Research Article
BibTex RIS Cite

Year 2025, Volume: 29 Issue: 3, 959 - 970, 04.06.2025
https://doi.org/10.12991/jrespharm.1693804
https://izlik.org/JA46GA88WT

Abstract

References

  • [1] Jezek A, Del Rio C. Antibacterial resistance, research, and funding in 2024. Clin Infect Dis. 2023;77(Suppl 4):S277-S278. https://doi.org/10.1093/cid/ciad473.
  • [2] Aeny T, Prasetyo J, Suharjo R, Dirmawati SR, Efri, Niswati A. Isolation and ındentification of Actinomycetes potential as the antagonist of Dickeya zeae pineapple soft rot in Lampung, Indonesia. Biodiversitas. 2018; 19(16):2052-2058. https://doi.org/10/13057/biodiv/d190610.
  • [3] De Simeis D, Serra S. Actinomycetes: A never-ending source of bioactive compounds—an overview on antibiotics production. In Antibiotics. ntibiotics (Basel). 2021 Apr 22;10(5):483. https://doi.org/10.3390/antibiotics10050483
  • [4] Rattanakavil T, Kumlung T, Klanbut K. Isolation and molecular characterization antifungi production from rice fields rhizosphere soil, Thailand. Int J Sci Innov Technol. 2022; 3(1) :41-5
  • [5] Sarika K, Sampath G, Kaveriyappan Govindarajan R, Ameen F, Alwakeel S, Al Gwaiz HI, Raja Komuraiah T, Ravi G. Antimicrobial and antifungal activity of soil actinomycetes isolated from coal mine sites. Saudi J Biol Sci. 2021;28(6):3553-3558. https://doi.org/10.1016/j.sjbs.2021.03.029.
  • [6] Jakubiec-Krzesniak K, Rajnisz-Mateusiak A, Guspiel A, Ziemska J, Solecka J. Secondary metabolites of Actinomycetes and their antibacterial, antifungal and antiviral properties. Pol J Microbiol. 2018;67(3):259-272. http://doi.org/10.21307/pjm-2018-048.
  • [7] Bhatti AA, Haq S, Bhat RA. Actinomycetes benefaction role in soil and plant health. Microb Pathog. 2017;111:458-467. https://doi.org/10.1016/j.micpath.2017.09.036
  • [8] Li Q, Cai Q, Pan L, Tang X, Ling G, Wei Y, Li X, Yang S. Changes in the microbiome of sugarcane (Saccharum spp. Hybrids.) rhizosphere in response to manganese toxicity. Life (Basel). 2023;13(10):1956. https://doi.org/10.3390/life13101956
  • [9] Wagner MR. Identifying causes and consequences of rhizosphere microbiome heritability. PLoS Biol. 2024;22(4):e3002604. https://doi.org/10.1371/journal.pbio.3002604
  • [10] Yuan C, Wang H, Dai X, Chen M, Luo J, Yang R, Ding, F. Effect of karst microhabitats on the structure and function of the rhizosphere soil microbial community of Rhododendron pudingense. Sustainability (Switzerland). 2023; 15(9):7104. https://doi.org/10.3390/su15097104
  • [11] Liu Y, Wei X, Zhou Z, Shao C, Su, S. Influence of heterogeneous karst microhabitats on the root foraging ability of Chinese windmill palm (Trachycarpus fortunei) seedlings. Int J Environ Res Public Health. 2020;17(2):434. https://doi.org/10.3390/ijerph17020434
  • [12] Pal R, Teli G, Sharma B, Kumar B, Chawla P. In vitro anti- inflammatory and antioxidant activity of Nephrolepis cordifolia and molecule docking of its active chemical constituents. J Pharm Exp Med. 2021; 13(1): 21-27.
  • [13] El-Tantawy ME, Shams MM, Afifi MS. Chemical composition and biological evaluation of the volatile constituents from the aerial parts of Nephrolepis exaltata (L.) and Nephrolepis cordifolia (L.) C. Presl grown in Egypt. Nat Prod Res. 2016;30(10):1197-1201. https://doi.org/10.1080/14786419.2015.1046070.
  • [14] Renjana E, Nikmatullah M, Rifqi FE, Wige NL, Angio M. Potensi Nephrolepis spp. sebagai Tanaman Obat Koleksi Kebun Raya Purwodadi Berdasarkan Kajian Etnomedisin dan Fitokimia. Buletin Plasma Nutfah. 2021; 27(1). https://doi.org/10.21082/blpn.v27n1.2021.p1-10
  • [15] Yu Z, Han C, Yu B, Zhao J, Yan Y, Huang S, Liu C, Xiang W. Taxonomic characterization, and secondary metabolite analysis of Streptomyces triticiradicis sp. nov.: A novel actinomycete with antifungal activity. Microorganisms. 2020;8(1):77. https://doi.org/10.3390/microorganisms8010077.
  • [16] Elshafie HS, Camele I. Rhizospheric Actinomycetes revealed antifungal and plant-growth-promoting activities under controlled environment. Plants (Basel). 2022;11(14):1872. https://doi.org/10.3390/plants11141872
  • [17] Belyagoubi L, Belyagoubi BN, Jurado V, Dupont J, Lacoste S, Djebbah F, Ounadjela FZ, Benaissa S, Habi S, Abdelouahid DE, Saiz-Jimenez C. Antimicrobial activities of culturable microorganisms (Actinomycetes and fungi) isolated from Chaabe Cave, Algeria. Int J Speleol. 2018; 47: 189–199. https://doi.org/10.5038/1827-806X.47.2.2148
  • [18] Elshafie HS, Camele I. Rhizospheric Actinomycetes revealed antifungal and plant-growth-promoting activities under controlled environment. Plants (Basel). 2022; 11(14):1872. https://doi.org/10.3390/plants11141872
  • [19] Ali A, Junda M, Rante H, Nuramelia R. Characterization of Actinomycetes antagonist Fusarium oxysporum f.sp. passiflora ısolated from rhizosphere soil of purple passion fruit plants, South Sulawesi, Indonesia. J Phys: Conf Series. 2018: 1028(1). https://doi.org/10.1088/1742-6596/1028/1/012015
  • [20] Retnowati Y, Kandowangko NY, Katili AS, Pembengo W. Diversity of actinomycetes on plant rhizosphere of karst ecosystem of Gorontalo, Indonesia. Biodiversitas. 2024; 25(3): 907–915. https://doi.org/10.13057/biodiv/d250301
  • [21] Rante H, Manggau MA, Alam G, Pakki E, Erviani AE, Hafidah N, Abidin HL, Ali A. Isolation and identification of Actinomycetes with antifungal activity from karts ecosystem in Maros-Pangkep, Indonesia. Biodiversitas. 2024; 25(2). 458–464. https://doi.org/10.13057/biodiv/d250203
  • [22] Rante H, Gemini A, Usmar, Syarifa Z, Ari K, Alimuddin A. Antimicrobial activity of Streptomyces spp. sponge-associated isolated from Samalona Island of South Sulawesi, Indonesia. Biodiversitas. 2022; 23(3): 1392-1398. https://doi.org/10.13057/biodiv/d230325
  • [23] Kim JH, Lee N, Hwang S, Kim W, Lee Y, Cho S, Palsson BO, Cho BK. Discovery of novel secondary metabolites encoded in actinomycete genomes through coculture. J Ind Microbiol Biotechnol. 2021;48(3-4):kuaa001. https://doi.org/10.1093/jimb/kuaa001
  • [24] Song Q, Huang Y, Yang H. Optimization of fermentation conditions for antibiotics production by Actinomycetes YJ1 Strain against Sclerotinia sclerotinia. J Agric Sci. 2012; 4(7): 95-102. http://dx.doi.org/10.5539/jas.v4n7p95.
  • [25] Ibnouf EO, Aldawsari MF, Ali Waggiallah H. Isolation and extraction of some compounds that act as antimicrobials from actinomycetes. Saudi J Biol Sci. 2022;29(8):103352. https://doi.org/10.1016/j.sjbs.2022.103352
  • [26] Sah SN, Majhi R, Regmi S, Ghimire A, Biswas B, Yadaf LP, Sah RK, Shah PK. Fermentation and extraction of 385 antibacterial metabolite using Streptomyces Spp. isolated from Taplejung Nepal. J Inst Sci Technol. 2021; 26 (1): 8-15. https://doi.org/10.3126/jist.v26i1.37808
  • [27] Sah SN, Lekhak B. Screening of antibioticproducing Actinomycetes of the soil of Siraha, Nepal. Himalay J Sci Technol. 2017; 1: 20-25. https://doi.org/10.3126/hijost.v1i0.25817
  • [28] Etinagbedia A. Phytochemical analysis of Mucuna pruriens root by thin layer chromatography (TLC). Int J Pharm Res Appl. 2022; 4(7): 1814-1820. https://doi.org/10.35629/7781-070418141820
  • [29] Calvo-Peña C, Cobos R, Sánchez-López JM, Ibañez A, Coque JJR. Albocycline ıs the main bioactive antifungal compound produced by Streptomyces sp. OR6 against Verticillium dahliae. Plants (Basel). 2023;12(20):3612. https://doi.org/10.3390/plants12203612
  • [30] Hyeon JD, Park KD, Kim SH, Kim KR, Choi SW, Kim JT, Choi KH, Kim JH. Identification of Streptomyces sp. Producing Antibiotics Against Phytopathogenic Fungi, and Its Structure. J Microbiol Biotechnol. 2004;14:212-215.

Isolation of Actinomycetes from rhizosphere soil of Nephrolepis cordifolia as a producer of antifungal compounds in the karst of Bantimurung

Year 2025, Volume: 29 Issue: 3, 959 - 970, 04.06.2025
https://doi.org/10.12991/jrespharm.1693804
https://izlik.org/JA46GA88WT

Abstract

Actinomycetes are anaerobic bacteria, either rod-shaped or filamentous, Gram-positi0ve, that produce antibiotic and antifungal compounds. This study aims to isolate and explore the potential of actinomycetes as producers of antifungal compounds from the rhizosphere of Nephrolepis cordifolia in the karst ecosystem of Bantimurung, South Sulawesi, Indonesia. Primary and secondary screenings were conducted against Candida albicans and Aspergillus niger using 17 Actinomycetes isolates from the rhizosphere of Nephrolepis cordifolia. All isolates were tested antagonistically, and two isolates that exhibited the highest antifungal activity were designated RKP-A.1-2 and RKP-B.1-1. These active isolates were then fermented for 16 days at a speed of 150 rpm. The fermentation products were then sonicated to separate the supernatant and biomass. The supernatant was extracted using ethyl acetate (1:1 v/v) and tested using the diffusion method. The test results indicated that the ethyl acetate extract from the fermentation of both isolates was able to inhibit the growth of Candida albicans up to a concentration of 0.5 mg/μ of extract from RKP-A.1-2 and RKP-B.1-1. The compound profiles of the secondary metabolites produced by Actinomycetes and extracts from karst and non-karst Nephrolepis cordifolia showed different compound profiles, as evidenced by distinct Rf values. Phylogenetic analysis of the 16S rRNA gene sequences revealed that RKP-A.1-2 and RKP-B.1-1 are closely related to Streptomyces sp . with a similarity value of 100.00%. From the results of this study, it can be concluded that Actinomycetes from the rhizosphere of Nephrolepis cordifolia in the karst ecosystem of Bantimurung have potential as producers of antifungal compounds that warrant further investigation. This research provides a significant contribution to the understanding and utilization of these microorganisms as potential sources of bioactive compounds.

References

  • [1] Jezek A, Del Rio C. Antibacterial resistance, research, and funding in 2024. Clin Infect Dis. 2023;77(Suppl 4):S277-S278. https://doi.org/10.1093/cid/ciad473.
  • [2] Aeny T, Prasetyo J, Suharjo R, Dirmawati SR, Efri, Niswati A. Isolation and ındentification of Actinomycetes potential as the antagonist of Dickeya zeae pineapple soft rot in Lampung, Indonesia. Biodiversitas. 2018; 19(16):2052-2058. https://doi.org/10/13057/biodiv/d190610.
  • [3] De Simeis D, Serra S. Actinomycetes: A never-ending source of bioactive compounds—an overview on antibiotics production. In Antibiotics. ntibiotics (Basel). 2021 Apr 22;10(5):483. https://doi.org/10.3390/antibiotics10050483
  • [4] Rattanakavil T, Kumlung T, Klanbut K. Isolation and molecular characterization antifungi production from rice fields rhizosphere soil, Thailand. Int J Sci Innov Technol. 2022; 3(1) :41-5
  • [5] Sarika K, Sampath G, Kaveriyappan Govindarajan R, Ameen F, Alwakeel S, Al Gwaiz HI, Raja Komuraiah T, Ravi G. Antimicrobial and antifungal activity of soil actinomycetes isolated from coal mine sites. Saudi J Biol Sci. 2021;28(6):3553-3558. https://doi.org/10.1016/j.sjbs.2021.03.029.
  • [6] Jakubiec-Krzesniak K, Rajnisz-Mateusiak A, Guspiel A, Ziemska J, Solecka J. Secondary metabolites of Actinomycetes and their antibacterial, antifungal and antiviral properties. Pol J Microbiol. 2018;67(3):259-272. http://doi.org/10.21307/pjm-2018-048.
  • [7] Bhatti AA, Haq S, Bhat RA. Actinomycetes benefaction role in soil and plant health. Microb Pathog. 2017;111:458-467. https://doi.org/10.1016/j.micpath.2017.09.036
  • [8] Li Q, Cai Q, Pan L, Tang X, Ling G, Wei Y, Li X, Yang S. Changes in the microbiome of sugarcane (Saccharum spp. Hybrids.) rhizosphere in response to manganese toxicity. Life (Basel). 2023;13(10):1956. https://doi.org/10.3390/life13101956
  • [9] Wagner MR. Identifying causes and consequences of rhizosphere microbiome heritability. PLoS Biol. 2024;22(4):e3002604. https://doi.org/10.1371/journal.pbio.3002604
  • [10] Yuan C, Wang H, Dai X, Chen M, Luo J, Yang R, Ding, F. Effect of karst microhabitats on the structure and function of the rhizosphere soil microbial community of Rhododendron pudingense. Sustainability (Switzerland). 2023; 15(9):7104. https://doi.org/10.3390/su15097104
  • [11] Liu Y, Wei X, Zhou Z, Shao C, Su, S. Influence of heterogeneous karst microhabitats on the root foraging ability of Chinese windmill palm (Trachycarpus fortunei) seedlings. Int J Environ Res Public Health. 2020;17(2):434. https://doi.org/10.3390/ijerph17020434
  • [12] Pal R, Teli G, Sharma B, Kumar B, Chawla P. In vitro anti- inflammatory and antioxidant activity of Nephrolepis cordifolia and molecule docking of its active chemical constituents. J Pharm Exp Med. 2021; 13(1): 21-27.
  • [13] El-Tantawy ME, Shams MM, Afifi MS. Chemical composition and biological evaluation of the volatile constituents from the aerial parts of Nephrolepis exaltata (L.) and Nephrolepis cordifolia (L.) C. Presl grown in Egypt. Nat Prod Res. 2016;30(10):1197-1201. https://doi.org/10.1080/14786419.2015.1046070.
  • [14] Renjana E, Nikmatullah M, Rifqi FE, Wige NL, Angio M. Potensi Nephrolepis spp. sebagai Tanaman Obat Koleksi Kebun Raya Purwodadi Berdasarkan Kajian Etnomedisin dan Fitokimia. Buletin Plasma Nutfah. 2021; 27(1). https://doi.org/10.21082/blpn.v27n1.2021.p1-10
  • [15] Yu Z, Han C, Yu B, Zhao J, Yan Y, Huang S, Liu C, Xiang W. Taxonomic characterization, and secondary metabolite analysis of Streptomyces triticiradicis sp. nov.: A novel actinomycete with antifungal activity. Microorganisms. 2020;8(1):77. https://doi.org/10.3390/microorganisms8010077.
  • [16] Elshafie HS, Camele I. Rhizospheric Actinomycetes revealed antifungal and plant-growth-promoting activities under controlled environment. Plants (Basel). 2022;11(14):1872. https://doi.org/10.3390/plants11141872
  • [17] Belyagoubi L, Belyagoubi BN, Jurado V, Dupont J, Lacoste S, Djebbah F, Ounadjela FZ, Benaissa S, Habi S, Abdelouahid DE, Saiz-Jimenez C. Antimicrobial activities of culturable microorganisms (Actinomycetes and fungi) isolated from Chaabe Cave, Algeria. Int J Speleol. 2018; 47: 189–199. https://doi.org/10.5038/1827-806X.47.2.2148
  • [18] Elshafie HS, Camele I. Rhizospheric Actinomycetes revealed antifungal and plant-growth-promoting activities under controlled environment. Plants (Basel). 2022; 11(14):1872. https://doi.org/10.3390/plants11141872
  • [19] Ali A, Junda M, Rante H, Nuramelia R. Characterization of Actinomycetes antagonist Fusarium oxysporum f.sp. passiflora ısolated from rhizosphere soil of purple passion fruit plants, South Sulawesi, Indonesia. J Phys: Conf Series. 2018: 1028(1). https://doi.org/10.1088/1742-6596/1028/1/012015
  • [20] Retnowati Y, Kandowangko NY, Katili AS, Pembengo W. Diversity of actinomycetes on plant rhizosphere of karst ecosystem of Gorontalo, Indonesia. Biodiversitas. 2024; 25(3): 907–915. https://doi.org/10.13057/biodiv/d250301
  • [21] Rante H, Manggau MA, Alam G, Pakki E, Erviani AE, Hafidah N, Abidin HL, Ali A. Isolation and identification of Actinomycetes with antifungal activity from karts ecosystem in Maros-Pangkep, Indonesia. Biodiversitas. 2024; 25(2). 458–464. https://doi.org/10.13057/biodiv/d250203
  • [22] Rante H, Gemini A, Usmar, Syarifa Z, Ari K, Alimuddin A. Antimicrobial activity of Streptomyces spp. sponge-associated isolated from Samalona Island of South Sulawesi, Indonesia. Biodiversitas. 2022; 23(3): 1392-1398. https://doi.org/10.13057/biodiv/d230325
  • [23] Kim JH, Lee N, Hwang S, Kim W, Lee Y, Cho S, Palsson BO, Cho BK. Discovery of novel secondary metabolites encoded in actinomycete genomes through coculture. J Ind Microbiol Biotechnol. 2021;48(3-4):kuaa001. https://doi.org/10.1093/jimb/kuaa001
  • [24] Song Q, Huang Y, Yang H. Optimization of fermentation conditions for antibiotics production by Actinomycetes YJ1 Strain against Sclerotinia sclerotinia. J Agric Sci. 2012; 4(7): 95-102. http://dx.doi.org/10.5539/jas.v4n7p95.
  • [25] Ibnouf EO, Aldawsari MF, Ali Waggiallah H. Isolation and extraction of some compounds that act as antimicrobials from actinomycetes. Saudi J Biol Sci. 2022;29(8):103352. https://doi.org/10.1016/j.sjbs.2022.103352
  • [26] Sah SN, Majhi R, Regmi S, Ghimire A, Biswas B, Yadaf LP, Sah RK, Shah PK. Fermentation and extraction of 385 antibacterial metabolite using Streptomyces Spp. isolated from Taplejung Nepal. J Inst Sci Technol. 2021; 26 (1): 8-15. https://doi.org/10.3126/jist.v26i1.37808
  • [27] Sah SN, Lekhak B. Screening of antibioticproducing Actinomycetes of the soil of Siraha, Nepal. Himalay J Sci Technol. 2017; 1: 20-25. https://doi.org/10.3126/hijost.v1i0.25817
  • [28] Etinagbedia A. Phytochemical analysis of Mucuna pruriens root by thin layer chromatography (TLC). Int J Pharm Res Appl. 2022; 4(7): 1814-1820. https://doi.org/10.35629/7781-070418141820
  • [29] Calvo-Peña C, Cobos R, Sánchez-López JM, Ibañez A, Coque JJR. Albocycline ıs the main bioactive antifungal compound produced by Streptomyces sp. OR6 against Verticillium dahliae. Plants (Basel). 2023;12(20):3612. https://doi.org/10.3390/plants12203612
  • [30] Hyeon JD, Park KD, Kim SH, Kim KR, Choi SW, Kim JT, Choi KH, Kim JH. Identification of Streptomyces sp. Producing Antibiotics Against Phytopathogenic Fungi, and Its Structure. J Microbiol Biotechnol. 2004;14:212-215.
There are 30 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Research Article
Authors

Maulidiah Alda Sami This is me

Gemini Alam This is me

Herlina Rante This is me

Submission Date May 20, 2024
Acceptance Date July 29, 2024
Publication Date June 4, 2025
DOI https://doi.org/10.12991/jrespharm.1693804
IZ https://izlik.org/JA46GA88WT
Published in Issue Year 2025 Volume: 29 Issue: 3

Cite

APA Sami, M. A., Alam, G., & Rante, H. (2025). Isolation of Actinomycetes from rhizosphere soil of Nephrolepis cordifolia as a producer of antifungal compounds in the karst of Bantimurung. Journal of Research in Pharmacy, 29(3), 959-970. https://doi.org/10.12991/jrespharm.1693804
AMA 1.Sami MA, Alam G, Rante H. Isolation of Actinomycetes from rhizosphere soil of Nephrolepis cordifolia as a producer of antifungal compounds in the karst of Bantimurung. J. Res. Pharm. 2025;29(3):959-970. doi:10.12991/jrespharm.1693804
Chicago Sami, Maulidiah Alda, Gemini Alam, and Herlina Rante. 2025. “Isolation of Actinomycetes from Rhizosphere Soil of Nephrolepis Cordifolia As a Producer of Antifungal Compounds in the Karst of Bantimurung”. Journal of Research in Pharmacy 29 (3): 959-70. https://doi.org/10.12991/jrespharm.1693804.
EndNote Sami MA, Alam G, Rante H (June 1, 2025) Isolation of Actinomycetes from rhizosphere soil of Nephrolepis cordifolia as a producer of antifungal compounds in the karst of Bantimurung. Journal of Research in Pharmacy 29 3 959–970.
IEEE [1]M. A. Sami, G. Alam, and H. Rante, “Isolation of Actinomycetes from rhizosphere soil of Nephrolepis cordifolia as a producer of antifungal compounds in the karst of Bantimurung”, J. Res. Pharm., vol. 29, no. 3, pp. 959–970, June 2025, doi: 10.12991/jrespharm.1693804.
ISNAD Sami, Maulidiah Alda - Alam, Gemini - Rante, Herlina. “Isolation of Actinomycetes from Rhizosphere Soil of Nephrolepis Cordifolia As a Producer of Antifungal Compounds in the Karst of Bantimurung”. Journal of Research in Pharmacy 29/3 (June 1, 2025): 959-970. https://doi.org/10.12991/jrespharm.1693804.
JAMA 1.Sami MA, Alam G, Rante H. Isolation of Actinomycetes from rhizosphere soil of Nephrolepis cordifolia as a producer of antifungal compounds in the karst of Bantimurung. J. Res. Pharm. 2025;29:959–970.
MLA Sami, Maulidiah Alda, et al. “Isolation of Actinomycetes from Rhizosphere Soil of Nephrolepis Cordifolia As a Producer of Antifungal Compounds in the Karst of Bantimurung”. Journal of Research in Pharmacy, vol. 29, no. 3, June 2025, pp. 959-70, doi:10.12991/jrespharm.1693804.
Vancouver 1.Sami MA, Alam G, Rante H. Isolation of Actinomycetes from rhizosphere soil of Nephrolepis cordifolia as a producer of antifungal compounds in the karst of Bantimurung. J. Res. Pharm. [Internet]. 2025 June 1;29(3):959-70. Available from: https://izlik.org/JA46GA88WT