Research Article
BibTex RIS Cite

Year 2024, Volume: 28 Issue: 6, 2017 - 2026, 28.06.2025
https://doi.org/10.29228/jrp.876

Abstract

References

  • [1] Khandan M, Sadeghian-Rizi S, Khodarahmi G, Hassanzadeh F. Synthesis and cytotoxic evaluation of some novel quinoxalinedione diarylamide sorafenib analogues. Res Pharm Sci. 2018; 13(2): 168-176. https://doi.org/10.4103/1735-5362.223802
  • [2] Kong X, Yao Z, He Z, Xu W, Yao J. Design, synthesis and biological evaluation of thiourea and nicotinamide containing sorafenib analogs as antitumor agents. Med chem comm. 2015; 6(5): 867–870. https://doi.org/10.1039/C4MD00536H
  • [3] Li W, Qi YY, Wang YY, Gan YY, Shao LH, Zhang LQ, Tang ZH, Zhu M,TangSY, WangZC, Ouyang GP. Design, synthesis, and biological evaluation of sorafenib derivatives containing indole (ketone) semicarbazide analogs as antitumor agents. J Heterocycl Chem. 2020; 57(6): 2548–2560. https://doi.org/10.1002/jhet.3972
  • [4] Sun S, He Z, Huang M, Wang N, He Z, Kong X,Yao J. Design and discovery of thioether and nicotinamide containing sorafenib analogues as multikinase inhibitors targeting B-Raf, B-RafV600E and VEGFR-2. Bioorg Med Chem. 2018; 26(9): 2381–2391. https:// 10.1016/j.bmc.2018.03.039
  • [5] Niculescu-Duvaz D, Niculescu-Duvaz I, Suijkerbuijk BMJM, Ménard D, Zambon A, Nourry A, Davies L, Manne HA, Friedlos F, Ogilvie L, Hedley D, Takle AK, Wilson DM, Pons JF, Coulten T, Kirk R, Cantarino N, Whittaker S, Marais R, Springer C J . Novel tricyclic pyrazole BRAF inhibitors with imidazole or furan central scaffolds. Bioorg Med Chem. 2010; 18(18): 6934–6952. https://doi.org/10.1016/j.bmc.2010.06.031
  • [6] Mannion M , Raeppel S, Claridge S , Zhou N , Saavedra O, Isakovic L , Zhan L, Gaudette F , Raeppel F , Déziel R, Beaulieu N, Nguyen H, Chute I , Beaulieu C, Dupont I , Robert M, Lefebvre S , Dubay M, Rahil J, Wang J, Ste-Croix H, Macleod A, Besterman J, Vaisburg A. N-(4-(6,7-Disubstituted-quinolin-4-yloxy)-3-fluorophenyl)-2-oxo-3 phenylimidazolidine-1-carboxamides: A novel series of dual c-Met/VEGFR2 receptor tyrosine kinase inhibitors. Bioorg Med Chem Lett. 2009; 19(23): 6552–6556. https://doi.org/10.1016/j.bmcl.2009.10.040
  • [7] Zhan W, Li Y, Huang W, Zhao Y, Yao Z, Yu S, Yuan S, Jiang F, Yao S, Li S. Design, synthesis and antitumor activities of novel bis-aryl ureas derivatives as Raf kinase inhibitors. Bioorg Med Chem. 2012; 20(14): 4323–4332. https://doi.org/10.1016/j.bmc.2012.05.051
  • [8] Zhao CR, Wang RQ, Li G, Xue XX, Sun CJ, Qu XJ, Li WB . Synthesis of indazole based diarylurea derivatives and their antiproliferative activity against tumor cell lines. Bioorg Med Chem Lett. 2013; 23(7): 1989–1992. https://doi.org/10.1016/j.bmcl.2013.02.034
  • [9] Liu Z, Wang Y, Lin H, Zuo D, Wang L, Zhao Y, Gong P. Design, synthesis and biological evaluation of novel thieno[3,2-d] pyrimidine derivatives containing diaryl urea moiety as potent antitumor agents. Eur J Med Chem. 2014; 85: 215–227. https://doi.org/10.1016/j.ejmech.2014.07.099
  • [10] Qin M, Yan S, Wang L, Zhang H, Zhao Y, Wu S, Wu D, Gong P. Discovery of novel diaryl urea derivatives bearing a triazole moiety as potential antitumor agents. Eur J Med Chem. 2016; 115: 1–13. https://doi.org/10.1016/j.ejmech.2016.02.071
  • [11] Kong X, Yao Z, He Z, Xu W, Yao J. Design, synthesis and biological evaluation of thiourea and nicotinamide containing sorafenib analogs as antitumor agents. Med chem comm. 2015; 6(5): 867–870. https://doi.org/10.1039/C4MD00536H
  • [12] Chen F, Fang Y, Zhao R, Le J, Zhang B, Huang R, Chen Z, Shao J. Evolution in medicinal chemistry of sorafenib derivatives for hepatocellular carcinoma. Eur J Med Chem. 2019; 179: 916–935. https://doi.org/10.1016/j.ejmech.2019.06.070
  • [13] Wang M, Xu S, Lei H, Wang C, Xiao Z, Jia S, Liu Y, Zheng P, Zhu W. Design, synthesis and antitumor activity of Novel Sorafenib derivatives bearing pyrazole scaffold. Bioorg Med Chem. 2017; 25(20): 5754–5763. https://doi.org/10.1016/j. bmc.2017.09.003
  • [14] Wang M, Xu S, Wu C, Liu X, Tao H, Huang Y, Liu Y, Zheng P, Zhu W. Design, synthesis and activity of novel sorafenib analogues bearing chalcone unit. Bioorg Med Chem Lett. 2016; 26(22): 5450–5454. https://doi.org/10.1016/j. bmcl.2016.10.029
  • [15] Celik I, Çevik UA, Karayel A, Işlk A, Kaylş U, Gül ÜD, Bostanc HE, Konca SF, Özkay Y, Kaplancıkl ZA. Synthesis, molecular docking, dynamics, quantum-chemical computation, and antimicrobial activity studies of some new benzimidazole-thiadiazole hybrids. ACS Omega. 2022; 7(50): 47015–4730. https://doi.org/10.1021/acsomega.2c06142
  • [16] Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001; 46(1-3): 3-26. https://doi.org/10.1016/S0169-409X(00)00129-0
  • [17] Zerroug A, Belaidi S, BenBrahim I, Sinha L, Chtita S. Virtual screening in drug-likeness and structure/activity relationship of pyridazine derivatives as Anti-Alzheimer drugs. J King Saud Univ Sci. 2019; 31(4): 595–601. https://doi.org/10.1016/j.jksus.2018.03.024
  • [18] Kulabas N. In silico investigation of novel 5-benzylidene-2 (arylsulfonylhydrazono) thiazolidine-4-ones as potential inhibitors of MPGES-1 and COX-2. J Res Pharm. 2023; 27(5): 2124-2134. http://dx.doi.org/10.29228/jrp.491
  • [19] Morris GM, Ruth H, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009; 30(16): 2785–2791. https://doi.org/10.1002/jcc.21256
  • [20] Mohammed YHE, Khanum SA. The critical role of novel benzophenone analogs on tumor growth inhibition targeting angiogenesis and apoptosis. Med Chem Comm. 2018; 9(4): 639-656. https://doi.org/10.1039/C7MD00593H
  • [21] Chen JN, Wang XF, Li T, Wu DW, Fu XB, Zhang GJ, Shen XC, Wang HS. Design, synthesis, and biological evaluation of novel quinazolinyl-diaryl urea derivatives as potential anticancer agents. Eur J Med Chem. 2016; 107: 12–25. https://doi.org/10.1016/j.ejmech.2015.10.045
  • [22] Khan KM, Rahim F, Wadood A, Kosar N, Taha M, Lalani S, Khan A, Fakhri MI, Junaid M, Rehman W, Khan M, Perveen S, Sajid M, Choudhary MI. Synthesis and molecular docking studies of potent α-glucosidase inhibitors based on biscoumarin skeleton. Eur J Med Chem. 2014; 81: 245-252. https://doi.org/10.1016/j.ejmech.2014.05.010
  • [23] El-Azab AS, Al-Omar MA, Abdel-Aziz AAM, Abdel-Aziz NI, El-Sayed MAA, Aleisa AM, Sayed-Ahmed MM, Abdel-Hamide SG. Design, synthesis and biological evaluation of novel quinazoline derivatives as potential antitumor agents: Molecular docking study. Eur J Med Chem. 2010; 45(9): 4188–4198. https://doi.org/10.1016/j.ejmech.2010.06.013
  • [24] Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, Ludlam MJ, Stokoe D, Gloor SL, Vigers G, Morales T, Aliagas I, Liu B, Sideris S, Hoeflich KP, Jaiswal BS, Seshagiri S, Koeppen H, Belvin M, Friedman LS, Malek S. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature. 2010; 464(7287): 431–435. https://doi.org/10.1038/nature08833
  • [25] Webb Benjamin, Sali Andrej. Protein Structure Modeling with MODELLER. Methods Mol Biol. 2017; 1654: 39 54. https://doi.org/10.1007/978-1-4939-7231-9_4
  • [26] Kumbhar BV, Bhandare VV, Panda D, Kunwar A. Delineating the interaction of combretastatin A-4 with αβ tubulin isotypes present in drug resistant human lung carcinoma using a molecular modeling approach. J Biomol Struct Dyn. 2020; 38(2): 426–438. https://doi.org/10.1080/07391102.2019.1577174
  • [27] Pymol, Py-MOL Molecular Graphics System, Version 1.1. Schrödinger LLC, 2002. http://www.pymol.org (accessed on 22 June 2021).
  • [28] Šudomová M, Hassan STS, Khan H, Rasekhian M, Nabavi SM. A multi-biochemical and in silico study on anti enzymatic actions of pyroglutamic acid against pde-5, ace, and urease using various analytical techniques: Unexplored pharmacological properties and cytotoxicity evaluation. Biomolecules. 2019; 9(9): 392-403 https://doi.org/10.3390/biom9090392.
  • [29] Ajankar NP, Pimple SS, Chaudhari PD. Molecular docking and molecular dynamic simulation studies of zidovudine and lamivudine against novel targets of Human Immunodeficiency Virus. Eur ChemBull. 2023; (8): 5795–5807. https://doi.org/10.31838/ecb/2023.12.8.460.
  • [30] Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness https://doi.org/10.1038/srep42717 of small molecules. Sci Rep. 2017; 7(1): 2045-2322.

In silico investigation of novel sorafenib analogues as potential inhibitors of VEGFR kinase and c-RAF kinase

Year 2024, Volume: 28 Issue: 6, 2017 - 2026, 28.06.2025
https://doi.org/10.29228/jrp.876

Abstract

Cancer is the second most prevalent reason for mortality. Researching new drugs to fight cancer is a priority for many research teams due to the lack of specificity in present therapies. Developing target-specific anti-cancer drugs improves therapeutic potency and safety. Also, Computational chemistry play an important role in the research of new possible medicines. Thus, the goal of present research, was to determine in silico studies using the molecular docking and ADME profiling on three newly designed Sorafenib analogues against tyrosine kinase and c-Raf kinase inhibitor enzymes. Molecular docking studies were conducted using PDB ids 2XIR and 3OMV. The Autodock-4 software was utilised for this purpose. Additionally, software tools such as SwissADME and Pro-TOX were employed to perform physiochemical studies and predict toxicity. Molecular docking results showed that compounds (1-3) had strong binding energies of -10.23, -10.24, and -11.39 kcal/mol with VEGFR (PDB Id: 2XIR), while Sorafenib had -11.49; and the energies for c-Raf (PDB Id: 2OMV) were -9.41, -9.48, and -10.89, respectively with reference standard to Sorafenib was -10.39 kcal/mol. It was concluded that compound 3 showed the similar affinity to inhibit VEGFR and c-Raf kinase. It proved by both docking study, molecular dynamic simulation, ADME and tox properties evaluation.

References

  • [1] Khandan M, Sadeghian-Rizi S, Khodarahmi G, Hassanzadeh F. Synthesis and cytotoxic evaluation of some novel quinoxalinedione diarylamide sorafenib analogues. Res Pharm Sci. 2018; 13(2): 168-176. https://doi.org/10.4103/1735-5362.223802
  • [2] Kong X, Yao Z, He Z, Xu W, Yao J. Design, synthesis and biological evaluation of thiourea and nicotinamide containing sorafenib analogs as antitumor agents. Med chem comm. 2015; 6(5): 867–870. https://doi.org/10.1039/C4MD00536H
  • [3] Li W, Qi YY, Wang YY, Gan YY, Shao LH, Zhang LQ, Tang ZH, Zhu M,TangSY, WangZC, Ouyang GP. Design, synthesis, and biological evaluation of sorafenib derivatives containing indole (ketone) semicarbazide analogs as antitumor agents. J Heterocycl Chem. 2020; 57(6): 2548–2560. https://doi.org/10.1002/jhet.3972
  • [4] Sun S, He Z, Huang M, Wang N, He Z, Kong X,Yao J. Design and discovery of thioether and nicotinamide containing sorafenib analogues as multikinase inhibitors targeting B-Raf, B-RafV600E and VEGFR-2. Bioorg Med Chem. 2018; 26(9): 2381–2391. https:// 10.1016/j.bmc.2018.03.039
  • [5] Niculescu-Duvaz D, Niculescu-Duvaz I, Suijkerbuijk BMJM, Ménard D, Zambon A, Nourry A, Davies L, Manne HA, Friedlos F, Ogilvie L, Hedley D, Takle AK, Wilson DM, Pons JF, Coulten T, Kirk R, Cantarino N, Whittaker S, Marais R, Springer C J . Novel tricyclic pyrazole BRAF inhibitors with imidazole or furan central scaffolds. Bioorg Med Chem. 2010; 18(18): 6934–6952. https://doi.org/10.1016/j.bmc.2010.06.031
  • [6] Mannion M , Raeppel S, Claridge S , Zhou N , Saavedra O, Isakovic L , Zhan L, Gaudette F , Raeppel F , Déziel R, Beaulieu N, Nguyen H, Chute I , Beaulieu C, Dupont I , Robert M, Lefebvre S , Dubay M, Rahil J, Wang J, Ste-Croix H, Macleod A, Besterman J, Vaisburg A. N-(4-(6,7-Disubstituted-quinolin-4-yloxy)-3-fluorophenyl)-2-oxo-3 phenylimidazolidine-1-carboxamides: A novel series of dual c-Met/VEGFR2 receptor tyrosine kinase inhibitors. Bioorg Med Chem Lett. 2009; 19(23): 6552–6556. https://doi.org/10.1016/j.bmcl.2009.10.040
  • [7] Zhan W, Li Y, Huang W, Zhao Y, Yao Z, Yu S, Yuan S, Jiang F, Yao S, Li S. Design, synthesis and antitumor activities of novel bis-aryl ureas derivatives as Raf kinase inhibitors. Bioorg Med Chem. 2012; 20(14): 4323–4332. https://doi.org/10.1016/j.bmc.2012.05.051
  • [8] Zhao CR, Wang RQ, Li G, Xue XX, Sun CJ, Qu XJ, Li WB . Synthesis of indazole based diarylurea derivatives and their antiproliferative activity against tumor cell lines. Bioorg Med Chem Lett. 2013; 23(7): 1989–1992. https://doi.org/10.1016/j.bmcl.2013.02.034
  • [9] Liu Z, Wang Y, Lin H, Zuo D, Wang L, Zhao Y, Gong P. Design, synthesis and biological evaluation of novel thieno[3,2-d] pyrimidine derivatives containing diaryl urea moiety as potent antitumor agents. Eur J Med Chem. 2014; 85: 215–227. https://doi.org/10.1016/j.ejmech.2014.07.099
  • [10] Qin M, Yan S, Wang L, Zhang H, Zhao Y, Wu S, Wu D, Gong P. Discovery of novel diaryl urea derivatives bearing a triazole moiety as potential antitumor agents. Eur J Med Chem. 2016; 115: 1–13. https://doi.org/10.1016/j.ejmech.2016.02.071
  • [11] Kong X, Yao Z, He Z, Xu W, Yao J. Design, synthesis and biological evaluation of thiourea and nicotinamide containing sorafenib analogs as antitumor agents. Med chem comm. 2015; 6(5): 867–870. https://doi.org/10.1039/C4MD00536H
  • [12] Chen F, Fang Y, Zhao R, Le J, Zhang B, Huang R, Chen Z, Shao J. Evolution in medicinal chemistry of sorafenib derivatives for hepatocellular carcinoma. Eur J Med Chem. 2019; 179: 916–935. https://doi.org/10.1016/j.ejmech.2019.06.070
  • [13] Wang M, Xu S, Lei H, Wang C, Xiao Z, Jia S, Liu Y, Zheng P, Zhu W. Design, synthesis and antitumor activity of Novel Sorafenib derivatives bearing pyrazole scaffold. Bioorg Med Chem. 2017; 25(20): 5754–5763. https://doi.org/10.1016/j. bmc.2017.09.003
  • [14] Wang M, Xu S, Wu C, Liu X, Tao H, Huang Y, Liu Y, Zheng P, Zhu W. Design, synthesis and activity of novel sorafenib analogues bearing chalcone unit. Bioorg Med Chem Lett. 2016; 26(22): 5450–5454. https://doi.org/10.1016/j. bmcl.2016.10.029
  • [15] Celik I, Çevik UA, Karayel A, Işlk A, Kaylş U, Gül ÜD, Bostanc HE, Konca SF, Özkay Y, Kaplancıkl ZA. Synthesis, molecular docking, dynamics, quantum-chemical computation, and antimicrobial activity studies of some new benzimidazole-thiadiazole hybrids. ACS Omega. 2022; 7(50): 47015–4730. https://doi.org/10.1021/acsomega.2c06142
  • [16] Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001; 46(1-3): 3-26. https://doi.org/10.1016/S0169-409X(00)00129-0
  • [17] Zerroug A, Belaidi S, BenBrahim I, Sinha L, Chtita S. Virtual screening in drug-likeness and structure/activity relationship of pyridazine derivatives as Anti-Alzheimer drugs. J King Saud Univ Sci. 2019; 31(4): 595–601. https://doi.org/10.1016/j.jksus.2018.03.024
  • [18] Kulabas N. In silico investigation of novel 5-benzylidene-2 (arylsulfonylhydrazono) thiazolidine-4-ones as potential inhibitors of MPGES-1 and COX-2. J Res Pharm. 2023; 27(5): 2124-2134. http://dx.doi.org/10.29228/jrp.491
  • [19] Morris GM, Ruth H, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009; 30(16): 2785–2791. https://doi.org/10.1002/jcc.21256
  • [20] Mohammed YHE, Khanum SA. The critical role of novel benzophenone analogs on tumor growth inhibition targeting angiogenesis and apoptosis. Med Chem Comm. 2018; 9(4): 639-656. https://doi.org/10.1039/C7MD00593H
  • [21] Chen JN, Wang XF, Li T, Wu DW, Fu XB, Zhang GJ, Shen XC, Wang HS. Design, synthesis, and biological evaluation of novel quinazolinyl-diaryl urea derivatives as potential anticancer agents. Eur J Med Chem. 2016; 107: 12–25. https://doi.org/10.1016/j.ejmech.2015.10.045
  • [22] Khan KM, Rahim F, Wadood A, Kosar N, Taha M, Lalani S, Khan A, Fakhri MI, Junaid M, Rehman W, Khan M, Perveen S, Sajid M, Choudhary MI. Synthesis and molecular docking studies of potent α-glucosidase inhibitors based on biscoumarin skeleton. Eur J Med Chem. 2014; 81: 245-252. https://doi.org/10.1016/j.ejmech.2014.05.010
  • [23] El-Azab AS, Al-Omar MA, Abdel-Aziz AAM, Abdel-Aziz NI, El-Sayed MAA, Aleisa AM, Sayed-Ahmed MM, Abdel-Hamide SG. Design, synthesis and biological evaluation of novel quinazoline derivatives as potential antitumor agents: Molecular docking study. Eur J Med Chem. 2010; 45(9): 4188–4198. https://doi.org/10.1016/j.ejmech.2010.06.013
  • [24] Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, Ludlam MJ, Stokoe D, Gloor SL, Vigers G, Morales T, Aliagas I, Liu B, Sideris S, Hoeflich KP, Jaiswal BS, Seshagiri S, Koeppen H, Belvin M, Friedman LS, Malek S. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature. 2010; 464(7287): 431–435. https://doi.org/10.1038/nature08833
  • [25] Webb Benjamin, Sali Andrej. Protein Structure Modeling with MODELLER. Methods Mol Biol. 2017; 1654: 39 54. https://doi.org/10.1007/978-1-4939-7231-9_4
  • [26] Kumbhar BV, Bhandare VV, Panda D, Kunwar A. Delineating the interaction of combretastatin A-4 with αβ tubulin isotypes present in drug resistant human lung carcinoma using a molecular modeling approach. J Biomol Struct Dyn. 2020; 38(2): 426–438. https://doi.org/10.1080/07391102.2019.1577174
  • [27] Pymol, Py-MOL Molecular Graphics System, Version 1.1. Schrödinger LLC, 2002. http://www.pymol.org (accessed on 22 June 2021).
  • [28] Šudomová M, Hassan STS, Khan H, Rasekhian M, Nabavi SM. A multi-biochemical and in silico study on anti enzymatic actions of pyroglutamic acid against pde-5, ace, and urease using various analytical techniques: Unexplored pharmacological properties and cytotoxicity evaluation. Biomolecules. 2019; 9(9): 392-403 https://doi.org/10.3390/biom9090392.
  • [29] Ajankar NP, Pimple SS, Chaudhari PD. Molecular docking and molecular dynamic simulation studies of zidovudine and lamivudine against novel targets of Human Immunodeficiency Virus. Eur ChemBull. 2023; (8): 5795–5807. https://doi.org/10.31838/ecb/2023.12.8.460.
  • [30] Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness https://doi.org/10.1038/srep42717 of small molecules. Sci Rep. 2017; 7(1): 2045-2322.
There are 30 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Chemistry
Journal Section Research Article
Authors

Manisha Mane This is me 0000-0001-7608-4835

Savita Yadav This is me 0000-0001-5344-1764

Submission Date November 28, 2023
Acceptance Date February 28, 2024
Publication Date June 28, 2025
Published in Issue Year 2024 Volume: 28 Issue: 6

Cite

APA Mane, M., & Yadav, S. (2025). In silico investigation of novel sorafenib analogues as potential inhibitors of VEGFR kinase and c-RAF kinase. Journal of Research in Pharmacy, 28(6), 2017-2026. https://doi.org/10.29228/jrp.876
AMA Mane M, Yadav S. In silico investigation of novel sorafenib analogues as potential inhibitors of VEGFR kinase and c-RAF kinase. J. Res. Pharm. July 2025;28(6):2017-2026. doi:10.29228/jrp.876
Chicago Mane, Manisha, and Savita Yadav. “In Silico Investigation of Novel Sorafenib Analogues As Potential Inhibitors of VEGFR Kinase and C-RAF Kinase”. Journal of Research in Pharmacy 28, no. 6 (July 2025): 2017-26. https://doi.org/10.29228/jrp.876.
EndNote Mane M, Yadav S (July 1, 2025) In silico investigation of novel sorafenib analogues as potential inhibitors of VEGFR kinase and c-RAF kinase. Journal of Research in Pharmacy 28 6 2017–2026.
IEEE M. Mane and S. Yadav, “In silico investigation of novel sorafenib analogues as potential inhibitors of VEGFR kinase and c-RAF kinase”, J. Res. Pharm., vol. 28, no. 6, pp. 2017–2026, 2025, doi: 10.29228/jrp.876.
ISNAD Mane, Manisha - Yadav, Savita. “In Silico Investigation of Novel Sorafenib Analogues As Potential Inhibitors of VEGFR Kinase and C-RAF Kinase”. Journal of Research in Pharmacy 28/6 (July2025), 2017-2026. https://doi.org/10.29228/jrp.876.
JAMA Mane M, Yadav S. In silico investigation of novel sorafenib analogues as potential inhibitors of VEGFR kinase and c-RAF kinase. J. Res. Pharm. 2025;28:2017–2026.
MLA Mane, Manisha and Savita Yadav. “In Silico Investigation of Novel Sorafenib Analogues As Potential Inhibitors of VEGFR Kinase and C-RAF Kinase”. Journal of Research in Pharmacy, vol. 28, no. 6, 2025, pp. 2017-26, doi:10.29228/jrp.876.
Vancouver Mane M, Yadav S. In silico investigation of novel sorafenib analogues as potential inhibitors of VEGFR kinase and c-RAF kinase. J. Res. Pharm. 2025;28(6):2017-26.