Research Article
BibTex RIS Cite

Year 2024, Volume: 28 Issue: 6, 1974 - 1981, 28.06.2025
https://doi.org/10.29228/jrp.871

Abstract

References

  • [1] Al Alwan NAS. General Oncology Care in Iraq. In: Al-Shamsi HO, Abu-Gheida IH, Iqbal F, Al-Awadhi A. (Eds). Cancer in the Arab World. Springer, Singapore, 2022, pp. 63–82. https://doi.org/10.1007/978-981-16-7945-2_5
  • [2] Wilkinson L, Gathani T. Understanding breast cancer as a global health concern. Br J Radiol. 2022;95(1130):20211033. https://doi.org/10.1259/bjr.20211033
  • [3] Walsh MF, Nathanson KL, Couch FJ, Offit K. Genomic biomarkers for breast cancer risk. Adv Exp Med Biol. 2016;882:1-32. https://doi.org/10.1007/978-3-319-22909-6_1
  • [4] Collins A, Politopoulos I. The genetics of breast cancer: Risk factors for disease. Appl Clin Genet. 2011;4:11-19. https://doi.org/10.2147/tacg.s13139
  • [5] Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 2017;58(5):235-263. https://doi.org/10.1002/em.22087.
  • [6] Rose M, Burgess JT, O'Byrne K, Richard DJ, Bolderson E. PARP inhibitors: Clinical relevance, mechanisms of action and tumor resistance. Front Cell Dev Biol. 2020;8:564601. https://doi.org/10.3389/fcell.2020.564601
  • [7] Wang H, Xie H, Wang S, Zhao J, Gao Y, Chen J, Zhao Y, Guo G. PARP-1 genetic polymorphism associated with radiation sensitivity of non-small cell lung cancer. Pathol Oncol Res. 2022;28:1610751. https://doi.org/10.3389/pore.2022.1610751
  • [8] Ray Chaudhuri A, Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. 2017;18(10):610-621. https://doi.org/10.1038/nrm.2017.53
  • [9] Rose M, Burgess JT, O'Byrne K, Richard DJ, Bolderson E. PARP inhibitors: Clinical relevance, mechanisms of action and tumor resistance. Front Cell Dev Biol. 2020;8:564601. https://doi.org/10.3389/fcell.2020.564601.
  • [10] Zhang F, Lau SS, Monks TJ. A dual role for poly(ADP-ribose) polymerase-1 during caspase-dependent apoptosis. Toxicol Sci. 2012;128(1):103-114. https://doi.org/10.1093/toxsci/kfs142
  • [11] Green AR, Caracappa D, Benhasouna AA, Alshareeda A, Nolan CC, Macmillan RD, Madhusudan S, Ellis IO, Rakha EA. Biological and clinical significance of PARP1 protein expression in breast cancer. Breast Cancer Res Treat. 2015;149(2):353-362. https://doi.org/10.1007/s10549-014-3230-1
  • [12] Crossley BM, Bai J, Glaser A, Maes R, Porter E, Killian ML, Clement T, Toohey-Kurth K. Guidelines for Sanger sequencing and molecular assay monitoring. J Vet Diagn Invest. 2020;32(6):767775. https://doi.org/10.1177/1040638720905833
  • [13] Das S, Dey MK, Devireddy R, Gartia MR. Biomarkers in cancer detection, diagnosis, and prognosis. Sensors (Basel). 2023;24(1):37. https://doi.org/10.3390%2Fs24010037
  • [14] Rehman K, Iqbal Z, Zhiqin D, Ayub H, Saba N, Khan MA, Yujie L, Duan L. Analysis of genetic biomarkers, polymorphisms in ADME-related genes and their impact on pharmacotherapy for prostate cancer. Cancer Cell Int. 2023;23(1):247. https://doi.org/10.1186/s12935-023-03084-5
  • [15] Chen A. PARP inhibitors: its role in treatment of cancer. Chin J Cancer. 2011;30(7):463-471. https://doi.org/10.5732/cjc.011.10111
  • [16] Du Y, Luo L, Xu X, Yang X, Yang X, Xiong S, Yu J, Liang T, Guo L. Unleashing the power of synthetic lethality: Augmenting treatment efficacy through synergistic ıntegration with chemotherapy drugs. Pharmaceutics. 2023;15(10):2433. https://doi.org/10.3390/pharmaceutics15102433
  • [17] Chambon P, Weill JD, Doly J, Strosser MT, Mandel P. On the formation of a novel adenylic compound by enzymatic extracts of liver nuclei. Biochem Biophys Res Commun. 1966;25(6):638-643 https://doi.org/10.1016/0006-291X(66)90502-X
  • [18] Liao Y, Liao Y, Li J, Xiong J, Fan Y. Polymorphisms in PARP1 predict disease-free survival of triple-negative breast cancer patients treated with anthracycline/taxane based adjuvant chemotherapy. Sci Rep. 2020;10(1):7349. https://doi.org/10.1038/s41598-020-64473-8
  • [19] Ida RR, Jeremy S. Differential localisation of PARP-1 N-terminal fragment in PARP-1+/+ and PARP-1−/− murine cells. Mol Cells. 2014. 37(7): 526–531. https://doi.org/10.14348%2Fmolcells.2014.0077
  • [20] Thodoris S, Vasileios V, Evangelia P, Athina Ch, Vassilis G, Athanasios K, Yiannis V, Galatea K. PARP-1 expression and BRCA1 mutations in breast cancer patients’ CTCs. Cancers (Basel). 14(7): 1731. https://doi.org/10.3390%2Fcancers14071731
  • [21] Kossatz S, Pirovano G, Demétrio De Souza França P, Strome AL, Sunny SP, Zanoni DK, Mauguen A, Carney B, Brand C, Shah V, Ramanajinappa RD, Hedne N, Birur P, Sihag S, Ghossein RA, Gönen M, Strome M, Suresh A, Molena D, Ganly I, Kuriakose MA, Patel SG, Reiner T. Validation of the use of a fluorescent PARP1 inhibitor for the detection of oral, oropharyngeal and oesophageal epithelial cancers. Nat Biomed Eng. 2020;4(3):272-285. https://doi.org/10.1038/s41551-020-0526-9 .
  • [22] Yu H, Ma H, Yin M, Wei Q. Association between PARP-1 V762A polymorphism and cancer susceptibility: A meta analysis. Genet Epidemiol. 2012;36(1):56-65. https://doi.org/10.1002/gepi.20663
  • [23] Cheng J, Zhuo Z, Zhao P, Zhu J, Xin Y, Zhang J, Li P, Gao Y, He J, Zheng B. PARP1 gene polymorphisms and neuroblastoma susceptibility in Chinese children. J Cancer. 2019;10(18):4159-4164. https://doi.org/10.7150%2Fjca.34222
  • [24] Zhang X, Wang Y, A G, Qu C, Chen J. Pan-cancer analysis of PARP1 alterations as biomarkers in the prediction of ımmunotherapeutic effects and the association of ıts expression levels and ımmunotherapy signatures. Front Immunol. 2021;12:721030. https://doi.org/10.3389/fimmu.2021.721030
  • [25] Zhou RM, Li Y, Wang N, Niu CX, Huang X, Cao SR, Huo XR. PARP1 gene polymorphisms and the prognosis of esophageal cancer patients from Cixian high-ıncidence region in northern China. Asian Pac J Cancer Prev. 2020;21(10):2987-2992. https://doi.org/10.31557%2FAPJCP.2020.21.10.2987
  • [26] Kossatz S, Pirovano G, Franca PD, Strome AL, Sunny SP, Zanoni DK, Mauguen A, Carney B, Brand C, Shah V, Ramanajinappa RD, Hedne N, Birur P, Sihag S, Ghossein RA, Gonen M, Strome M, Suresh, A, Molena D, Kuriakose MA, Patel SG, Reiner T. “PARP1 as a biomarker for early detection and intraoperative tumor delineation in epithelial cancers–first-in-human results”. bioRxiv. 2019; 663385. https://doi.org/10.1101/663385
  • [27] Alhadheq AM, Purusottapatnam Shaik J, Alamri A, Aljebreen AM, Alharbi O, Almadi MA, Alhadeq F, Azzam NA, Semlali A, Alanazi M, Bazzi MD, Reddy Parine N. The effect of Poly(ADP-ribose) Polymerase-1 Gene 3'Untranslated region polymorphism in colorectal cancer risk among Saudi Cohort. Dis Markers. 2016;2016:8289293. https://doi.org/10.1155/2016/8289293
  • [28] Aldafaay AAA, Abdulamir HA, Abdulhussain HA, Badry AS, Abdulsada AK. The use of urinary α-amylase level in a diagnosis of chronic renal failure. Res J Pharm Technol. 2021; 14(3):1-4. https://doi.org/10.5958/0974 360X.2021.00283.3
  • [29] Al-Shammari AH, Ali Shahadha MA. The effect of favipiravir on liver enzyme among patients with mild to moderate COVID-19 infection: A prospective cohort study. J Popul Ther Clin Pharmacol. 2022;29(4):e46-e54. https://doi.org/10.15586/jptcp.2022.967
  • [30] Norman G. Likert scales, levels of measurement and the "laws" of statistics. Adv Health Sci Educ Theory Pract. 2010;15(5):625-632. https://doi.org/10.1007/s10459-010-9222-y.
  • [31] Szumilas M. Explaining odds ratios. J Can Acad Child Adolesc Psychiatry. 2010;19(3):227-229. Erratum in: J Can Acad Child Adolesc Psychiatry. 2015;24(1):58.

The association of polymorphisms in base excision repair gene PARP1 with breast cancer in female population in Baghdad

Year 2024, Volume: 28 Issue: 6, 1974 - 1981, 28.06.2025
https://doi.org/10.29228/jrp.871

Abstract

Approximately 5%-10% of breast cancer cases are believed to be hereditary, caused by inherited gene mutations. In healthy cells, these genes play a role in producing proteins responsible for repairing damaged DNA. When these genes undergo mutations, it can result in irregular cell growth, ultimately contributing to the development of cancer.The aim of this study is to investigate the association between PRAP1 rs2666428 and rs8679 gene polymorphisms with breast cancer risk in female population in Baghdad. A case-control study was involved 40 female breast cancer patients who were recruited from the Medical City, Oncology teaching hospital, Baghdad, Iraq, between June and October 2023. DNA extracted from whole blood and the gene fragments corresponding to the PARP1 rs2666428, rs8679 were amplified using conventional PCR. The genotyping was performed through Sanger sequencing. Patients’ results were then compared with 40 age and gender- matched control subjects. There were significant differences in the genotypic distribution in the rs8679 polymorphism between patients and controls, in that the TG and TT genotypes showed apparent differences in the genotypic distribution that confirmed by Chi-square (Chi2) test results. The risk of malignancy showed to be higher by about 3.18 times in patients with G allele than those with T allele. Genotypic distribution of the rs2666428 polymorphism showed a nearly similar distribution of CC, CT and TT genotypes in controls comparing to patients that also confirmed by Chi2 results with no associated between the malignancy risk and the allelic frequency in that C and T alleles frequencies showed to be nearly similar in patients to those of controls. Genetic polymorphism of PARP1 rs8679 may be considered as a potential risk factor for the development of breast cancer and may be used as a diagnostic and prognostic marker while PARP1 rs2666428 polymorphism was not associated with breast cancer.

References

  • [1] Al Alwan NAS. General Oncology Care in Iraq. In: Al-Shamsi HO, Abu-Gheida IH, Iqbal F, Al-Awadhi A. (Eds). Cancer in the Arab World. Springer, Singapore, 2022, pp. 63–82. https://doi.org/10.1007/978-981-16-7945-2_5
  • [2] Wilkinson L, Gathani T. Understanding breast cancer as a global health concern. Br J Radiol. 2022;95(1130):20211033. https://doi.org/10.1259/bjr.20211033
  • [3] Walsh MF, Nathanson KL, Couch FJ, Offit K. Genomic biomarkers for breast cancer risk. Adv Exp Med Biol. 2016;882:1-32. https://doi.org/10.1007/978-3-319-22909-6_1
  • [4] Collins A, Politopoulos I. The genetics of breast cancer: Risk factors for disease. Appl Clin Genet. 2011;4:11-19. https://doi.org/10.2147/tacg.s13139
  • [5] Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 2017;58(5):235-263. https://doi.org/10.1002/em.22087.
  • [6] Rose M, Burgess JT, O'Byrne K, Richard DJ, Bolderson E. PARP inhibitors: Clinical relevance, mechanisms of action and tumor resistance. Front Cell Dev Biol. 2020;8:564601. https://doi.org/10.3389/fcell.2020.564601
  • [7] Wang H, Xie H, Wang S, Zhao J, Gao Y, Chen J, Zhao Y, Guo G. PARP-1 genetic polymorphism associated with radiation sensitivity of non-small cell lung cancer. Pathol Oncol Res. 2022;28:1610751. https://doi.org/10.3389/pore.2022.1610751
  • [8] Ray Chaudhuri A, Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. 2017;18(10):610-621. https://doi.org/10.1038/nrm.2017.53
  • [9] Rose M, Burgess JT, O'Byrne K, Richard DJ, Bolderson E. PARP inhibitors: Clinical relevance, mechanisms of action and tumor resistance. Front Cell Dev Biol. 2020;8:564601. https://doi.org/10.3389/fcell.2020.564601.
  • [10] Zhang F, Lau SS, Monks TJ. A dual role for poly(ADP-ribose) polymerase-1 during caspase-dependent apoptosis. Toxicol Sci. 2012;128(1):103-114. https://doi.org/10.1093/toxsci/kfs142
  • [11] Green AR, Caracappa D, Benhasouna AA, Alshareeda A, Nolan CC, Macmillan RD, Madhusudan S, Ellis IO, Rakha EA. Biological and clinical significance of PARP1 protein expression in breast cancer. Breast Cancer Res Treat. 2015;149(2):353-362. https://doi.org/10.1007/s10549-014-3230-1
  • [12] Crossley BM, Bai J, Glaser A, Maes R, Porter E, Killian ML, Clement T, Toohey-Kurth K. Guidelines for Sanger sequencing and molecular assay monitoring. J Vet Diagn Invest. 2020;32(6):767775. https://doi.org/10.1177/1040638720905833
  • [13] Das S, Dey MK, Devireddy R, Gartia MR. Biomarkers in cancer detection, diagnosis, and prognosis. Sensors (Basel). 2023;24(1):37. https://doi.org/10.3390%2Fs24010037
  • [14] Rehman K, Iqbal Z, Zhiqin D, Ayub H, Saba N, Khan MA, Yujie L, Duan L. Analysis of genetic biomarkers, polymorphisms in ADME-related genes and their impact on pharmacotherapy for prostate cancer. Cancer Cell Int. 2023;23(1):247. https://doi.org/10.1186/s12935-023-03084-5
  • [15] Chen A. PARP inhibitors: its role in treatment of cancer. Chin J Cancer. 2011;30(7):463-471. https://doi.org/10.5732/cjc.011.10111
  • [16] Du Y, Luo L, Xu X, Yang X, Yang X, Xiong S, Yu J, Liang T, Guo L. Unleashing the power of synthetic lethality: Augmenting treatment efficacy through synergistic ıntegration with chemotherapy drugs. Pharmaceutics. 2023;15(10):2433. https://doi.org/10.3390/pharmaceutics15102433
  • [17] Chambon P, Weill JD, Doly J, Strosser MT, Mandel P. On the formation of a novel adenylic compound by enzymatic extracts of liver nuclei. Biochem Biophys Res Commun. 1966;25(6):638-643 https://doi.org/10.1016/0006-291X(66)90502-X
  • [18] Liao Y, Liao Y, Li J, Xiong J, Fan Y. Polymorphisms in PARP1 predict disease-free survival of triple-negative breast cancer patients treated with anthracycline/taxane based adjuvant chemotherapy. Sci Rep. 2020;10(1):7349. https://doi.org/10.1038/s41598-020-64473-8
  • [19] Ida RR, Jeremy S. Differential localisation of PARP-1 N-terminal fragment in PARP-1+/+ and PARP-1−/− murine cells. Mol Cells. 2014. 37(7): 526–531. https://doi.org/10.14348%2Fmolcells.2014.0077
  • [20] Thodoris S, Vasileios V, Evangelia P, Athina Ch, Vassilis G, Athanasios K, Yiannis V, Galatea K. PARP-1 expression and BRCA1 mutations in breast cancer patients’ CTCs. Cancers (Basel). 14(7): 1731. https://doi.org/10.3390%2Fcancers14071731
  • [21] Kossatz S, Pirovano G, Demétrio De Souza França P, Strome AL, Sunny SP, Zanoni DK, Mauguen A, Carney B, Brand C, Shah V, Ramanajinappa RD, Hedne N, Birur P, Sihag S, Ghossein RA, Gönen M, Strome M, Suresh A, Molena D, Ganly I, Kuriakose MA, Patel SG, Reiner T. Validation of the use of a fluorescent PARP1 inhibitor for the detection of oral, oropharyngeal and oesophageal epithelial cancers. Nat Biomed Eng. 2020;4(3):272-285. https://doi.org/10.1038/s41551-020-0526-9 .
  • [22] Yu H, Ma H, Yin M, Wei Q. Association between PARP-1 V762A polymorphism and cancer susceptibility: A meta analysis. Genet Epidemiol. 2012;36(1):56-65. https://doi.org/10.1002/gepi.20663
  • [23] Cheng J, Zhuo Z, Zhao P, Zhu J, Xin Y, Zhang J, Li P, Gao Y, He J, Zheng B. PARP1 gene polymorphisms and neuroblastoma susceptibility in Chinese children. J Cancer. 2019;10(18):4159-4164. https://doi.org/10.7150%2Fjca.34222
  • [24] Zhang X, Wang Y, A G, Qu C, Chen J. Pan-cancer analysis of PARP1 alterations as biomarkers in the prediction of ımmunotherapeutic effects and the association of ıts expression levels and ımmunotherapy signatures. Front Immunol. 2021;12:721030. https://doi.org/10.3389/fimmu.2021.721030
  • [25] Zhou RM, Li Y, Wang N, Niu CX, Huang X, Cao SR, Huo XR. PARP1 gene polymorphisms and the prognosis of esophageal cancer patients from Cixian high-ıncidence region in northern China. Asian Pac J Cancer Prev. 2020;21(10):2987-2992. https://doi.org/10.31557%2FAPJCP.2020.21.10.2987
  • [26] Kossatz S, Pirovano G, Franca PD, Strome AL, Sunny SP, Zanoni DK, Mauguen A, Carney B, Brand C, Shah V, Ramanajinappa RD, Hedne N, Birur P, Sihag S, Ghossein RA, Gonen M, Strome M, Suresh, A, Molena D, Kuriakose MA, Patel SG, Reiner T. “PARP1 as a biomarker for early detection and intraoperative tumor delineation in epithelial cancers–first-in-human results”. bioRxiv. 2019; 663385. https://doi.org/10.1101/663385
  • [27] Alhadheq AM, Purusottapatnam Shaik J, Alamri A, Aljebreen AM, Alharbi O, Almadi MA, Alhadeq F, Azzam NA, Semlali A, Alanazi M, Bazzi MD, Reddy Parine N. The effect of Poly(ADP-ribose) Polymerase-1 Gene 3'Untranslated region polymorphism in colorectal cancer risk among Saudi Cohort. Dis Markers. 2016;2016:8289293. https://doi.org/10.1155/2016/8289293
  • [28] Aldafaay AAA, Abdulamir HA, Abdulhussain HA, Badry AS, Abdulsada AK. The use of urinary α-amylase level in a diagnosis of chronic renal failure. Res J Pharm Technol. 2021; 14(3):1-4. https://doi.org/10.5958/0974 360X.2021.00283.3
  • [29] Al-Shammari AH, Ali Shahadha MA. The effect of favipiravir on liver enzyme among patients with mild to moderate COVID-19 infection: A prospective cohort study. J Popul Ther Clin Pharmacol. 2022;29(4):e46-e54. https://doi.org/10.15586/jptcp.2022.967
  • [30] Norman G. Likert scales, levels of measurement and the "laws" of statistics. Adv Health Sci Educ Theory Pract. 2010;15(5):625-632. https://doi.org/10.1007/s10459-010-9222-y.
  • [31] Szumilas M. Explaining odds ratios. J Can Acad Child Adolesc Psychiatry. 2010;19(3):227-229. Erratum in: J Can Acad Child Adolesc Psychiatry. 2015;24(1):58.
There are 31 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Biochemistry
Journal Section Research Article
Authors

Doaa Yr Algburi This is me 0009-0002-5636-9547

Omar F. Abdul-rasheed This is me 0000-0003-3016-9176

Bashar Abass Abdulhassan This is me 0000-0002-0519-0021

Farah Thamer Abdullah This is me 0000-0002-1162-0059

Submission Date January 28, 2024
Acceptance Date February 23, 2024
Publication Date June 28, 2025
Published in Issue Year 2024 Volume: 28 Issue: 6

Cite

APA Yr Algburi, D., F. Abdul-rasheed, O., Abdulhassan, B. A., Abdullah, F. T. (2025). The association of polymorphisms in base excision repair gene PARP1 with breast cancer in female population in Baghdad. Journal of Research in Pharmacy, 28(6), 1974-1981. https://doi.org/10.29228/jrp.871
AMA Yr Algburi D, F. Abdul-rasheed O, Abdulhassan BA, Abdullah F T. The association of polymorphisms in base excision repair gene PARP1 with breast cancer in female population in Baghdad. J. Res. Pharm. July 2025;28(6):1974-1981. doi:10.29228/jrp.871
Chicago Yr Algburi, Doaa, Omar F. Abdul-rasheed, Bashar Abass Abdulhassan, and Farah Thamer Abdullah. “The Association of Polymorphisms in Base Excision Repair Gene PARP1 With Breast Cancer in Female Population in Baghdad”. Journal of Research in Pharmacy 28, no. 6 (July 2025): 1974-81. https://doi.org/10.29228/jrp.871.
EndNote Yr Algburi D, F. Abdul-rasheed O, Abdulhassan BA, Abdullah F T (July 1, 2025) The association of polymorphisms in base excision repair gene PARP1 with breast cancer in female population in Baghdad. Journal of Research in Pharmacy 28 6 1974–1981.
IEEE D. Yr Algburi, O. F. Abdul-rasheed, B. A. Abdulhassan, and F. T. Abdullah, “The association of polymorphisms in base excision repair gene PARP1 with breast cancer in female population in Baghdad”, J. Res. Pharm., vol. 28, no. 6, pp. 1974–1981, 2025, doi: 10.29228/jrp.871.
ISNAD Yr Algburi, Doaa et al. “The Association of Polymorphisms in Base Excision Repair Gene PARP1 With Breast Cancer in Female Population in Baghdad”. Journal of Research in Pharmacy 28/6 (July2025), 1974-1981. https://doi.org/10.29228/jrp.871.
JAMA Yr Algburi D, F. Abdul-rasheed O, Abdulhassan BA, Abdullah F T. The association of polymorphisms in base excision repair gene PARP1 with breast cancer in female population in Baghdad. J. Res. Pharm. 2025;28:1974–1981.
MLA Yr Algburi, Doaa et al. “The Association of Polymorphisms in Base Excision Repair Gene PARP1 With Breast Cancer in Female Population in Baghdad”. Journal of Research in Pharmacy, vol. 28, no. 6, 2025, pp. 1974-81, doi:10.29228/jrp.871.
Vancouver Yr Algburi D, F. Abdul-rasheed O, Abdulhassan BA, Abdullah F T. The association of polymorphisms in base excision repair gene PARP1 with breast cancer in female population in Baghdad. J. Res. Pharm. 2025;28(6):1974-81.