Analizi (SEY) kullanılarak detaylı bir şekilde incelenmiş ve elde edilen ilk sonuçlar doğrultusunda, tork ripple değerinin iyileştirilmesine yönelik optimizasyon çalışmaları yapılmıştır. Optimizasyon sürecinde, MOGA (Çok Amaçlı Genetik Algoritma) yöntemi kullanılarak mıknatısın embrace, iç çapı ve dış çapı gibi parametreler optimize edilmiştir. Bu sayede, tork ripple ve ortalama tork değerlerinde iyileştirmeler sağlanmış ve hedeflenen değerler elde edilmiştir. Son olarak, tasarlanan motorun yük karakteristiği SEY ile çıkarılarak, motorun gerçek çalışma koşullarındaki performansı analiz edilmiştir. Bu çalışma, eksenel akılı motor tasarımı ve optimizasyon süreçlerine katkı sağlamayı amaçlamaktadır.

References

  • Vehicle Applications,” Mehran University Research Journal of Engineering and Technology, vol. 38, no. 3, pp. 525–540, Dec. 2019, doi: 10.22581/MUET1982.1903.01.
  • [2] W. Cai, X. Wu, M. Zhou, Y. Liang, and Y. Wang, “Review and Development of Electric Motor Systems and Electric Powertrains for New Energy Vehicles,” Automotive Innovation, vol. 4, no. 1, pp. 3–22, Dec. 2021, doi: 10.1007/S42154-021-00139-Z/TABLES/10.
  • [3] A. Hughes and B. Drury, Electric Motors and Drives: Fundamentals, Types and Applications. Elsevier, 2019. doi: 10.1016/B978-0-08-102615-1.09989-X.
  • [4] T. Husain, B. Tekgun, Y. Sozer, and M. Hamdan, “Comparison of axial flux machine performance with different rotor and stator configurations,” 2017 IEEE International Electric Machines and Drives Conference, IEMDC 2017, Aug. 2017, doi: 10.1109/IEMDC.2017.8002354.
  • [5] A. Mahmoudi, S. Kahourzade, N. A. Rahim, and W. P. Hew, “Design, Analysis, and Prototyping of an Axial-Flux Permanent Magnet Motor Based on Genetic Algorithm and Finite-Element Analysis,” IEEE Trans Magn, vol. 49, no. 4, pp. 1479–1492, Nov. 2012, doi: 10.1109/TMAG.2012.2228213.
  • [6] N. Pamuk, “Genetik algoritma optimizasyonu kullanılarak senkron makine tasarımı ve uygunluk parametrelerinin belirlenmesi,” Yenilikçi Mühendislik ve Doğa Bilimleri, vol. 4, no. 2, pp. 276–288, Jul. 2024, doi: 10.61112/JIENS.1392071.
  • [7] V. I. Vlachou et al., “Overview on Permanent Magnet Motor Trends and Developments,” Energies 2024, Vol. 17, Page 538, vol. 17, no. 2, p. 538, Dec. 2024, doi: 10.3390/EN17020538.
  • [8] L. He, Y. Feng, Y. Zhang, and B. Tong, “Methods for temperature estimation and monitoring of permanent magnet: a technology review and future trends,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 46, no. 4, pp. 1–29, Dec. 2024, doi: 10.1007/S40430-024-04723-2/FIGURES/17.
  • [9] A. Hughes and B. Drury, Electric Motors and Drives: Fundamentals, Types and Applications. Elsevier, 2019. doi: 10.1016/B978-0-08-102615-1.09989-X.
  • [10] Toliyat Hamid A. and Kliman Gerald B., Handbook of Electric Motors. 2018. Accessed: Dec. 02, 2024. [Online]. Available: https://www.taylorfrancis.com/books/mono/10.1201/9781420030389/handbook-electric-motors-norm-kopp-gerald-kliman-hamid-toliyat
  • [11] P. Pillay and R. Krishnan, “Modeling Of Permanent Magnet Motor Drives,” IEEE Transactions on Industrial Electronics, vol. 35, no. 4, pp. 537–541, 1988, doi: 10.1109/41.9176.
  • [12] H. Wang and J. Leng, “Summary on development of permanent magnet synchronous motor,” Proceedings of the 30th Chinese Control and Decision Conference, CCDC 2018, pp. 689–693, Dec. 2018, doi: 10.1109/CCDC.2018.8407219.
  • [13] L. Shao, R. Navaratne, M. Popescu, and G. Liu, “Design and Construction of Axial-Flux Permanent Magnet Motors for Electric Propulsion Applications-A Review,” IEEE Access, vol. 9, pp. 158998–159017, 2021, doi: 10.1109/ACCESS.2021.3131000.
  • [14] Z. Hao, Y. Ma, P. Wang, G. Luo, and Y. Chen, “A Review of Axial-Flux Permanent-Magnet Motors: Topological Structures, Design, Optimization and Control Techniques,” Machines, vol. 10, no. 12, Dec. 2022, doi: 10.3390/MACHINES10121178.
  • [15] S. Kahourzade, A. Mahmoudi, H. W. Ping, and M. N. Uddin, “A comprehensive review of axial-flux permanent-magnet machines,” Canadian Journal of Electrical and Computer Engineering, vol. 37, no. 1, pp. 19–33, 2014, doi: 10.1109/CJECE.2014.2309322.
  • [16] R. Huang, Z. Song, H. Zhao, and C. Liu, “Overview of Axial-Flux Machines and Modeling Methods,” IEEE Transactions on Transportation Electrification, vol. 8, no. 2, pp. 2118–2132, 2022, doi: 10.1109/TTE.2022.3144594.
  • [17] H. Ouldhamrane, J. F. Charpentier, F. Khoucha, A. Zaoui, Y. Achour, and M. Benbouzid, “Optimal Design of Axial Flux Permanent Magnet Motors for Ship RIM-Driven Thruster,” Machines, vol. 10, no. 10, Oct. 2022, doi: 10.3390/MACHINES10100932.
  • [18] A. Hemeida, “Electromagnetic and thermal design of axial flux permanent magnet synchronous machines,” Universiteit Gent, pp. 1–251, 2017, [Online]. Available: http://hdl.handle.net/1854/LU-8527969
  • [19] M. Aydin, T. Lipo, S. Huang, and T. A. Lipo, “Axial flux permanent magnet disc machines: A review Axial Flux Permanent Magnet Disc Machines: A Review AXIAL FLUX PERMANENT MAGNET DISC MACHINES: A REVIEW,” Conf. Record of SPEEDAM, 2004. [Online]. Available: https://www.researchgate.net/publication/228449891
  • [20] C. Jenkins et al., “Innovations in Axial Flux Permanent Magnet Motor Thermal Management for High Power Density Applications,” IEEE Transactions on Transportation Electrification, vol. 9, no. 3, pp. 4380–4405, 2023, doi: 10.1109/TTE.2023.3242698.
  • [21] F. Sahin, A. M. Tuckey, and A. J. A. Vandenput, “Design, development and testing of a high-speed axial-flux permanent-magnet machine,” in Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248), 2001, pp. 1640–1647 vol.3. doi: 10.1109/IAS.2001.955754.
  • [22] M. Aydin, S. Huang, and T. A. Lipo, “Torque quality and comparison of internal and external rotor axial flux surface-magnet disc machines,” IEEE Transactions on Industrial Electronics, vol. 53, no. 3, pp. 822–830, 2006, doi: 10.1109/TIE.2006.874268.
  • [23] A. Mahmoudi, H. W. Ping, and N. A. Rahim, “A comparison between the TORUS and AFIR axial-flux permanent-magnet machine using finite element analysis,” in 2011 IEEE International Electric Machines & Drives Conference (IEMDC), 2011, pp. 242–247. doi: 10.1109/IEMDC.2011.5994853.
  • [24] G. Cornuéjols, J. Pena, and R. Tütüncü, “Nonlinear Programming: Theory and Algorithms,” 2018, pp. 305–320. doi: 10.1017/9781107297340.021.
  • [25] F. Çalişkan, H. Yüksel, M. Dayik, S. Demirel Üniversitesi, A. Meslek Yüksekokulu, and T. Bilimler Meslek Yüksekokulu, “Genetik Algoritmaların Tasarım Sürecinde Kullanılması,” SDU Journal of Technical Science, vol. 2, no. 6, pp. 21–27, 2016, Accessed: Dec. 03, 2024. [Online]. Available: https://dergipark.org.tr/tr/download/article-file/227734
  • [26] S. Molaei, H. Moazen, S. Najjar-Ghabel, and L. Farzinvash, “Particle swarm optimization with an enhanced learning strategy and crossover operator,” Knowl Based Syst, vol. 215, p. 106768, 2021, doi: https://doi.org/10.1016/j.knosys.2021.106768.
  • [27] Y. Zhang and Y. Wu, “Introducing Machine Learning Models to Response Surface Methodologies,” 2021. doi: 10.5772/intechopen.98191.
  • [28] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm: past, present, and future,” Multimed Tools Appl, vol. 80, no. 5, pp. 8091–8126, 2021, doi: 10.1007/s11042-020-10139-6.
  • [29] J. Liu and Q. Zhou, “Design and Optimization of Permanent Magnet Synchronous Motor Based on Finite Element analysis,” in 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2019, pp. 2055–2058. doi: 10.1109/ICIEA.2019.8834332.
  • [30] K.-I. Jeong et al., “Magnetic Screen Effects on Torque Ripple and Efficiency of Dual Air-Gap Surface Permanent Magnet Synchronous Motor,” Energies (Basel), vol. 16, no. 19, 2023, doi: 10.3390/en16196969.
  • [31] E. Eser and N. Üstkoyuncu, “Design and Analysis of a Novel Axial Flux Permanent Magnet Assisted Synchronous Reluctance Motor,” Journal of Electrical Engineering & Technology 2024, pp. 1–10, Oct. 2024, doi: 10.1007/S42835-024-02052-X.

Design of Double Stator Axial Flux Permanent Magnet Synchronous Motor

Year 2024, Volume: 2024 Issue: 21, 30 - 46

Abstract

In this study, the design of a Double Stator Single Rotor Axial Flux Permanent Magnet Synchronous Motor (DS-AFPMSM) is investigated. The motor design is carried out using an analytical approach, followed by the creation of a 3D solid model of the motor. The performance of the motor is investigated in detail using Finite Element Analysis (FEA), and based on the preliminary results, optimization studies are carried out to improve the torque ripple value. The Multi-Objective Genetic Algorithm (MOGA) approach was used to optimize the magnet's embrace, inner diameter, and outside diameter, among other factors. In this manner, average torque values and desired values were acquired, and torque ripple was improved. Finally, the load characteristics of the designed motor are extracted with SEY, and the performance of the motor under real operating conditions is analyzed. This study aims to contribute to the design and optimization processes of axial flow motors.

References

  • Vehicle Applications,” Mehran University Research Journal of Engineering and Technology, vol. 38, no. 3, pp. 525–540, Dec. 2019, doi: 10.22581/MUET1982.1903.01.
  • [2] W. Cai, X. Wu, M. Zhou, Y. Liang, and Y. Wang, “Review and Development of Electric Motor Systems and Electric Powertrains for New Energy Vehicles,” Automotive Innovation, vol. 4, no. 1, pp. 3–22, Dec. 2021, doi: 10.1007/S42154-021-00139-Z/TABLES/10.
  • [3] A. Hughes and B. Drury, Electric Motors and Drives: Fundamentals, Types and Applications. Elsevier, 2019. doi: 10.1016/B978-0-08-102615-1.09989-X.
  • [4] T. Husain, B. Tekgun, Y. Sozer, and M. Hamdan, “Comparison of axial flux machine performance with different rotor and stator configurations,” 2017 IEEE International Electric Machines and Drives Conference, IEMDC 2017, Aug. 2017, doi: 10.1109/IEMDC.2017.8002354.
  • [5] A. Mahmoudi, S. Kahourzade, N. A. Rahim, and W. P. Hew, “Design, Analysis, and Prototyping of an Axial-Flux Permanent Magnet Motor Based on Genetic Algorithm and Finite-Element Analysis,” IEEE Trans Magn, vol. 49, no. 4, pp. 1479–1492, Nov. 2012, doi: 10.1109/TMAG.2012.2228213.
  • [6] N. Pamuk, “Genetik algoritma optimizasyonu kullanılarak senkron makine tasarımı ve uygunluk parametrelerinin belirlenmesi,” Yenilikçi Mühendislik ve Doğa Bilimleri, vol. 4, no. 2, pp. 276–288, Jul. 2024, doi: 10.61112/JIENS.1392071.
  • [7] V. I. Vlachou et al., “Overview on Permanent Magnet Motor Trends and Developments,” Energies 2024, Vol. 17, Page 538, vol. 17, no. 2, p. 538, Dec. 2024, doi: 10.3390/EN17020538.
  • [8] L. He, Y. Feng, Y. Zhang, and B. Tong, “Methods for temperature estimation and monitoring of permanent magnet: a technology review and future trends,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 46, no. 4, pp. 1–29, Dec. 2024, doi: 10.1007/S40430-024-04723-2/FIGURES/17.
  • [9] A. Hughes and B. Drury, Electric Motors and Drives: Fundamentals, Types and Applications. Elsevier, 2019. doi: 10.1016/B978-0-08-102615-1.09989-X.
  • [10] Toliyat Hamid A. and Kliman Gerald B., Handbook of Electric Motors. 2018. Accessed: Dec. 02, 2024. [Online]. Available: https://www.taylorfrancis.com/books/mono/10.1201/9781420030389/handbook-electric-motors-norm-kopp-gerald-kliman-hamid-toliyat
  • [11] P. Pillay and R. Krishnan, “Modeling Of Permanent Magnet Motor Drives,” IEEE Transactions on Industrial Electronics, vol. 35, no. 4, pp. 537–541, 1988, doi: 10.1109/41.9176.
  • [12] H. Wang and J. Leng, “Summary on development of permanent magnet synchronous motor,” Proceedings of the 30th Chinese Control and Decision Conference, CCDC 2018, pp. 689–693, Dec. 2018, doi: 10.1109/CCDC.2018.8407219.
  • [13] L. Shao, R. Navaratne, M. Popescu, and G. Liu, “Design and Construction of Axial-Flux Permanent Magnet Motors for Electric Propulsion Applications-A Review,” IEEE Access, vol. 9, pp. 158998–159017, 2021, doi: 10.1109/ACCESS.2021.3131000.
  • [14] Z. Hao, Y. Ma, P. Wang, G. Luo, and Y. Chen, “A Review of Axial-Flux Permanent-Magnet Motors: Topological Structures, Design, Optimization and Control Techniques,” Machines, vol. 10, no. 12, Dec. 2022, doi: 10.3390/MACHINES10121178.
  • [15] S. Kahourzade, A. Mahmoudi, H. W. Ping, and M. N. Uddin, “A comprehensive review of axial-flux permanent-magnet machines,” Canadian Journal of Electrical and Computer Engineering, vol. 37, no. 1, pp. 19–33, 2014, doi: 10.1109/CJECE.2014.2309322.
  • [16] R. Huang, Z. Song, H. Zhao, and C. Liu, “Overview of Axial-Flux Machines and Modeling Methods,” IEEE Transactions on Transportation Electrification, vol. 8, no. 2, pp. 2118–2132, 2022, doi: 10.1109/TTE.2022.3144594.
  • [17] H. Ouldhamrane, J. F. Charpentier, F. Khoucha, A. Zaoui, Y. Achour, and M. Benbouzid, “Optimal Design of Axial Flux Permanent Magnet Motors for Ship RIM-Driven Thruster,” Machines, vol. 10, no. 10, Oct. 2022, doi: 10.3390/MACHINES10100932.
  • [18] A. Hemeida, “Electromagnetic and thermal design of axial flux permanent magnet synchronous machines,” Universiteit Gent, pp. 1–251, 2017, [Online]. Available: http://hdl.handle.net/1854/LU-8527969
  • [19] M. Aydin, T. Lipo, S. Huang, and T. A. Lipo, “Axial flux permanent magnet disc machines: A review Axial Flux Permanent Magnet Disc Machines: A Review AXIAL FLUX PERMANENT MAGNET DISC MACHINES: A REVIEW,” Conf. Record of SPEEDAM, 2004. [Online]. Available: https://www.researchgate.net/publication/228449891
  • [20] C. Jenkins et al., “Innovations in Axial Flux Permanent Magnet Motor Thermal Management for High Power Density Applications,” IEEE Transactions on Transportation Electrification, vol. 9, no. 3, pp. 4380–4405, 2023, doi: 10.1109/TTE.2023.3242698.
  • [21] F. Sahin, A. M. Tuckey, and A. J. A. Vandenput, “Design, development and testing of a high-speed axial-flux permanent-magnet machine,” in Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248), 2001, pp. 1640–1647 vol.3. doi: 10.1109/IAS.2001.955754.
  • [22] M. Aydin, S. Huang, and T. A. Lipo, “Torque quality and comparison of internal and external rotor axial flux surface-magnet disc machines,” IEEE Transactions on Industrial Electronics, vol. 53, no. 3, pp. 822–830, 2006, doi: 10.1109/TIE.2006.874268.
  • [23] A. Mahmoudi, H. W. Ping, and N. A. Rahim, “A comparison between the TORUS and AFIR axial-flux permanent-magnet machine using finite element analysis,” in 2011 IEEE International Electric Machines & Drives Conference (IEMDC), 2011, pp. 242–247. doi: 10.1109/IEMDC.2011.5994853.
  • [24] G. Cornuéjols, J. Pena, and R. Tütüncü, “Nonlinear Programming: Theory and Algorithms,” 2018, pp. 305–320. doi: 10.1017/9781107297340.021.
  • [25] F. Çalişkan, H. Yüksel, M. Dayik, S. Demirel Üniversitesi, A. Meslek Yüksekokulu, and T. Bilimler Meslek Yüksekokulu, “Genetik Algoritmaların Tasarım Sürecinde Kullanılması,” SDU Journal of Technical Science, vol. 2, no. 6, pp. 21–27, 2016, Accessed: Dec. 03, 2024. [Online]. Available: https://dergipark.org.tr/tr/download/article-file/227734
  • [26] S. Molaei, H. Moazen, S. Najjar-Ghabel, and L. Farzinvash, “Particle swarm optimization with an enhanced learning strategy and crossover operator,” Knowl Based Syst, vol. 215, p. 106768, 2021, doi: https://doi.org/10.1016/j.knosys.2021.106768.
  • [27] Y. Zhang and Y. Wu, “Introducing Machine Learning Models to Response Surface Methodologies,” 2021. doi: 10.5772/intechopen.98191.
  • [28] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm: past, present, and future,” Multimed Tools Appl, vol. 80, no. 5, pp. 8091–8126, 2021, doi: 10.1007/s11042-020-10139-6.
  • [29] J. Liu and Q. Zhou, “Design and Optimization of Permanent Magnet Synchronous Motor Based on Finite Element analysis,” in 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2019, pp. 2055–2058. doi: 10.1109/ICIEA.2019.8834332.
  • [30] K.-I. Jeong et al., “Magnetic Screen Effects on Torque Ripple and Efficiency of Dual Air-Gap Surface Permanent Magnet Synchronous Motor,” Energies (Basel), vol. 16, no. 19, 2023, doi: 10.3390/en16196969.
  • [31] E. Eser and N. Üstkoyuncu, “Design and Analysis of a Novel Axial Flux Permanent Magnet Assisted Synchronous Reluctance Motor,” Journal of Electrical Engineering & Technology 2024, pp. 1–10, Oct. 2024, doi: 10.1007/S42835-024-02052-X.
There are 31 citations in total.

Details

Primary Language English
Subjects Electrical Machines and Drives, Electrical Engineering (Other)
Journal Section Research Article
Authors

Sümeyye Sarıdağ 0009-0003-8524-4361

Mustafa Eker 0000-0003-1085-0968

Early Pub Date December 23, 2024
Publication Date
Submission Date December 4, 2024
Acceptance Date December 20, 2024
Published in Issue Year 2024 Volume: 2024 Issue: 21

Cite

APA Sarıdağ, S., & Eker, M. (2024). Design of Double Stator Axial Flux Permanent Magnet Synchronous Motor. Journal of New Results in Engineering and Natural Sciences, 2024(21), 30-46.